
 

 

  
Abstract— Principal component analysis, both linear and 

nonlinear, are used to identify and remove correlations among 
process variables as an aid to dimensionality reduction, 
visualization, and exploratory data analysis. While PCA 
ascertains only linear correlations between variables, NLPCA 
reveals both linear and nonlinear correlations, without restriction 
on the character of the nonlinearities present in the data. In this 
paper, the use of PCA and NLPCA are investigated and 
compared for nonlinearity detection in regulated systems using 
routine operating data. Results from simulated and industrial 
data used in this study clearly show that NLPCA performance 
supersedes that of PCA in identifying and detecting nonlinearity 
in poor performing control loops.  

 
Index terms— Poor control loop diagnosis, PCA, NLPCA 

I. INTRODUCTION 
Controller performance monitoring field is one of the main 

areas that has received much spotlight in the engineering 
research literature. On the other hand, the diagnosis of poor 
control loop performance remains an open area [1]. In a poorly 
performing control loop, oscillations in the process variables 
may arise due to several reasons including poorly tuned 
controllers, presence of external oscillatory disturbances, 
process and/or actuator nonlinearities. The presence of 
nonlinearities in control loop may have detrimental effect on 
the controller performance, resulting in oscillations of the 
process variables, shorten the life of the control valve due to 
wear and tear, may upset process stability, and poor quality 
end-products. Nonlinearities in control loop may be present in 
the process itself or in control valves. This paper is concerned 
with control valve nonlinearities, which are normally due to 
faults such as stiction, backlash, saturation, deadzone, ruptured 
diaphragm, and/or corroded or eroded valve seats [1]. Among 
these, stiction is one of the common and long-standing 
problems in process industries [2]. 

Principal Component Analysis (PCA) is one of the classical 
multivariate statistical methods within the class of linear 
methods [3]. PCA essentially detects and characterize optimal 
lower-dimensional linear structure in a multivariate dataset. It 
has been widely used in various areas of multivariate analysis, 
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including data validation and fault detection, quality control, 
correlation and prediction, data visualization [4] as well as 
oceanography and meteorology [5,6]. PCA uncovers the 
lower-dimensional hyperplane that optimally characterizes the 
data, such that the sum of squares of orthogonal deviations of 
the original data points from the hyperplane is minimized. Due 
to the linearity assumption underlying the method, PCA is an 
optimal feature extraction algorithm only if the underlying 
structure of the data is Gaussian. If the data contains nonlinear 
lower-dimensional structure, PCA will not be able to work 
satisfactorily. 

A natural nonlinear generalization of PCA for feature 
extraction problem has been introduced in the early 1990s by 
[4], which has been called as nonlinear principal component 
analysis (NLPCA). This neural-network based generalization 
of PCA adopted the same criterion of optimality as PCA, 
however the main difference between PCA and NLPCA is that 
the latter allows nonlinear mapping between the original and 
the reduced lower dimensional spaces. NLPCA has been 
shown to perform more satisfactorily than PCA in 
characterizing the lower-dimensional nonlinear structure of the 
data [4,5,6]. The applications of NLPCA can be found in 
chemical engineering, psychology, image compression and 
climate data, oceanographic data, environmental systems, 
periodic and wave phenomena [6,7,8,9]. 

Although both PCA and NLPCA have been widely used in 
the above mentioned areas, to the author knowledge, they have 
not been used in diagnosing poor control loop performance. 
This paper investigates these methods and demonstrates the 
potential of using NLPCA in controller performance analysis 
and diagnosis. 

This paper is outline as follows: Section II describes the 
theories of PCA and NLPCA. In Section III, simulation 
examples to diagnose the causes of poor performance 
comparison between PCA and NLPCA are presented. 
Industrial case study is described in Section IV, and finally 
some conclusions are drawn at the end of the paper. 

 

II. LINEAR AND NONLINEAR PCA 

A. Theory of PCA 
Principal component analysis (PCA) has been called one of 

the most valuable results from applied linear algebra. PCA is 
used abundantly in all forms of analysis because it is a simple, 
non-parametric method of extracting relevant information from 
confusing data sets. With minimal effort PCA provides a 
roadmap to reduce a complex data set to a lower dimension. 
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This is to reveal the sometimes hidden, simplified dynamics 
that often underlie it. 

Principal Component Analysis (PCA) identifies patterns in 
data, and expresses the data in such a way as to highlight their 
similarities and differences. Once these patterns have been 
found, the data can be compressed, i.e., number of dimensions 
reduced, without much loss of information [3].  

Assume that a data matrix X  has n number of observations 
and m number of variables as shown in Fig. 1.  

                    n

m

observations
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Fig. 1. Notation used in PCA. Extracted from [3]. 

 
The observations (columns) in Fig. 1 can be process time 

points of a continuous process or analytical samples, chemical 
compounds or reactions, etc. The variables (rows) may be 
measurements from sensors and instruments in a process 
(temperatures, flows, pressures, etc.), etc. 

PCA allows a linear mapping of data from mℜ to pℜ , 
with mp < . The optimal transformation of X  via PCA into 
two matrices is shown in (1). 

 

                          ePTX T +=                                     (1) 

T is called the score matrix with dimension nxp , where p is 

the number of principal components ( )mp <  of X , and P  
is the loadings matrix with dimensions of mxp . The 

Euclidean norm of the residuals matrix e  must be minimized 

for the given number of principal components for the 
optimality condition to be satisfied and this is achieved if the 
columns of P are the eigenvectors corresponding to the 

p largest eigenvalues of the covariance matrix of X . 

If IPPT = , the linear mapping of PCA is given by (2). 

                             PXT =                                            (2) 

Where X represents a row of X , a single data vector, and 

T represents the corresponding row of T  (the coordinates of 

X is the reduced p-dimensional variable space). The loadings 

P are the coefficients for the linear transformation, and 
essentially define the orientation of the principal component 
plane with respect to the original m-variables. 

  The information lost in this mapping can be assessed by 
reconstruction of the measurement vector by reversing the 
projection back to mℜ : 

                                  TPTX ='                                         (3) 

Where eXX −=' is the reconstructed measurement error.  
 

B. Theory of NLPCA 
PCA makes one stringent but powerful assumption: 

linearity. With this assumption, PCA is limited to re-
expressing the data as a linear combination of its basis vectors. 
Thus, if the data contains nonlinear lower-dimensional 
structure, PCA will not be able to detect it [7]. To overcome 
this shortcoming, [4] introduced a nonlinear generalization to 
PCA. The fundamental difference between PCA and NLPCA 
is that NLPCA allows arbitrary nonlinear mapping from 

mℜ to pℜ  whereas PCA only allows linear mapping. 
Consider a mapping of the type in (4). 
                                 )(XfT =                                         (4) 

In this equation, f is a general nonlinear vector function. It is 
consisted of p  individual nonlinear functions; 

{ }pffff ,,, 21 K= , analogous to the columns of P , such 

that if iT represents the ith element of T ,  

                               )(XfT ii =                                         (5) 
The reconstruction of the original data is implemented by a 

second nonlinear vector function { }mgggg ,,, 21 L= : 

                         )(' TgX jj =                                         (6) 

The loss of information is again measured by 'XXe −= , 

and analogous to PCA, the functions f  and g are selected to 

minimize e . For details, please refer to [4]. 

The NLPCA is solved using a five-layer autoassociative 
feed-forward neural network [4]. A feed-forward neural 
network is a nonparametric statistical model. It consisted of a 
series of parallel layers, each of which contains a number of 
processing elements, or neurons, such that the output of the ith 
layer is used as input to the ( )1+i th [10,11]. The input 
signals are propagated in a feed-forward direction on a layer-
by-layer basis, i.e., signal travel only in the forward direction 
from the first to the last layer. If )(i

jy is the output of the jth 
neuron of the ith layer, then 
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is the output of the kth neuron of the ( )1+i th  layer. The 

elements of the arrays )(i
jkw are referred to as the weights, and 

those of the vectors )1( +i
kb are the biases.  
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The weights and biases are adjustable parameters. The 
transfer function for the ( )1+i th layer is given by )1( +iσ . 
The input layer typically has linear transfer function, and 
nonlinear transfer functions (generally hyperbolic function) are 
used in some or all the remaining layers [5]. 
 

Input 
Layer

Mapping 
Layer

Bottleneck 
Layer

Demapping 
Layer

Output 
Layer

mℜ  mℜ pℜ  
Fig. 2. The five-layer feed-forward auto-associative neural 

network used to perform NLPCA. 
 
Fig. 2 shows the architecture of the five-layer network for 

1=p  NLPCA approximation to the data set. The number of 
neurons in the so-called bottleneck layer can be increased 
accordingly to obtain higher dimensional structure, i.e 1>p . 
The input and the output layers contain m neurons, and they 
may have, as in the case of the bottleneck layer, linear transfer 
functions. The network contains three hidden layers. The 
mapping and demapping layers must have nonlinear transfer 
function (hyperbolic tangent) for the network to have the 
capability of modeling arbitrary nonlinear functions in 
f and g . They may or may not have the same number of 

neurons [4].  
The weights and biases are optimized using a conjugate 

gradient algorithm until the sum of squared differences 
between network input ( X ) and output( 'X ) is minimized as 
in (8). As the network is trained to approximate as closely as 
possible the input data itself, it is said to be auto-associative or 
self-supervised backpropagation [4,5].  
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III. APPLICATIONS 

A. Simulation Studies 
 
To compare the performance of PCA and NLPCA, the same 

case study as used in [1] for diagnosing nonlinearities in the 
control valves are used. A simple single-input, single output 
system in a feedback control configuration was used for 
generating simulated data. The first order process with time 
delay is given by the following transfer function: 

 

                    G(z-1) = 
8.0

)145.1(3

−
−×−

z
zz

                         (9)                     

The process was assumed to be linear, and controlled by a 
PI controller. An integrated random noise was added to the 
process. The process output (denoted as y) and the controller 
output (denoted as u) were used to detect nonlinearity present 
in the data for the four cases of (1) well-tuned controller, (2) 
controller with excessive control action, (3) controller with 
presence of external oscillatory disturbances, and (4)  
controller with presence of stiction. 

To avoid local minimum, a set of 10 ensembles of NLPCAs 
process the same dataset [5,7,9] and the average result is 
taken. Each NLPCA is initialized with random weights and 
biases. To prevent the NLPCA from over-fitting, 20% of the 
steady-state data were chosen randomly as test data set [8] 
using early-stopping criteria. Only 1=p  is considered 
because the data set being considered only consisted of y and 
u. 
 
Case 1: Well tune controller 

The PI controller parameters for this case were Kc=0.15 and 
I=Kc/τi=0.15 s−1. Fig. 3 shows the result for this case. 
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     (a) Time trend error              (b) NLPCA approximation 
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(c) PCA approximation 
Fig. 3. PCA vs. NLPCA performance for well-tuned 

controller. 
 
From the figure, it can be clearly seen that both NLPCA and 
PCA approximations give straight lines (see Fig. 3(b) and (c)). 
The error signal plot in Fig. 3(a) clearly shown that there was 
only random noise present in the loop, and hence linear signals 
are correctly given by both methods. 
 
Case 2: Controller with excessive integral action 
 
For this case the controller parameters were set to Kc=0.15 and 
I=Kc/τi=(0.15/2.5) s−1. Compared to case 1, this controller has 
excessive integral action.Fig 2(a)a shows the error signal plot 
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result for case 2. The presence of relatively large integral 
action produces oscillations in the process variables.  
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     (a) Time trend error           (b) NLPCA approximation 
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(c) PCA approximation 
Fig. 4. PCA vs. NLPCA for controller with excessive integral 

action. 
 
From Fig. 2(b) and (c), both NLPCA and PCA approximations 
are straight lines, clearly indicating that the error signal is not 
due to nonlinearity.  
 
Case 3: Controller with the presence of external oscillatory 
disturbance 
 
For this case, [1] specified a sinusoid with amplitude 2 and 
frequency 0.01 to be added to the process output in order to 
feed external oscillatory disturbances to the process. The error 
signal plot in Fig. 5(a) clearly shows the presence of the 
sinusoidal disturbance.  
Even though the output is clearly oscillating, NLPCA does not 
detect any underlying nonlinearity present in the loop. Fig. 
5(b) shows straight line approximation when the data is 
processed with NLPCA. PCA also gives straight line as shown 
in Fig. 5(c). 
The NLPCA and PCA approximations are straight lines. It 
clearly shows that the reason for oscillation is not due to 
nonlinearity in the control loop. 
 
Case 4: Controller with the presence of stiction 
 
To investigate the presence of stiction, a stiction model 
developed by [12] was used. To perform the simulation for 
this particular case, s =3 and j =1 were used. Fig. 6(a)  shows 
the time trend of the control error signal in case 4.  
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(c) PCA approximation 
Fig. 5. PCA vs. NLPCA for controller external oscillatory 

disturbance. 
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(c) PCA approximation 

Fig. 6. PCA vs. NLPCA for controller with presence of 
stiction. 

 
 
For this case, NLPCA detected the underlying nonlinearity in 
the process, and Fig. 6(b) clearly indicating a curve. On the 
other hand, PCA approximation is still a straight line. PCA, 
which is linear in nature, can not uncover the nonlinear 
correlation among variables. 
 
The results obtained for these four case studies show the 
superior capability of NLPCA in comparison to PCA in 
detecting nonlinearity. TABLE 1 shows the summary of the 
results obtained here, and comparison to the Higher-order 
based methods (HOS-based) developed by [1]. 
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TABLE 1 
Comparison between PCA, NLPCA and HOS-based methods in detecting 

stiction nonlinearity. 
 PCA NLPCA HOS-based 
Case 1 Linear Linear Linear 
Case 2 Linear Linear Linear 
Case 3 Linear Linear Linear 
Case 4 Linear Nonlinear Nonlinear 
 
The results in TABLE 1 clearly indicate the promising ability 
of NLPCA in the field of diagnosing poor control loop 
performance. 
 

B. Industrial case studies 
 

Normalized operation data from two chemical processes 
are shown in Fig. 7-10. Fig. 7 and 8 show the results for 
applying PCA and NLPCA to the data of a level control loop 
with stiction in the control valve. Fig. 7 shows the time trend 
plot of the pv and pv-op plots. 
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Fig. 7. Level control loop with valve stiction: pv trend and pv-

op plots 
. 

From Fig. 8, it can be clearly observed that PCA failed to 
detect the stiction in the loop. However, NLPCA correctly 
concludes that there is stiction in the system. 
Fig. 9 shows the time trend plot of pv and pv-op plots for a 
flow loop with no stiction exists. The corresponding results 
when applying PCA and NLPCA to the data is shown in Fig. 
10. Again, NLPCA performance supersedes that of PCA in 
detecting stiction as can be clearly observed in Fig. 10(b). 
 

IV. CONCLUSION 
In this paper, PCA and NLPCA methods have been applied 

in diagnosing the poor control loop performance. Using the 
same case studies as in [1] as well as industrial data, it has 
been shown that NLPCA performance supersedes that of PCA 
in identifying nonlinearities in the poor loop data. The NLPCA 
performance is similar as the HOS-based method developed in 
[1], and this shows that NLPCA is a promising tool for control 
loop performance analysis. 
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(a) PCA approximation 
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(b) NLPCA approximation 

Fig. 8. PCA vs NLPCA for Level control loop with valve 
stiction. 
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Fig. 9. Flow control loop with no stiction: pv trend and 

pv-op plots 
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(a) PCA approximation 
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(b) NLPCA approximation 

Fig. 10. PCA vs NLPCA for Flow control loop with no 
stiction. 
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