
 
 

 

  
Abstract—We analyze the free convection magnetohydrodynamic 
micropolar flow, heat and species diffusion between vertical 
plates enclosing a non-Darcian porous medium with variable 
thermal conductivity and internal heat generation/absorption 
effects. The non-linear coupled partial differential conservation 
equations are transformed and solved using the finite element 
method subjected to appropriate boundary conditions. 
Numerical results for the velocity, angular velocity, temperature 
and concentration profiles as well  as for the heat transfer rate 
and skin  friction are plotted graphically and tabulated for the 
controlling thermophysical and hydrodynamic parameters, 
namely hydromagnetic number buoyancy ratio parameter, 
vortex viscosity parameter, Darcy number, Forchheimer 
number, thermal conductivity parameter and heat 
absorption/generation parameter to demonstrate the flow and 
transport phenomena behaviour. It is also shown that the volume 
flow rate, the total heat rate and the total species rate added to 
the fluid are decreased with a rise in vortex viscosity parameter. 
The flow scenario finds applications in Chemical processing, 
metallurgical transport modeling, aerodynamic heating and 
many geophysical processes e.g. crude oil recovery. 
 
Index Terms— Fully developed, MHD, Non-darcy and Heat 
generation/absorption. 

 

I. INTRODUCTION 

The study of convective flow, heat and mass transfer in porous 
media has been an active field of research as it play a crucial 
role in diverse applications, such as thermal insulation, 
extraction of crude oil and chemical catalytic reactors etc. 
Although considerable work has been reported on flow heat 
and mass transfer in porous media, a majority of porous 
studies have been on Darcy’s law which states that the volume 
averaged velocity is proportional to the pressure gradient. 
Darcy’s law however is valid only for slow flows through 
porous media with low permeability. At higher flow rates, 
there is a departure from the linear law and inertial effects 
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become important. The Darcy-Forchheimer model describes 
the effect of inertia as well as viscous forces in porous media 
and was used by Poulikakos and Bejan [1], [2].  

All the above-mentioned work has been based on the 
Newtonian i.e. Navier-Stokes fluid model, but the fluids used 
in most of the metallurgical and chemical engineering flows, 
exhibit strong non-Newtonian behaviour. To overcome the 
inadequacy of the Navier-Stokes equations to explain certain 
phenomena exhibited by fluids with suspended particles like 
colloidal suspension, exotic lubricants, animal blood etc, 
Eringen [3] developed the theory of micropolar fluids which 
take into account the local rotary inertia and couple stresses.  

Recently, considerable attention has also been focused 
on new applications of magneto-hydrodynamics (MHD) and 
heat transfer in for e.g. metallurgical processing. Melt refining 
involves magnetic field application to control excessive heat 
transfer rates. Other applications of MHD heat transfer include 
MHD generators, plasma propulsion in astronautics, nuclear 
reactor thermal dynamics and ionized-geothermal energy 
systems etc.  
         But most of the MHD heat convection problem in porous 
media are done taking constant fluid properties, for example 
thermal conductivity. This considerably simplifies the 
analytical and experimental studies as the number of variables 
are reduced. However it has been strongly established that 
such thermophysical properties changes with temperature. To 
accurately predict flow and heat transfer rates, it is necessary 
to take into account this variation of physical properties with 
temperature.  
          Consideration of heat source and sink become important 
when dealing with chemical reactions and dissociating fluids. 
In such cases a source or sink term is added in the energy 
equation to include its effects. 
          Therefore, the purpose of this study is to analyze the 
steady, incompressible flow heat and mass transfer of an 
electrically conducting micropolar fluid in a Non-darcy porous 
medium with variable thermal conductivity and heat 
generation /absorption effects using the finite element method. 
 

II. FORMULATION OF THE PROBLEM 
Consider the steady, laminar, incompressible, free-convection 
flow between two vertical plates embedded in a non-Darcy 
porous medium with heat- absorbing or generating thermo-
micropolar fluid, subjected to a transverse magnetic field. It is 
assumed that the two walls are maintained at different 
temperatures and concentrations resulting in an asymmetric 
situation with respect to temperature and concentration 
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respectively. The vertical plates are separated by a distance b 
with reference to an x, y coordinate system, where the x-axis 
is directed along the vertical plates and the y-axis is transverse 
to this. The flow is both hydrodynamically and thermally fully 
developed. Neglecting viscous heating and thermal dispersion 
effects, under the Boussinesq approximation, the conservation 
equations can be written as follows: 
Velocity Equation: 
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Diffusion Equation: 
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with vertical walls boundary conditions as: 

110: 0, 0, ,y u g T T C C= = = = =                                 (5a) 

22: 0, 0, ,y b u g T T C C= = = = =                  (5b)                  

         where σ  is the electrical conductivity of the micropolar 
fluid, Bo is the strength of the transverse magnetic field, ga is 
the gravity. μ and kp designate respectively the Newtonian 
dynamic viscosity and permeability of the porous medium, g 
is the angular velocity of the micropolar fluid micro-elements, 
kf is the thermal conductivity of the fluid, Qo is the 
dimensional heat generation or absorption coefficient, T and C 
are the fluid temperature and concentration respectively, T0 is 
the inlet temperature and C0 is the inlet concentration. The left 
plate is kept at constant temperature T1 and the right plate is 
maintained at a constant temperature T2. Additionally, the 
concentration varies from C1 on the left plate to C2 on the right 
plate.  
           Considering the thermal conductivity as a linear 
function of temperature and defining as: 
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Here k1 is the fluid thermal conductivity at temperature T1 and 
α  is a constant depending on the nature of the fluid. 
Proceeding with the analysis, we introduce the following 
similarity transformations:  
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       Substituting equation (7) into equations (1)-(5) leads to 
the following set of non-linear, ordinary differential equations:  

Linear Momentum Equation: 
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Angular Momentum Equation:  
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Energy Equation: 
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Diffusion Equation: 
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where   2 /B b j=     and   /R κ μ=      are micropolar 
parameters (dimensionless material properties) and 

1 0 1 0/( ) ( )C TbN C C T Tβ β= − −  is the buoyancy ratio, 

( )3 2 2
1 0 /a TGr T Tg bβ ρ μ= −  is the Grashof number, 

2 2 /oM B bσ μ= is the magnetic parameter, 2/pDa k b=   is 

the Darcy number, /FFs b b=  is the Forchheimer (quadratic  

porous drag) number and 2
1/s oh Q b k=  is the heat 

absorption/generation parameter. The transformed boundary 
conditions now become: 

At   0: 0, 0, 1, 1Y U H θ= = = = Φ =                               (12) 
At   1: 0, 0, ,Y U H m nθ= = = = Φ=                              (13)  

where  2 0 1 0( ) /( )m T T T T= − −  is the wall temperature ratio 

and 2 0 1 0( ) /( )n C C C C= − −  is the wall concentration ratio.  
The shear stress at the left wall is given by:     
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The heat flux at the left wall may be written using Fourier’s 
law as follows:  
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The heat transfer coefficient at the left wall is given by: 

  1
1
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The Nusselt number at the left wall can be defined thus:  

 1 (0)
f
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k
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The dimensionless volume flow rate is given by: 
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The dimensionless total heat rate added to the fluid is given 

by:             
1

0
E U dYθ= ∫                                 (19) 

Finally the dimensionless total species rate added to the fluid 

is given by:           
1

0

U dYϕ = Φ∫                                (20) 

III. NUMERICAL SOLUTION BY FINITE ELEMENT METHOD 
The transformed two-point boundary value problem defined by 
equations (8-11) and (12-13) is solved using the finite element 
method. Details of the method are given in Reddy [4] and 
Bathe [5]. This technique has been employed extensively by 
the authors in many challenging heat transfer, biomechanics 
and metallurgical transport phenomena problems over the past 
few years. Bhargava et al [6] studied numerically the mixed 
micropolar heat transfer past a stretching surface with 
transpiration effects. Bég et al [7] also analyzed the two-
dimensional micropolar convection in a porous medium 
enclosure using finite element and finite difference methods. 
More recently Bhargava et al [8] investigated the first order 
homogenous chemically-reactive heat and mass transfer in 
micropolar-saturated porous media. Other studies include third 
grade viscoelastic hydrodynamics in porous materials [9], 
natural convection boundary layers in geo-porous continua 
[10], pulsatile magneto-biofluid dynamics and mass transport 
in a channel [11].  

The whole domain is subdivided into two noded 
elements. In a nutshell, the Finite element equation are written 
for all elements and then on assembly of all the element 
equations we obtain a matrix of order 328 328× . After 
applying the given boundary conditions a system of 320  
equations remains for numerical solution, a process which is 
successfully discharged utilizing the Gauss-Seidel method 
maintaining an accuracy of 0005.0 . 

 

IV. RESULTS AND DISCUSSION 
The numerical results so obtained  are plotted for  velocity, 
microrotation, temperature in figures 1-12 wherein the 
following default parameter values are used: Da = 0.5, Fs = 5, 
Gr =0.5, B =1, R =1, S = 0.1, Nb = 2, hs = 0.5, M = 1.0, m = 
0.2 and n = 0.1. 
 We observe from fig. 1 that an increase in Darcy 
number Da leads to an increase in dimensionless velocity U. 
This is due to the fact that larger values of Da correspond to 
higher permeability porous media (Da ∝ kp), which implies 
less porous fiber resistance to the flow and therefore an 
acceleration in transport. Also the limit Da → ∞  
corresponds to the case of a vanishing porous medium and is 
associated naturally therefore with the maximum linear 
velocity scenario. Fig. 2 illustrates the effect of Darcy number 
Da on dimensionless angular velocity H. It is observed that 
microrotation continuously increases with an increase in the 

Darcy number Da which means that porous medium act as an 
hindrance in the rotary motions of the micro-elements. 

 Fig. 3. shows the dimensionless velocity distribution  
for different values of Forchheimer parameter Fs. Since Fs 
represents the inertial drag, thus an increase in the Forchheimer 
parameter increases the resistance to the flow and so a decrease 
in the fluid velocity ensues. Here Fs =0 represents the case 
when the flow is Darcian i.e. inertial effects are neglected and 
so the velocity is maximum in this case due to the total absence 
of inertial drag. 
 Figs. 4-5 show the effect of the vortex viscosity 
parameter R on velocity and microrotation distributions 
respectively. It is observed that as vortex viscosity parameter R 
increases, linear velocity decreases whereas the angular 
velocity increases which is in excellent concurrence with the 
results obtained by Cheng [12]. Since R is proportional to 
vortex viscosity of the fluid microstructure therefore an 
increase in the value of R leads to an increase in the angular 
velocity; as a result the increase in vortex viscosity increases 
the rotation of the micro-elements. Fig. 5 shows that maximum 
velocity is obtained when R = 0 (i.e. Newtonian fluid). This is 
due to the fact that the presence of micro-elements decelerates 
the flow and they are completely absent in the special case of 
Navier-Stokes fluids.  

         The effect of thermal conductivity parameter on 
temperature profile is shown in fig 6. Here it is observed that 
temperature profiles decreases with an increase in the thermal 
conductivity parameter S. In the case of constant thermal 
conductivity i.e. S = 0 (i.e thermal conductivity is independent 
of temperature) the temperature attain maximum values. 

The presence of magnetic field in an electrically-
conducting fluid tends to produce a body force which reduces 
the velocity of the fluid and angular velocity of microrotation 
as supported by profiles illustrated by figs. 7-8.  

        Figs. 9-10 depicts that increasing the value of hs induces a 
rise in the angular velocity and temperature distributions of the 
fluid. This result qualitatively agrees with the expectation, 
since the effect of internal heat generation (hs > 0) is to 
increase the rate of energy transport to the fluid, thereby 
increasing the temperature of the fluid. Also the angular 
velocity increases due to the increase in temperature. On the 
contrary, a heat sink ( 0sh < ) has the opposite effect, namely 
cooling of the fluid.  

   Figs. 11, 12, 13 graphically illustrate the change of the 
dimensionless flow rate Q , the dimensionless total heat rate E 
added to the fluid and the dimensionless total species rate φ 
added to the fluid with the buoyancy ratio Nb for various 
vortex viscosity parameter in the presence as well as in the 
absence of the magnetic field. 

Fig. 11 shows that an increase in buoyancy ratio boosts the 
fluid flow and thereby elevates the volume flow rate of the 
fluid between the two vertical plates. As expected it is 
observed that an increase in vortex viscosity parameter lead to 
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Fig. 1: U versus Y for various Da values. 
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Fig. 2: H versus Y for various Da values. 
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Fig. 3: U versus Y for various Fs values 
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Fig. 4: U versus Y for various R values 
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Fig. 5: H versus Y for various R values. 
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Fig. 6: θ versus Y for various S values. 

 
 

0

0.04

0.08

0 0.5 1
Y(dimensionless transverse coordinate)

U
 (V

elo
cit

y)  M = 2

  M = 1 M = 0

  M = 3

 
Fig. 7: U versus Y for various M values. 
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Fig. 8: H versus Y for various M values. 
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Fig. 10: θ versus Y for various hs values. 
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Fig. 11: Q versus Nb for various R values. 
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Fig. 12: E versus Nb for various R values. 
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Fig. 13: φ versus Nb for various R values. 

 

Table 1: Values of  U΄(0) and - θ΄(0) for different values of S 
Da = 0.5, Fs = 5, Gr = 0.5, B = 1, R = 1, N  = 2.0,b

                   m = 0.2, n = 0.1, M = 1
 

hs = - 1 hs =  1 
S 

U΄(0) - θ΄(0) U΄(0) - θ΄(0) 
0 

0.05 

0.1 

0.05 

0.2 

0.25 

   0.3 

0.435827

0.411499

0.395268

0.384192

0.376229

0.370241

  0.365645

 1.13671 

 2.50368 

 4.01456 

 5.51302 

 6.94741 

 8.30639 

 9.58883 

0.456516 

0.424817 

0.404712 

0.391645 

0.382414 

0.375691 

0.370585 

0.410581 

1.82458 

3.43191 

5.00457 

6.49539 

7.89902 

9.21819 
 

a increase in the rotation of microelements which decelerates 
the fluid flow resulting in a decrease in dimensionless volume 
flow rate of the fluid flowing through the vertical channel. 
Besides this, Fig. 11 also reveals that in the presence of  
magnetic field (M = 1), there is a reduction in the 
dimensionless volume flow rate  as compared to the 
electrically non-conducting case  when  there is no magnetic 
field (i.e. M = 0).  

 Fig. 12 demonstrates that an increase in buoyancy ratio 
boosts the fluid flow resulting in an increment in the heat 
transfer rate between the vertical plate and the fluid, thus 
increasing the dimensionless total heat rate E added to the 
fluid. It is found that there is a decrease in the total heat 
transfer rate added to the fluid as the vortex viscosity 
parameter R increases from 0.1 to 0.5. Moreover, the presence 
of magnetic field (M = 1) substantially reduces the total heat 
transfer rate added to the fluid as compared to the case when 
there is no magnetic field (i.e. M = 0).  

From equation (20), we see that, a direct linear relationship 
exists between ϕ and Φ. As expected, an increase in the 
buoyancy ratio increases the fluid flow which leads to an 
increase in the total species transfer rate between the wall and 
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the fluid flowing through the vertical channel.  It is also 
observed that an increase in the vortex viscosity parameter R, 
clearly reduces the total species rate added to the fluid in the 
vertical channel. Besides this, Fig. 13 demonstrates that the 
presence of magnetic field (M =1) also decelerates the total 
species rate added to the fluid in the channel.  

Table 1. elucidates the effect of thermal conductivity 
parameter S and heat source parameter hs  on U΄(0) and - θ΄(0). 
We observe that an increase in thermal conductivity parameter 
causes a reduction in skin friction coefficient (at the left wall) 
whereas heat transfer rate increases as expected. From this 
table, we also notice that as heat source parameter increases, 
U΄(0) increases while - θ΄(0) decreases. 

 
  In order to check the accuracy of our present 

computations, computations were executed with finite 
difference solutions and demonstrated excellent correlation. 
These have not been reproduced for brevity. 
 

V. CONCLUSION 
  The numerical results indicate that: 

a) Increasing the Darcy number (Da) increases both the 
velocity and microrotation function throughout the flow 
regime.  

b) Increasing the Forchheimer (quadratic drag) number (Fs) 
has an impeding effect on the flow.   

c) Increasing vortex viscosity parameter (R) decelerates the 
flow but increases microrotation in the flow regime. 

d) Increasing the thermal conductivity parameter (S) 
substantially decreases the velocity, microrotation and also 
temperature functions throughout the vertical channel.  

e) Increasing the magnetic field parameter (M) significantly 
decreases the velocity and microrotation functions. Thus 
magnetic field parameter M can be used for controlling the 
velocity as well as microrotation profiles as required in 
many industrial processes including metallurgical refining, 
alloy flows etc. 

f) Increasing the heat source parameter (hs) boosts the 
microrotation and temperature profile throughout the 
micropolar fluid saturated domain. This can therefore be 
used to great effect in drawing of filaments through       
metallic baths, customization of steel flows etc. 

g) It is found that as the thermal conductivity parameter (S) 
increases, the skin friction coefficient decreases while the 
heat transfer rate increases. Moreover the Skin friction 
coefficient is elevated and the heat transfer rate decreased 
with a rise in heat source parameter.  Hence the thermal 
conductivity parameter, the magnetic field parameter and 
the heat source parameter can be used effectively for 
controlling not only the velocity and temperature profiles 
but also the skin friction and the heat transfer rate, in 
metallurgical processing.  

h) Finally our numerical computations also indicate that 
volumetric flow rate, total heat rate added to the fluid, and 
the total species rate added to the fluid is lower for the 

case of micropolar fluids (R > 0) as compared to 
Newtonian fluids )0( =R .  
The solutions presented in this work for various 

thermophysical effects would be useful for subsequent analysis 
in heat and mass transfer in metallic materials processing and 
also geophysical processes. 
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