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Abstract: Using a single symmetric relay 

feedback test, a method is proposed to identify 

all the three parameters of a stable second order 

plus time delay (SOPTD) model with equal time 

constants. The conventional analysis of relay 

auto-tune method gives 27% error in the 

calculation of ku,. In the present work, a method 

is proposed to explain the error in the ku 

calculation by incorporating the higher order 

harmonics. Three simulation examples are given. 

The estimated model parameters are compared 

with that of Li et al. [4] method and that of 

Thyagarajan and Yu [8] method. The open loop 

performance of the identified model is compared 

with that of the actual system. The proposed 

method gives performances close to that of the 

actual system. Simulation results are also given 

for a nonlinear bioreactor system. The open loop 

performance of the model identified by the 

proposed method gives a performance close to 

that of the actual system and that of the locally 

linearized model. 
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SOPTD model, symmetric relay, auto-tuning 

1. Introduction 

Åström and Hägglund [2] have suggested the use 

of an ideal (on-off) relay to generate a sustained 

oscillation of the controlled variable. The 

amplitude (a0) and the period of oscillation (pu) 

are noted from the sustained oscillation of the 

system output. The ultimate gain (ku) and 

ultimate frequency (ωu) are calculated from the 

principal harmonics approximation as: 

ku = 4h/(πa0)     (1) 

ωu = 2π/ pu    (2) 

Certain higher order model system when 

approximated to a FOPTD model gives a 

negative time constant [4]. In such cases, Li et al. 

[4] have suggested to identify a SOPTD model 

instead of a FOPTD model. SOPTD model can 

incorporate higher order process dynamics better 

than that of the FOPTD model. The controller 

designed based on SOPTD model gives a better-

closed loop response than that is designed on a 

FOPTD model. It is better to have a SOPTD 

model with equal time constants, since only three 

parameters are to be identified.  

y(s)/u(s)=kp exp(-Ds)/(τs+1)2  (3) 

Where, ‘kp’ the process gain, ‘D’ the time delay 

and ‘τ’ the time constant are the parameters to be 

estimated. Li et al. [4] have used the relay 

feedback method to identify SOPTD model 

parameters. Based on simulation studies, Li et al. 

[4] have reported that when the ratio of the time 

delay to time constant is larger, the model 

identified by relay autotune method gives 27% 

error in ku calculations. Thyagarajan and Yu (T-

Y) [8] have proposed a method of identifying a 

SOPTD model using symmetric relay test. If the 

response consists of sinusoidal oscillations with 

exponentially increasing magnitude that reach to 

steady state after some cycles, the process can be 
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considered as second order process with equal 

time constants with small D/τ ratio [8]. Recently, 

Srinivasan and Chidambaram (S-C) [6] have 

proposed a method to consider higher order 

harmonics of the relay oscillations for a first 

order plus time delay (FOPTD) model. They 

have also proposed a method to calculate the 

model parameters accurately for the FOPTD 

system. In the present work, the method is 

extended to SOPTD system. 

2. Consideration of higher order harmonics 

Let us consider an open loop stable second order 

plus time delay (SOPTD) system with equal time 

constants (1). Consider a symmetric relay 

feedback system. From the Fourier series 

analysis, it can be easily shown [2] that a relay 

consists of many sinusoidal waves of odd 

multiples of fundamental frequency ‘ω’ and with 

the amplitude 4h/(nπ) (n=1, 3, 5, ..). For a 

SOPTD system, the output wave is also a 

sinusoidal wave. Here, y(t) is the output 

response. 

y(t)=[a1 sin(ωu t+φ1) + (1/3) a3 sin(3ωu t+φ3) + ...]

     (4) 

a1= 1/[1+(τωu)2] ; a3= 1/[1+(3τωu)2];   etc.  

φ1=-Dωu   - 2 tan-1(τωu) = -π; ;φ3 =-3Dωu  - 2 tan-

1(3τωu); φj = -j Dωu –2 tan-1(jτωu)  (5) 

Equation (4) can be written as: 

y(t) = a1 [sin(ωu t+φ1) + …]  (6) 

If τωu is assumed very large, then a3 sin(3τωu 

+φ3), a5 sin(5τωu +φ5) etc. will be neglected. In 

what follows, we will consider the higher order 

dynamics for the calculation of ku and in the 

identification of the model parameters. Let us 

derive approximate evaluation of y(t) for the 

limiting cases of smaller τωu and separately for 

larger τωu. Wherever the relay oscillations are 

close to a rectangular waveform, the results for 

smaller τωu is to be used. If the relay oscillations 

are close to a sinusoidal waveform, then the 

standard equation considering fundamental 

frequency of oscillation is used. 

φ1 = -Dωu - 2 tan-1(τωu) =- π  

tan-1(jτωu)=j tan-1(τωu)   (7) 

φ3 = -3Dωu - 2 tan-1(3τωu) =- 3 π  (8) 

Similarly, φ5 = -5 π ;…; φN = -N π  (9) 

Hence, (6) becomes as: 

y(t) = a1[-sin(ωu t) -(1/3) b3 sin(3ωu t)-.] (10) 

where b3 = [1+(τωu)2]/[1+(3τωu)2] ;  (11) 

Value of τωu can be neglected when compared to 

1 and hence the values of b1, b3, .can each be 

approximated to 1. Hence, (10) becomes: 

y(t) = a1[-sin(ωu t) -(1/3) sin(3ωu t) - ....] (12) 

Here the value of ‘a1’ is to be calculated. The 

value of ‘a1’ is not the amplitude what we 

observe from the output oscillation. Let us 

estimate the error involved in ku by using only 

the principle harmonics in the analysis of relay 

testing. From the output oscillations, it is 

possible to calculate y(t*) at any time ‘t*’. Let, 

ωu is the frequency of observed oscillations. 

From (12), we get 

a1 = y(t*) / Σ [sin(iωu t)/i]   (13) 

Let us consider the time (t*) at which 
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ωu t* = 0.5π.    (14) 

Then (12) becomes: 

y(t*)= a [1-(1/3)+(1/5) -(1/7)+(1/9)+..…] (15) 

Where, ‘a’ is the modulus of a1. In the above 

equation, let ‘N’ be the number of terms 

considered in (15). Using the limiting value for 

the summation term (0.25π): 

a = 1.273 y(t*)    (16) 

From the relay oscillation test, the value of ωu is 

noted and the t* is calculated using (14). The 

value of the process output y(t*) is noted at t*. 

Then by selecting proper number of terms in 

(15), the calculated amplitude is obtained. The 

consideration of all higher order harmonics gives 

a= 1.273 y(t*). This limiting value shows that a 

maximum error 27% in ku is obtained by using 

the conventional analysis (principle harmonics 

method). The observed amplitude (a0) is always 

less than the corrected amplitude (a). Later it will 

be shown that the actual maximum error in ku 

will be of 27% [percentage error in ultimate gain 

is given by (ku(principle harmonics)-ku(exact))/ ku(exact)]. 

The calculated value of ku by the conventional 

method is always greater than the exact values. 

The method is verified for SOPTD system with 

various D/τ ratios (refer Table I). The present 

study shows that the value of N=5 gives better 

results on calculated ku. It is also observed that, 

depending upon the D/τ ratio the system will 

filter out some of the higher order harmonics 

(not all). Hence, by incorporation terms for all N 

may lead to an error in the estimation of the 

ultimate gain (refer Table I). The actual number 

of the higher order harmonics to be considered, 

is also depends on the dynamics of the process. 

When there is no initial dynamics, a value of 

N=5 is suggested. If the system response shows 

any initial dynamics, then N=7 or N=9 is 

recommended.  

3. Proposed method 

From the definition of the Laplace transform [3]  

∫
∞

−=
0

)exp()()( dtsttysy
  (17) 

∫
∞

−=
0

)exp()()( dtsttusu
  (18) 

The above integral can be evaluated for a 

particular value of s (say s1). It is suggested to 

use the value s1= 8/ts where ‘ts’ is the time at 

which three repeated cycles of oscillations 

appear in the output. The reason for taking 

s1=8/ts is that, for t > ts, because of very small 

value of the term exp(-s1 t), the contributions by 

subsequent terms is negligible while evaluating 

the integral. Let the above resulting integral 

value be denoted as y(s1) and u(s1). 

y(s1)/u(s1) = kp exp(-D s1)/(τs1+1)2  (19) 

[y(s1)/u(s1)] (τs1 + 1)2 – kp exp[-D s1] = 0 (20) 

From the amplitude criterion: 

kp ku/(τ ωu )2+1 = 1   (21) 

ku used in the above equation is the corrected ku 

giving  

v = τωu = [(kp ku)-1]0.5   (22) 

From the phase angle criterion: 

D = [π-2 tan-1(v)]/ωu    (23) 

[y(s1)/u(s1)] [(v/ωu)s1 + 1]2 – kp exp{-(s1/ωu) [π-2 

tan-1(v)]} = 0    (24) 

using (22), (23) and (24), we get kp τ and D.  

4. Simulation Results 

Three simulation examples are considered using 

symmetric relay with relay height ±1.  

Case study 1: Consider SOPTD system with 

equal time constants as:  
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 G(s)=exp(-0.5s)/(20s+1)2   (25) 

The relay response consists of sinusoidal 

oscillations with exponentially increasing 

magnitude that reach steady state oscillations 

after fewer cycles. This is a typical response of a 

SOPTD model with equal time constants for low 

D/τ ratios [8]. Table II gives model identified 

using proposed method, S-C method [6], Li 

method and T-Y method [8]. Fig. 1 shows the 

open loop response of the actual and identified 

models for a unit step change in the set point. 

The proposed method gives response close to 

that of the actual system. Now let us design a 

controller based on the identified model 

parameters. Skogestad [7] suggested simple IMC 

ideal PID settings to design a controller for good 

robustness and the fast response with cτ =D. 

Now, the controller is designed based on model 

identified (refer to Table II) and the performance 

is evaluated on the actual system. Fig. 2 shows 

that the response of the proposed method is close 

to the actual system. Now, to verify the 

performance of the controller in case of 

parameter uncertainty, the closed loop 

performance is evaluated on the perturbed 

system (keeping τ=30 in (25)). The proposed 

method gives response close to the actual 

system. 

Case study 2: Consider a TOPTD with equal 

time constant system considered by Luyben [4] 

G(s) = 0.125 exp (-s)/(s+1)3  (26) 

Table II gives model identified by the 

proposed, S-C, Li and T-Y method. Fig. 4 shows 

the open loop system response of the actual and 

identified models. The proposed method gives a 

response close to that of the actual system. The 

controller is designed based on model identified 

using [7] (refer to Table II) and the performance 

is evaluated on the actual system (refer Fig. 5). 

The ISE value for proposed method is 3.85 and 

ISE for Li et al. method is 4.03 and 4.53 for the 

for S-C method. Hence, proposed method is 

preferred. 

Case study 3 Consider TOPTD model [4] as: 

G(s)=exp(-2s)/[ (s+1) (10s+1) (20s+1)] (27) 

Table II gives the identified model and the actual 

model. Fig. 6 shows the open loop performance 

for the unit step change in the set point. The 

proposed method gives response close to the 

actual system. For the closed loop performance, 

the controller is designed on the identified 

models and the performance is evaluated on the 

actual system for unit step change in the set 

point. Since error persists for long time ITAE is 

used to compare the closed loop performance. 

The ITAE for proposed method is 339.45, 

1007.83 for the Srinivasan and Chidambaram 

method and 448.65 for Li et al. method. The 

ITAE value shows the proposed method is 

referred. 

4.1 Effect of measurement noise 

The effect of measurement noise on the accuracy 

of the estimation of the parameters is considered. 

The example considered for simulation, is [8]: 

G(s) = exp (-10s)/(s+1)2  (28) 

The measurement noises with a zero mean 

Gaussian distribution and a standard deviation of 

0.5 %, 1% and separately of 1.5 % is added to 

the output of the system. In the identification 

test, the corrupted signal is used in the feed back 

control and for the system output. Once the 

initial dynamics are died out, the amplitude and 

the period of oscillation are calculated. Table III 

gives the identified parameters using the 
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proposed method. As the noise level increases, 

the parameter estimation deteriorates. It is 

desirable to use a first order filter to remove the 

noise.  

4.2 Effect of load  

The effect of the load on parameter identification 

is also considered. The load of 0.02 and 

separately of 0.04 is introduced. The transfer 

function for the load is assumed that of the 

process transfer function. The load affected 

output signal is used for the feedback relay and 

as the system output for model identification 

purposes. The effect of load on model 

identification is reported in Table III. It is 

observed that, there is no significant effect of the 

load on the model identification. Hence, the 

identification method is robust. 

4.3. A nonlinear bioreactor system 

Consider a nonlinear continuous bioreactor. The 

dimensionless model equations are given by [1]: 

)31()2/()2(
,

)30()/1()22(/2

)29()(/1

XmKXm

where

XDXfXdtdX

XDdtdX

+=

−−=

−=

μμ

γμ

μ
 

Here X1, X2, X2f are the dimensionless 

concentration of biomass cell, substrate and 

substrate feed respectively. ‘D’ is the dilution 

rate and ‘μ’ is the specific generation rate. The 

model parameter [1] as: 

1h/l36.0D,g/g4545.0fk;l/g05.0mk

1h4.0m;l/g0.1f2X;g/g4.0

−===

−=μ==γ  

The solution of (29) to (31) gives the following 

stable steady state 

[X1, X2] = [0.22, 0.45]   (32) 

Initially, the system is assumed to be at the stable 

steady state condition. At time t = 0, X1=0.22 

and X2=0.45. At this condition the dilution rate 

(D) is 0.36 l/hr The substrate feed concentration 

is considered as the manipulated variable in 

order to control the cell mass concentration (X1) 

at the stable steady state at X1=0.22. A delay of 

four hour is considered in the measurement of 

X1. For the given condition of the stable 

operating point (32), the local linearized model is 

obtained as: 

G(s) =0.4 exp(-4s)/(63.29 s2+25.59 s+1) (33) 

A symmetrical relay with relay height (h) =0.02 

is conducted. Relay output response (deviation 

value from the steady state point of X=0.22) is 

shown in Fig. 8. An open loop response of the 

nonlinear model is evaluated for a step change in 

X1 from 0.22 to 0.242. Fig. 9 shows, the 

response of the proposed method close to that of 

the actual system. The response based on the 

identified model of T-Y [8] completely 

mismatch with that of the actual bioreactor 

system response. 
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Table I Effect of higher order harmonics on ku 

ku for N ku D/τ 

1 3 5 7 ∞ Exact Error 

4 1.33 1.25 1.21 1.19 1.1 1.2 4 

6 1.28 1.16 1.12 1.10 1.0 1.1 11 

8 1.27 1.12 1.08 1.06 1.0 1.0 17 

10 1.27 1.11 1.07 1.05 1..0 1.0 19 

20 1.27 1.10 1.06 1.04 1.0 1.0 25 

40 1.27 1.10 1.06 1.04 1.0 1.0 27 

 

Table II Identified model parameters and 

controller settings 

Case  Act. Propo. S-C Li T-Y 

kp 1 1.0 0.37 1.19 3.03 

D 0.5 0.54 3.86 0.52 0.32 

τ 20 20.81 64.79 20.09 35.4 

kc 120 102.9 22.35 94.62 291 

τI 24 25.21 30.89 24.26 38.03 

1  

τD 3.33 3.63 - 3.45 2.43 

kp 0.125 0.12 0.13 0.24 103 

D 1 1.49 2.14 1.05 0.04 

τ 1 1.32 2.55 2.07 48.6 

2 

kc  6.94 4.51 8.24 4.84 

τI  2.64 2.55 4.15 0.35  

τD  0.66 -- 1.03 -- 

kp 1 0.96 1.84 2.15 185 

D 2 3.0 7.63 2.0 0.20 

τ1 1 14.2 90.36 21.79 207 

τ2 10     

τ3 20     

kc  4.87 3.21 5.98  

τI  28.41 61.0 37.79  

3 

 

τD  7.10  9.22  

 
Table III Effect of measurement noise and load  

Identified 

parameters 

Effect considered 

for 

σ 

(%) 

kp τ D 

0.5 0.97 0.81 9.99 

1.0 0.99 0.99 9.69 

Measurement noise 

with a zero mean 

Gaussian distribu.  1.5 1.0 0.99 9.74 

0.02 0.99 0.81 10.0 Load  

0.04 1.02 0.91 9.88 

Model used for simulation: G(s)= exp(-10 

s)/(s+1)2 
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Open loop response comparison for case study-1 
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Fig. 2 Closed loop response comparison for case 

study-1 

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

R
es

po
ns

e

Solid : S-C method
Dash: Actual system
Dotted: Proposed method
Dash-dot: Li et al method 

 
Fig. 3 Closed loop response for unit step change 

in set point for a perturbed system 

(with uncertainty in time constant)  
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Fig. 4 Open loop response of case study-2 
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Fig. 5: Closed loop response for unit change in 

set point for case study-2 
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Fig. 6 Open loop response of case study-3 
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Fig. 7: Closed loop response for unit step change 

in set point for case study-3 
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Fig. 8 Relay feedback response, bioreactor 

system 
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Fig. 9: Open loop response of bioreactor system 
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