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Abstract 
In this paper a new fractal image compression algorithm is 
proposed in which the time of encoding process is considerably 
reduced. The algorithm exploits a domain pool reduction 
approach, along with using innovative predefined values for 
contrast scaling factor, S, instead of scanning the parameter 
space [0,1]. Within this approach only domain blocks with 
entropies greater than a threshold are considered. As a novel 
point, it is assumed that in each step of the encoding process, 
the domain block with small enough distance shall be found 
only for the range blocks with low activity (equivalently low 
entropy). This novel point is used to find reasonable 
estimations of S, and use them in the encoding process as 
predefined values, mentioned above. The algorithm has been 
examined for some well-known images. This result shows that 
our proposed algorithm considerably reduces the encoding time 
producing images that are approximately the same in quality.  
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resolution. 
 
1. Introduction 
Fractal image compression is widely used in image 
processing applications such as image signature [1], 
texture segmentation [2], feature extraction [3], image 
retrievals [4,5] and MR, ECG image processing [6]. 
However, this method suffers from a long encoding 
time as its main drawback. This long encoding time 
arise from very large number of domain blocks that 
must be examined to match each range block. The 
number of range blocks with size of nn × , in an 

NN × image, is 2)/( nN , while the number of 

domain blocks is 2)12( +− nN . Consequently it can 
easily be shown that the computation for matching 
range blocks and domain blocks has complexity of 

)( 4NO [7]. Thus reducing this encoding time is a 
focus of research with practical ramifications. Several 
methods have been proposed to overcome this problem. 
One common way is the classification of blocks in a 
number of distinct sets where range and domain blocks 
of the same set are selected for matching. Here, the 
encoding time is saved at cost of image quality. 
Reducing the size of domain pool is another method 
that has been employed in several manners. In some 
approach domain blocks with small variance [3] and in 

some others domain blocks with small entropies were 
deleted from the domain pool [7] 
In addition to the size of the domain pool, the 
computational cost of matching a range block and a 
domain block has an important role in encoding time. 
We reduced this cost by estimating the approximate 
optimum values for contrast scaling factor, S, instead 
of searching for it. Combining these two novel points, 
we propose a new fractal image coding that has a 
considerable shorter encoding time than the next fastest 
algorithm [7]. In section 2 we present a brief 
description of the fractal image coding. The proposed 
algorithm is presented in section 3. In section 4 the 
methodology and the results are presented and 
compared with the next fastest algorithm. Finally, in 
section 5 conclusions are presented and some future 
works are addressed. 
 
2. Fractal Image Coding: A Brief   Review 
At the first step in fractal coding an image is 
partitioned into none overlapping range blocks of 
size BB × , where B is a predefined parameter [4,5,8]. 
Then a set of domain blocks are created from the 
original image, taking all square blocks of size 

BB 22 × with integer step L, in horizontal and vertical 
directions. Within each member in the domain pool, 
three new domain blocks are created by clockwise 
rotating it 90º, 180º and 270º, also these three and the 
original domain block all are mirrored. Here, in 
addition to the original domain block, we have seven 
new domain blocks. These blocks are added to the 
domain pool. After constructing domain pools (related 
to each range block) we must select the best domain 
block from domain pool and find an affine 
transformation that maps the selected domain block 
with minimum distance. The mentioned distance 
between a range block, R , and a decimated domain 
block, D , both with n pixels is defined as follows: 

∑
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The best coefficient S and O are [9]: 
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><, , R, D, R and D are inner product, range block, 
domain block, mean of R and mean of D respectively.  
Because of high computational cost of (2), it is 
convenient to search S across a pre-sampled set of 
[0,1], instead of calculating (2). 
Along the matching process, the best found 
transformations are only saved for range blocks which 
have been mapped with an acceptable error. The 
remaining range blocks are split into 4 new smaller 
range blocks, and the matching process is restarted for 
the new set. For example, if range blocks initially have 
a size of 1616× pixels, the range blocks of the 
succeeding steps will have a size of 88× , 44× and 

22×  respectively, that leaves a four step algorithm. 
Two strategies were used to reduce the encoding time 
in fractal coding algorithms. In his research, Saupe 
found that the domain pool is not necessary to include 
all of possible domain blocks and only the high 
variance blocks are sufficient [3,10]. In another work, 
the entropy measure was used instead of variance [7].  
This entropy based method is superior to the Saupe 
method so we compare our algorithm to the entropy 
based one. 
 
3. The proposed algorithm 
In this paper we use two novel points to reduce the 
encoding time. The first point is restricting the domain 
pool to high entropy domain blocks. This causes the 
total evaluation time for finding related domain block 
of a range block to become shorter. The entropy of a 
block is defined below. Suppose N  be a K K× block 
of an Image as shown in figure 1 

 
         Figure 1, a domain block of size K K×  

In the above figure ijg  is the grey level of the pixel at 

location ( , )i j . Suppose ijg  for , 1, 2,...,i j n=  

varies in 1 2{ , ,..., }KL L L . Also suppose the number of 

observations of iL  over the pixels is iq . So the 

probability of iL  is defined as equation 5, 
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The entropy is defined as below: 

1
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Here is some example block with size of 3232×  
 

    
35.7 44.20 46.09 40.57 

Figure 2  four domain blocks and their related entropy 

As evident from figure 2, low entropy blocks are 
smoother and consequently have lower information 
contents. Lacking high frequency information, low 
entropy blocks cannot cover high entropy range blocks. 
On the other hand, high entropy blocks may cover all 
range blocks. To cover low entropy rang blocks we can 
simply reduce information of the domain blocks. 
 
3.1 The effect of contrast scaling factor, s  
Another important parameter that was investigated is 
the contrast scaling factor s . To do this, a large number 
of experiments with exhaustive search for s  were 
performed. Histograms of the best selected values of 
s are shown in figure 3 for all four steps respectively. 
To analysis the effect of s , it will be helpful to recall 
the operation of s . As mentioned in section 1, domain 
block pixels are multiplied by s and then the integer 
part is considered. Indeed, s  maps integer values of 
domain pixels to integer values of range 
pixels (0 1)s< < . Here a simple proposition is 
presented that helps us interpret the presented 
histograms in figure 3. 
Proposition   
Suppose 1 20 1s s< < <  and 1X , 2X  and Y  are 
three sets of positive integer values with the same size. 
If 1 1[ ]X s Y=  and 2 2[ ]X s Y=  then  

1 2( ) ( )Entropy X Entropy X≤  

*[ ]x is the biggest integer less than x . 
Proof: There is a simple proof as follows  

10 21 <<< ss  

][0 11 YsX =<  , ][0 22 YsX =<  
⇒  

)()(
)()()()( 2211

YMinYMax
XMinXMaxXMinXMax

−
<−<−

 

(Here 10 << s has a contractive role). 
On the other hand we have  

1 2( ) ( ) ( )N X N X N Y= =  
Here N(X) is the size of the set X. Thus X1 and X2 
have the same size, but with different domain of 
variation and also are processed from the same set 
through a simple multiplication. It is obvious that the 
redundancies of 1X  will be larger than the ones 

of 2X . This simply concludes the results. At step 1 
range blocks are 1616×  or of size 256 pixels. 
Consider now a block with a determined entropy or 
information. It is obvious that all permutations 
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constructed by rearranging pixels of the block have the 
same entropy as the original. A simple and qualitative 
measure or as a lower bound for the number of these 
permutations is as follows:  

!!!
!256

21 k
P nnn

N
L

=  
 

 (6) 

where jn  is the number of pixels with grey level of j, 

big jn  means the block has more redundancies and 

equivalently low entropy. Large values for jn  are 
indicative of small distinct permutations. As a result, at 
step 1 only range block with small entropy will have 
the chance to be coded and consequently s has small 
values (recall the proposition above). If the entropy of a 
block is high at step one, then the number of blocks 
with that entropy will be high ( jn s are small) so the 
probability that it could not be coded at this step would 
be high. Therefore, we expect that s  would have a 
small value. At lower steps 2, 3 and 4 block sizes are 

88× , 44 × . Following the same logic we see that 

PN  drastically decreases. As a qualitative comparison 
we write: 

0
!256

!64
1
2 ≈∝

NP
NP  

Again, with a similar discussion it may be shown that, 
blocks of higher entropy at level 2 are encoded so s  is 
left at greater values. This will also happen in lower 
steps. The histogram of the best s  in lower steps, 
according above discussion, will be shifted to the right, 
as shown in figure 3. In each step of existing 
algorithms, all members of a 10-member set of s , 
sampled from [0, 1], are evaluated. It can be seen from 
figure 3 that all values of s need not be evaluated and 
we can restrict s to one or two distinct values.  
Obviously, restricting the size of s  to a 2-member set 
will decrease the search and hence the encoding time 
considerably. To find a true estimation of s , a large 
number of experiments with an exhaustive search for 
s  were performed. One can easily see that at step 1 the 
optimal s  value is often less than 0.1, independent of 
the image, so for this step we may let 0.1s = . At step 2 
the optimum value of S is less than 0.5 so here we 
choose s  to be {0.2,0.4}. For step 3, s  has 
approximately a uniform distribution across [0,1] , so 
to determine some distinct values here we choose S 
from {0.3, 0.8}. For step 4 as shown in figure 3d, s  
the higher value in [0 1]. Here s is chosen 
from{0.5,0.9} . In this step  

 
(3a) 

 
(3b) 

 
(3c) 

 

 
                                    (3d)  

Figure 3 Histogram of s at a) step1 b) step2 
c)step 3 d)step 4 

 
blocks’ size are 22 ×  that cause to be encoded very 
well. We reduced the set of values of s to a two- 
member set that leaves three cases for range blocks. 
The first case is where the selected value is the same 
value as obtained from the exhaustive search of s  here 
isn’t any problem. The second case is where the 
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selected s  is not the best value, but the error is less 
than the threshold and the range blocks are coded  
approximately optimal here the encoding time is saved 
but the PSNR is somewhat damaged.  
In the third case, the selected value causes the encoding 
error to become so large that range blocks can not be 
encoded. Hence, the range blocks are split and the 
encoding is done in following steps. This means a 
better PSNR at the cost of small degradation of time 
and compression ratio. 
 
4. Experiments and results 
Several experiments were performed to evaluate the 
proposed algorithm and compare it with the existing 
entropy based methods. Computer programs employed 
in these experiments were written in C++ running on a 
Pentium 2 (450MHz) with 256 MB RAM. Comparison 
results are shown in figure 4a, b, for different pool 
sizes and the Lena image. To have a reasonable 
comparison, the two algorithms are compared in fixed 
PSNR. Figure 4a,b show the compression ratio and 
encoding time for PSNR=35.07db. In these figures 
compression ratio and encoding time are plotted versus 
pool size with the PSNR as the parameter. 
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Figure 4, Compression ratio and encoding time of 
proposed algorithm and entropy based versus pool size a, 
b) at fixed PSNR=35.07db 

 
To gain a greater perception of proposed algorithm the 
results for two other familiar images are presented in 
tables 1and 2. Comparing the two algorithms, it is 

evident that the proposed algorithm is superior 
especially in encoding time economy. The results of 
proposed algorithm for Lena image are presented in 
figure 6. 
 

 

Table 1 the comparison results for Baboon  
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256 5.36 26.24 26.33 5.35 47.04 26.34 
64 4.98 10.88 26.40 4.84 18.56 26.09 
32 4.62 7.68 26.07 4.61 12.16 26.07 

 

Table 2 the comparison results for F16  
 Proposed Entropy based 
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256 11.25 13.76 33.41 11.50 85 33.41 
64 9.63 5.44 33.87 9.47 25 33.97 
32 9.66 4.16 33.65 9.5 21 33.64 

 
 

  
      Figure 5       Original Image 

 

         Figure 6    Com.Rat=12.17    Time(8.2 s)  

                     PSNR=33.57db               
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5. Conclusions and future works  
In this paper we presented a new method for fractal 
image compression to reduce encoding time. Centrally, 
our algorithm employed predefined values for contrast 
scaling factor rather than sweeping the entire parameter 
space during search. Experimental results indicate a 
superior performance level in comparison to the 
existing entropy based methods. In the future we intend 
to further develop this approach in frequency domain 
applications and produce quantitative comparisons with 
other hybrid methods.  
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