
 

 

  
Abstract—Stiction is the most commonly found valve problem 

in the process industry. Valve stiction may cause oscillations in 
control loops which increases variability in product quality, 
accelerates equipment wear and tear, or leads to system 
instability. In this paper, we present a new approach in control 
valve stiction modeling using Recurrent Neural-Network with 
NARX structure. It is shown that the performance of the 
developed model is comparable to other models reported in 
literature. 

 
Index terms— Control valve stiction, neural network, 

modeling.  

I. INTRODUCTION 
SCILLATIONS in process variables are widely encountered 
in process plants [1]. The presence of oscillations in a 

control loop enhances the variability of the process variables 
hence creating inferior quality products, higher rejection rates, 
increased energy consumption and reduced average 
throughput. Interactions among process units further facilitate 
the propagation of oscillations across the plant.  

There are many causes that may contribute to the oscillatory 
behavior observed in control loops. These include poorly 
tuned controllers, presence of oscillatory disturbances and 
nonlinearities [2]. A survey reported in [1] found that 30% of 
the loops are oscillatory due to control valve problems. 
Control valves constitute an important element in chemical 
process control systems.  Through a control valve, control 
actions are implemented on the process. They manipulate 
energy flows, mass flows or forces as a response to low energy 
input signals, for example, electrical voltages or currents, 
pneumatic and hydraulic pressures or flows [3].   

Due to their continuous motions, control valves tend to 
undergo wear and aging. In general, they contain static and 
dynamic nonlinearities including saturation, backlash, stiction, 
deadband and hysteresis [4].  Among the many types of 
nonlinearities in control valves, stiction is the most commonly 
encountered in the process industry [4]. In general, stiction is a 
phenomena that describes the valve’s stem (or shaft) sticking 
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when small changes are attempted [4]. Stiction causes 
fluctuation of process variables, which lowers productivity. 
The variability of process variables makes it difficult to keep 
operating conditions close to their constraints, and hence 
causes excessive or unnecessary energy consumption.  It is 
therefore desirable to understand and study the dynamics 
behavior of stiction so that necessary actions can be 
implemented to eliminate or hinder its deleterious effect before 
it propagates. 

Several valve stiction models have been proposed in the 
literature. Muller [5] described a detailed physical model that 
formulates the stiction phenomenon as precisely as possible. 
However this type of model is not only impractical, it is also 
time-consuming since there are a number of unknown physical 
parameters that must be solved. On the other hand, Choudhury 
et al. [4] proposed a data-driven model that describes the 
relationship between a controller output and a valve position. 
An extended version of Choudhury’s model that includes the 
flexibility of processing deterministic and stochastic signals 
has been proposed in Kano et al. [6]. However, both these 
empirical approaches involved with a rather complex logic 
making them difficult to implement.  

In this paper, a much simpler black-box approach for 
control valve stiction modeling is proposed using Neural-
Network. The outline of this paper is as follows: Section II 
describes stiction in general. In Section III, the Neural-
Network algorithm is presented. Section IV illustrates the 
proposed method in numerical simulations and benchmarked 
against the proven and validated data driven model of [4]. 
Finally, the conclusions are presented. 
  

II. CONTROL VALVE STICTION 
Fig. 1 shows the general structure of a pneumatic control 

valve. Stiction happens when the smooth movement of the 
valve stem is hindered by excessive static friction at the 
packing area. The sudden slip of the stem after the controller 
output sufficiently overcomes the static friction causes 
undesirable effect to the control loop. 

Fig. 2 illustrates the input-output behavior for control valve 
with stiction. The dashed line represents the ideal control valve 
without any friction.  

Stiction consists primarily of deadband, stickband, slip jump 
and the moving phase [7].  For control valve under stiction 
resting at point (a), the valve position remains unchanged even 
when the controller output increases due to the deadband 
caused by the static friction. Only when the controller output 
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exceeds the maximum static frictional force, fS, the valve starts 
to respond (point(b)).   

 

 
Fig. 1 Structure of pneumatic control valve adapted from 

[6]. 
 

 

 
Fig. 2 Typical input-output behavior of a sticky valve 

adapted from [6]. 
 
A slip jump of magnitude J is incurred when the valve starts 

to move at point (b) when the frictional force fS is converted to 
kinetic force fD. From points (c) to (d), the valve position 
varies linearly. The same scenario happens when the valve 
stops at point (d), and when the controller output changes 
direction. Parameter S represents the deadband plus stickband 
regions. 
 

III. NEURAL-NETWORK 
An artificial neural network (ANN) or commonly just neural 

network (NN) is an interconnected group of artificial neurons 
that uses a mathematical model or computational model for 
information processing based on a connectionist approach to 
computation. In most cases an ANN is an adaptive system that 
changes its structure based on external or internal information 
that flows through the network. 

In this paper, two types of NN for modeling the control 
valve stiction are investigated.   

 
A. Feedforward-Backpropagation Neural Network 

 
Feedforward backpropagation neural networks (FF 

networks) are the most popular and most widely used models 
in many practical applications. They are known by many 
different names, such as "multi-layer perceptrons." The 
following diagram illustrates a FF networks network with three 
layers: 
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Fig. 3 Graphical representation of a BP network architecture. 

 
Backpropagation (BP) network was created by generalizing 

the Widrow-Hoff learning rule to multiple-layer networks and 
nonlinear but differentiable transfer functions [8]. BP network 
with biases, a sigmoid (‘tansig’ or ‘logsig’) transfer functions 
at the hidden layers, and a linear transfer function at the output 
layer is capable of approximating any functions. 

BP networks architecture is slightly more complex than a 
single layer network. In addition to a single (hidden) layer 
consisting nodes with sigmoid transfer function, another layer 
called the output layer is required. The output layer is usually 
kept linear to produce output values in the similar range as the 
target values. However, the sigmoid transfer functions (either 
‘logsig’ or ‘tansig’) are often used if the outputs need to be 
constrained to the range of [0,1] or  
[-1,1].  

The minimum architecture of BP networks is illustrated as 
layer diagram in Fig. 3. The (R x 1) inputs p are fed to Layer 1 
(hidden layer) consisting of S1 ‘tansig’ nodes. The resulting 
outputs a2 with ‘linear’ transfer function retain the same size 
(S2 x 1) as the net inputs n2 to Layer 2 (output layer). With this 
architecture, the BP networks are capable of approximating 
any linear and nonlinear functions given adequate number of 
hidden nodes. 
 

B. Recurrent Neural Network with NARX Structure 
(NARX network) 

 
 In Feedforward NN, the neurons in one layer receive inputs 
from the previous layer. Neurons in one layer deliver its output 
to the next layer; the connections are completely 
unidirectional; whereas in Recurrent NN, generally, some 
connections are present from a layer to the previous layers. 
The next value of output is regressed on previous values of 
input signal (see Fig.4). 
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NARX Network 
 

The nonlinear autoregressive network with exogenous 
inputs (NARX) is a recurrent dynamic network, with feedback 
connections enclosing several layers of the network [9-11].  

 
Fig. 4. NARX network structure. 

 
The NARX model is based on the linear ARX model, which is 
commonly used in time-series modeling.  The defining 
equation for the NARX model is shown in (1), where the next 
value of the dependent output signal )(ty  is regressed on 
previous values of the output signal and previous values of an 
independent (exogenous) input signal. 
 

))(,),2(),1(),(,),2(),1(()( uy ntututuntytytyfty −−−−−−= KK  
(1) 

 
Standard NARX architecture is as shown in Fig. 5(a). It 
enables the output to be fed back to the input of the 
feedforward neural network. This is considered a feedforward 
backpropagation network with feedback from output to input. 
In series parallel architecture, Fig. 5(b), the true output which 
is available during the training of the network is used instead 
of feeding back the estimated output. The advantage is that the 
input to the feedforward network is more accurate. Besides, 
the resulting network has a purely feedforward architecture, 
and static backpropagation can be used for training.  
 

IV. NUMERICAL EVALUATIONS 
In this section, the two types of NN for modeling valve 

stiction are applied to simulated data generated using the 
validated and proven data-driven model of Choudhury et al. 
[4] from a simple sine wave function.  The four cases of 
stiction are investigated, namely, deadband (J=0), stiction 
undershoot (S>J), stiction no offset (S=J) and stiction 
overshoot (S<J).  The performances of the two NN models are 
benchmarked against that of the data-driven model. 

Note that the NN architecture summary for all the four cases 
of stiction is described in TABLE 1. 
 

 
(a) 

 
(b) 

Fig. 5. NARX network architecture. 
 
A. Deadband 

 
Figs. 6 and 7 show the performance comparison between 

feedforward backpropagation and NARX with data-driven 
model of [4] for a pure deadband case.  

Note that in all the figures in this section onwards, only the 
control valve stiction output signals are plotted. 
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Fig. 6. Data driven vs. feedforward backpropagation for pure 

deadband case. 
 

From the figures, it can be clearly observed that NARX 
model followed closely the behavior of the data driven model 
of [4]. Feedforward backpropagation model displayed good 
directional change in the signal, however, the model is unable 
to track the constant sine wave output signal whenever it 
changed directions.  
 

 

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



 

 

TABLE 1. 
NN ARCHITECTURE FOR THE STICTION MODELS. 

 Feedforward  Backpropagation model NARX  model 
Transfer 
functions 

Deadband Stiction 
undershoot 

Stiction no 
offset 

Stiction 
overshoots 

Deadband Stiction 
undershoot 

Stiction no 
offset 

Stiction 
overshoots 

Layer 1 Log sigmoid Log sigmoid Linear Linear Linear Log sigmoid Linear Linear 
Layer 2 Tangent 

sigmoid 
Linear Linear Linear Log sigmoid Linear Linear Tangent 

sigmoid 
Layer 3 Linear Log sigmoid Log sigmoid Log sigmoid Linear  Log sigmoid Linear Linear 
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Fig. 7. Data-driven vs. NARX for pure deadband case. 

 
 
Statistical analysis for the Root Mean Squared Error 

(RMSE) confirms the visual inspection, with values of 0.2336 
and 0.0869 for feedforward backpropagation and NARX, 
respectively. 

Correct Directional Change (CDC) [9] values are 
approximately the same for both networks as expected. This is 
because both networks predict the direction of change 
satisfactorily. 

 
B. Stiction undershoot 
 
In stiction undershoot case, the valve output can never reach 

the valve input, i.e, there will always be some offset. Fig. 8 and 
9 show the resulting performance of the three stiction models.  

Again, similar performance as observed earlier can be seen. 
NARX model with output feedback feature tracks the stiction 
behavior as efficient as the data driven model. RMSE of 
0.1990 and 0.0907, and CDC values of 61% and 59% are 
obtained for the feedforward backpropagation and NARX 
models, respectively. 

 
C. Stiction no offset 
 

 Stiction no offset produces a pure stick-slip behavior with 
no offset between the input and output signals. The moment 
stiction is overcome, valve output tracks the valve input signal 
perfectly. Fig. 10 and 11 display the corresponding behavior 
for both the networks. 
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Fig. 8. Data driven vs. feedforward backpropagation for 

stiction undershoot. 
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Fig. 9. Data driven vs. NARX for stiction undershoot. 

 
In this case, precise matching between the feedforward 

backpropagation and data driven stiction models outputs can 
be perceived in all the moving phase regions.  

 
However, in the deadband area, the same poor performance 

as seen in earlier sections is again encountered.  In contrast, 
NARX stiction model accurately predicts the stiction output 
signal.  

 
CDC of 62% are obtained for both NN stiction models, with 

comparable RMSE of 0.1793 and 0.1262. 
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Fig. 10. Data driven vs. feedforward backpropagation for 

stiction no offset. 
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Fig. 11. Data driven vs. NARX for stiction no offset. 

 
D. Stiction overshoot 

 
For control valve with stiction overshoot, the valve output 

overshoots the valve input due to excessive stiction.  
 
Stiction model developed using NARX network provides 

excellent prediction of the control valve output as can be seen 
from Fig. 12 and 13. Feedforward backpropagation stiction 
model is unable to capture the sharp edges of the control valve 
output as satisfactorily as exhibited by the data driven model. 
 

RMSE values for the feedforward backpropagation model is 
0.2179, whilst the NARX stiction model is 0.1428. Directional 
changes of the signal, however, are predicted accurately by 
both the NN models. 
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Fig. 12. Data driven vs. feedforward backpropagation for 

stiction overshoots. 
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Fig. 13. Data driven vs. NARX for stiction overshoot. 
 

I. CONCLUSION 
In this work, a simple Neural Network-based modeling 

approach is proposed in modeling control valve stiction. The 
validity of the model is demonstrated by benchmarking the 
performance with the proven data driven model of stiction 
developed by [4]. Numerical evaluations showed that 
Recurrent NN stiction model is able to predict the control 
valve behavior in all four types of stiction to sufficient 
accuracy. Comparable results are obtained for both the 
Recurrent NN and data driven models. The use of a purely 
black-box NN models avoid the use of complex logics as 
encountered in other models. 
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