
FPGA Implementation of Quasi-Delay Insensitive
Microprocessor

Sufian Sudeng and Arthit Thongtak

Abstract- This paper proposes the self-timed circuits
FPGA based design. Quasi-delay insensitive circuit is introduced
as asynchronous prototype. The designed focuses on
asynchronous processor design. The processor employs
asynchronous system bus, asynchronous cache, asynchronous
DMA controller and synchronous interfaces. The system almost
completely asynchrony operation except I/O devices and memory
interfaces, it‘s a limitation on the present time devices, the
designed has been implemented on spartan-3E FPGA no.
3S500EFG320 by partitioning each module to prevent place and
routing conflict, 100-Mhz memory frequency connected, and
consumed 141,063 equivalent gate counts. Finally, the timing
details of each instruction execution are shown.

Keywords: Asynchronous processor, Asynchronous system bus,
Asynchronous DMA controller, QDI-delay model, Dual-rail
encoded, Structural encoding.

I. INTRODUCTION

The rapid developments of micro electronics

technology, cause the designed circuits are small and high-
speed communication. The old design methods are
synchronous design. It cannot serve the ability to correct an
operation on the high frequency clock. Clock skew is
introduced which is cannot distribute high frequency signals to
the system. Synchronous circuits also generate worse case
delay propagation of global clock to control each part of circuit,
it makes much of waiting time to process all parts of circuits,
and more energy consumption. Asynchronous design method is
restudied. The asynchronous design does not need a global
clock to control the combinational circuits to behave on each
other. It’s depending on event-driven behavior, speed of
circuits do not reduced by clock; furthermore, clock skew is
avoided. More outstanding potentials of asynchronous circuits
over synchronous circuits are average case delay, less energy
consumed, robustness and etc [1].

Manuscript received July 22, 2007; revised August 10, 2007. This

work was supported in part by TJTTP-OECF (Thailand - Japan Technology
Transfer Project – Japanese Overseas Economic Cooperation Fund)

S. Sudeng is a researcher from Digital System Engineering
Laboratory (DSEL), Department of computer engineering, faculty of
engineering, Chulalongkorn University, Thailand (phone: +66813818331;
email: sovanyy@msn.com)

A. Athongtak is now with the department of Computer engineering,
Chulalongkorn University, Thailand (Tel: +66-2-218-6956, Fax: +66-2-218-
6955 email: Arthit@cp.eng.chula.ac.th)

Asynchronous circuits do not use a global clock,
circuits operation response to signal transition, output can be
sensed as an operation is completed, it’s also harder design and
verify, no tools supported, made some elements are limited to
clock operation. To enhance the design, need to compromise
such a hybrid system, both synchronous and asynchronous are
working together, Finding synchronization method to
synchronize to be well form, and good circuit operation
between synchronous and asynchronous one [2].

This work proposes an implementation of
asynchronous quasi-delay insensitive circuits on FPGA, and
also introduced the interfacing method between synchronous
and asynchronous circuits.

II. ASYNCHRONOUS CIRCUIT DESIGN

To understanding asynchronous design is familiarity
with the assumptions commonly made regarding the delays in
the gates and wires within a circuit and the mode in which the
circuit operates. The two common delay models, bounded
delay model and unbounded-delay model. The bounded delay
model was commonly use in asynchronous circuits design, and
still used in some backplane level interconnection scheme,
current VLSI designs and research efforts use the unbounded
delay model for the implementation of state – machines and
controllers since it leads to circuits that will always operate
correctly whatever the distribution of delay. It separates delay
management for the correctness issue allowing the
functionality of the circuits to be more easily verified. The
bounded-delay model still commonly used for data path
components, however, since in this area it can lead to smaller
implementations

A. Circuit classification

 Within the unbounded delay model, there is various
different design styles in common use, each with its own
problems. In order to increasing number of timing assumptions

Speed – independent (SI) circuits
If wire delay in a circuits are assumed to be zero and

the circuits exhibits correct operation regardless of the delay in
any circuit elements, then the circuits is said to be speed-
independent. The assumption of zero wire delay is valid for
small circuits.

Delay-insensitive (DI) circuits
A circuit whose operation is independent of the delays

in both circuits’ elements (gates) and wires is to be delay
insensitive.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Quasi delay-insensitive (QDI) circuits

If the difference between signal propagation delays in
the branches of a set of interconnecting wires is negligible
compared to the delays of the gates connected these branches
when the wires are said to from an Isochronic fork. Circuits
created using the DI design style augmented with the
Isochronic fork assumption are said to be Quasi-delay
assumption as shown in figure 1.

Figure 1: Quasi-delay Insensitive implementation

B. Signaling protocol
The transfer of information across a channel is

negotiated between the sender and receiver using a signaling
protocol. Every transfer features a request action where the
initiator starts a transfer, and an acknowledge action allowing
the target to respond. These may occur on dedicated signaling
wires, or may be implicit in the data-encoding used, but in
either case, one event indicates data validity, and the other
signals its acceptance and the readiness of the receiver to
accept further data.
The flow of Information relative to the request event
determines whether the channel is classified as a push channel
(information flows in the same direction as the request) or pull
channel (information flows in the same direction as the
acknowledge)

4- Phase signaling
The 4-phase signaling protocol uses the level of the

signaling wires to indicate the validity of data and its
acceptance by the receiver. When this signaling scheme is used
to pass the request and acknowledge timing information on a
channel, a return-to-zero phase is necessary so that the channel
signaling system ends up in the same state after a transfer as it
was in before transfer. This scheme thus uses twice as many
signaling edges per transfer than its 2-phase.
4-phase control circuits are often simpler than those of the
equivalent 2-phase system because the signaling lines can be
used to drive level – controlled latches and the like directly as
shown in figure 2.

Figure2: 4-phase signaling protocol

C. Dual-rail encoding

Dual-rail circuits use two wires to represent each bit

of information. Each transfer will involve activity on only one
of the two wires for each bit, and dual-rail circuits has uses 2n
signals to represent n bits of information. Timing information
is also implicit in the code, in that it is possible to determine
when the entire data word is valid by detecting a level for 4-
phase signaling on one of the two rails for every bit in the word.

4-phase dual-rail coding is popular for QDI design
style but as with dual rail techniques its carries a significant
area overhead in both excess wiring and the large fan-in
network that it require to detect an event of pair of wires to
determine when the word is complete and the next stage of
processing can begin.

D. The Muller C-element
The Muller c-element is commonly used in

asynchronous VLSI design where it is used both for
synchronizing events and as state holding element. Its
represent outputs to 0 when all inputs are 0 and represent
outputs 1 when all inputs are 1, otherwise it hold previous state.

F .Asynchronous Synthesis from STG

 Signal transition graph (STG) is a graph-based
method used to describe the circuit’s behavior. It composes of
three types of signals. Input, output and internal signal Inputs
are known as underline or bold as the input specification with
the transition labeled with signal names. In the STG notation a
transition is labeled with either a ‘+’ (represents a rising signal),
‘-’ (represent a falling signal).for any STG it’s a single cycle if
only one rising and falling transition, otherwise multi cycle.
Any STG there must follow on its rules to provide well form
and healthy circuits design

STG Rules

(a) - Input free – choice: only Mutex inputs may
control the choice
 (b) - 1- Bounded – Maximum 1 token per phase
 (c) - Liveness – No deadlocks occurred
STG for Speed independent circuits:
 (a) - Consistent state assignment – signal strictly
alternate between + and –
 (b) - Persistency – Excited signal fire, namely they
cannot disable by other transition
For synthesizable STG
 (a) - Complete state coding – Different marking must
represent different states

Module
A

Module
B

VALID

Phase 1 Phase 2 Phase 3 Phase 4

Working Phase Spacer Phase

1 Cycle

Request

Acknowledge

Data

Request

Acknowledge

Data

t2

t3
t1

t4

QDI Implementation

Isochronic fork assumption

t5

t1=t2=t3=t4=t5

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

III. ASYNCHRONOUS PROCESSOR DESIGN

Figure 3: Processor Organization

The processor architecture[5,7] composes of 8-bit
accumulator register A, general purpose register R1 and R2,
program counter PC, SP register for CALL instruction , IR
register for instruction loading and 2 status flags, carry and
zero flag as shown in figure 3.

The processing section composes of shifter, uses to
shift register A left or right direction, accumulate based
computing (Register A and operand processing, store result to
A). The asynchronous processor addressing mode divided into
4 modes, Immediate Mode, Register Mode, Direct Memory
Addressing Mode and Indirect Memory Addressing with
Register Indexing Mode.

because of accumulate based processing that write the
completion result to register A. if A value has changed, it
causes to produce a new calculation, need some latching circuit
to prevent double writing problem.

The processor has 16-bit instruction word with 16K
bits location accessing, 1-k location for 8-bit data memory. For
dual-rail encoding, need additional circuits to convert the
circuit from 1-to-2 signals and from 2-to-1 signal.

The internal architecture composes of 2 processing
logic circuits, arithmetic logic unit and shifting circuit. The
main task of arithmetic logic unit is Add, subtract, or, xor.
After finished an operation, it passes the result through the

latching circuit. The shifting circuit is the circuit that shifts
register A left or right direction 1-bit precisely.

Control unit processes following 4-phase signal protocol
which returns to zero on each computation by using auto sweep
module as shown in figure 4.

Ui

Uo

L0

Li

Ui+ Lo+

Uo+ Li+

Ui-

Uo-

Lo-

Li-

C

Ui

Uo

L0

Li

(a) Implementation (b) STG Specification (c) Signal Transition Diagram

Figure 4: Auto Sweep Module

From figure 4, when previous request signal (Ui) changes

from 0 to 1, ASM changes current request signal (Lo) from 0 to 1
to enter working phase, after current work has done, the
acknowledge signal (Li) is asserted back to ASM module,
provided previous acknowledge signal (Uo) changes from 0 to 1
immediately with current request signal changes from 1 to 0 for
idle phase, when working phase has done, current request
signal is changes from 1 to 0 automatically, hence ASM was
used to design control circuit while it can parallel flip working
on previous idle phase as shown in figure 4 and 5.

W1 ID1
W2 ID2

W3 ID3
W4 ID4

Time

ASM

ASM

ASM

ASM

Figure 5: Auto Sweep on action

The instruction unit has 16-bit wide length, separated to

opcode and operand as shown in figure 6.

Figure 6: 16-bit instruction design

Where MD is memory addressing mode

00 Immediate modes, 01 register mode, 10 direct
addressing, 11 indirect addressing

The speed of memory is very low in comparison with the
speed of processor. The processor cannot spend more waiting
time to access an instruction and data in memory. Cache is a
fast memory will use on our design. The correspondence of
cache and memory specified by mapping function, the design
is apply simplest way to determine cache location which store

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

in memory call direct mapping technique. All of asynchronous
cache design is shown in Figure 7.

L1 L2 L3 L4 L5

C C C

C C C

C

C

C

C

Data_in

Set Flag in Return to zero phase

Tag WordLocation

2 24

Address width = 8

00

Block 1

01

Block 2

10

Block 3

11

Block 4

Figure 7: Asynchronous Cache Design

The processor instruction that used in this system has 16-

bit instruction set; the instruction is loaded from cache to IR
register. When 16-bit instruction has loaded into IR register, IR
register responses to separate instruction in to two types,
opcode and operand, the opcode is loaded to control unit
section while operand is loaded to general purpose register or
accumulator base on instruction type [7]. The modification
benefit to generate a virtual instruction that occurred during
interrupts even.

When interrupt instruction occurred, a virtual instruction
has generated by external signal, IR register is loaded, separate
to opcode and operand that point to interrupt service routine.

Figure 8: Interrupt design

Transaction sequence of an interrupt operation is
shown respectively.
a. Interrupt signal from external device is asserted.
b. Control unit tell pc register to save current pointer.
c. Save PC register to SP register.
d. Interrupt acknowledges signal is asserted.
e. Address vector is loaded to IR register.
f. Interrupt opcode is generated.
g. Load new PC value.
h. PC point to interrupt service routine, load data to IR register.
i. Instruction meets RETI command (return interrupt).
j. RETI command tells SP register to restore value to PC
register.
k. PC restore acknowledge to control unit.
l. Processing normal instruction.

The processor works following sequences, instruction is
loaded from IR register to PC register and processes base on
type of instruction. When EI flag is disabled, the interrupt
signal does not respond until finish an execution of previous
instruction. EI is enabled, if interrupt signal occur by assert intr
signal by external devices , the IR register releases cache
connection and produces itself instruction, virtual instruction ,
this instruction is valid for interrupt instruction and separate
instruction to two pieces, opcode and operand. opcode is
responsible to save / restore signal to pc register , operand is
first address that kept an interrupt service routine, when PC
register receives save signal from control unit, It save current
pointer to SP register and jump to next address that produced
by virtual opcode.

IR Register

Reset

Read Op Code

ASM

ASMASM

ASM

Not Branch

CALL/
Not Jump Cond./ LD or Calculate with Mem.

Data Register
Read Mem. Data

ASM

PC Register

SP Register

PC Counter

Latch

CALL

PC Register

Calculate with Imm. or Reg.
Calculate with Mem.

ASM

Calculate With
ALU/ Shifter

Latch

L
DCALL
ST,JMP,RET,jump condition,LD with Imm./Reg.

ASM

Write Destination
A/ R0/ R1/ PC/ Mem.

Not Jump Condition
Branch

Figure 9: Control Unit Design

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

IV. ASYNCHRONOUS SYSTEM BUS DESIGN

The bus design is multiplex (The data and address
transition on the same lines). 8-bit with dual-rail encoded,
transition by 4-phase signaling protocol [4]. The designed bus
is started with design each component and group them together.

A. Bus components[9]
.

a. Bus Interface
Bus interface is designed to interface with

asynchronous processor. Due to the multiplex bus design, bus
interface also handshakes with bus controller to control the
sequence of data, address or spacer transition as shown in
figure 10.

Figure 10: Bus interface

b. Bus Driver
Bus driver acts like an on/off switch to enable/disable

transition on the bus. Designed with tri-state buffer and C-
element as shown in figure 11 (the element that produces
output 1 when all of inputs are 1, produce output 0 when all of
inputs are 0, Otherwise its hold previous state).

Figure 11: Bus Driver

aR is request line from bus controller, when data arrive at Bi_T
and Bi_F , C-element is enabling tri-state buffer to transfer
signal to Bo_T and Bo_F , aA is the acknowledge signal to the
bus controller.

c. Bus lines
Due to high impedance state of Tri-state buffer, there

were making some problem for asynchronous circuit. Need to
improve to be zero value when it’s high impedance by added
weak inverter to each line on the bus [4] as shown in figure 12.

Figure 12: Bus lines

d. Bus Receiver

This component is used to receive data from bus
signal and catches all signals before transfer to the destination,
designed with C-element as shown in figure 13.

Figure 13: Bus Receiver

aR is request line from bus controller, when data arrive at Bi_T
and Bi_F , aR is transition from 0 1 C-element enables
signal transition to Bo_T and Bo_F, aA is the acknowledge
signal from synchronous interface to bus controller.

e. Bus Controller
Designed with STG (Signal Transition Graph), to

control the synchronization on the bus, it’s responsible to
control the sequence of data, address, and spacer transition.

Bus Controller

Drive BD_aR

B_ack BR_aA

BR_aRWT/RD

Figure 14: Bus Controller

B. Transaction[9]

Figure 15: Read Transaction

For read transaction, read signal changes from 0 1
then signal A is the address signal changes from 0 1 indicate
the address phase as shown in figure 15.
 BD_aR, BD_aA, BR_aR, BR_aA are the control signals
from bus controller change from 0 1 respectively. Indicate
the flowing through of data form bus driver to bus receiver
components. Back signal changes from 0 1 indicate the
completion of data transfer on address phase. Then all signals
change from 1 0 for resetting. After that signal D changes
from 0 1 for data phase. BDr_aR, BDr_aA, BRr_aR, BRr_aA
signals are the control signal for read data change from 0 1
respectively. Back changes from 0 1 indicates the completion
of data transfer. After that all signals change from 1 0 for
signals resetting on return to zero phase.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Figure 16: Write Transaction

For write transaction, write signal changes from 0 1

then signal A is the address signal changes from 0 1 indicate
the address phase as shown in figure 16.
 BD_aR, BD_aA, BR_aR, BR_aA are the control signals
from bus controller change from 0 1 respectively. Indicate
the flowing through of data form bus driver to bus receiver
components. Back changes from 0 1 indicates the completion
of data transfer on address phase. Then all signals change from
1 0 for resetting. After that signal D changes from 0 1 for
data phase.
BD_aR, BD_aA, BR_aR, BR_aA signals change from 0 1
respectively. Back changes from 0 1 indicates the completion
of data transfer. After that all signal transition from 1 0 for
signals resetting return to zero phase.

V. ASYNCHRONOUS DMA CONTROLLER DESIGN

The asynchronous processor is a master device on the

asynchronous system bus, that it is able to initiate read and
write transfers to all devices on the bus. The DMA controller is
slave device, which is only able to response to read or write
requests. The DMA controller is required to initiate read and
write transfers to memory and also other I/O on the bus, DMA
controller also required to be a master device [10].

 As there will be more than on asynchronous bus
master in the system, the asynchronous system bus
specification required the presence of a bus arbiter. The bus
arbiter selects which master is to have right to the bus at any
one instant in time. An arbiter also exits for the asynchronous
processor. Initially the DMA controller is programmed by
asynchronous processor. This information is stored in internal
DMA registers. Include following information: base address
for transfer source, base address in memory to where the data
is transferred and size of data transfer. The DMA controller
also be slave on the asynchronous system bus in order the
asynchronous processor access these registers

A. DMA Function
The DMA controller waits for dma_req line to assert

and take over the asynchronous system bus from asynchronous
processor. It checks its internal registers to obtained details of
the transfer. The DMA controller read data from the source,
store it in internal buffer, and then write it out to the memory,

until the transfer is complete. The DMA controller then release
usage of asynchronous system bus and activate the IRQ line in
order to indicate the asynchronous processor that transfer was
complete. If any time the asynchronous processor requires
usage of asynchronous system bus it is able to take priority
over the DMA controller. The DMA controller check it has
control of the bus at each stage, if it does not the controller
wait for the bus become available, the asynchronous processor
has finished using the bus [10,11].

Figure 17: Asynchronous DMA controller Specification, STG
and structural encoded

B. DMA Architecture
The internal architecture is very closely based on the

classic DMA controller. The architecture proposed of the
DMA controller split into above functional units. The most
complex of these units is control unit, which consist of a large
state transition graph.

C. Reduced STG and CSC support

 Several method of synthesis speed independent
circuits. One can classify them by the way the synthesis is
performed:
 State base methods: perform synthesis of the state
space of the specification. They can derive optimal
implementation, but suffer from state explosion problem and
they can only synthesize small size of specification.
 Structural methods, working at level of petri-net can
synthesize a big size of specification. State base are use in the
final state of this method, when specification has been
decompose to smaller ones [8].
 The synthesis flow is given a consistent STG, encode
for all signals resulting an STG contains a new set of signals
that ensure unique state and complete state coding property.
Depending encoding technique applied, since many of
encoding signal may unnecessary to guarantee unique and
complete state coding, they are iteratively removed each signal
using greedy heuristics until no more signal can be removed
without violating unique and complete state coding property.
The reduced STG next projected onto different sets of signals

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

to implement each individual output signal. One the reduced
STG is reached, it must be computed the complete state
support for each non-input signal, applying csc support
algorithm. Afterward the projection of the STG into the CSC
support for each non-input signal is performed, finally speed
independent synthesis of each projection is performed, provide
the small size of the projection, state based techniques can be
applied for performing the synthesis. When synthesizing the
projection for each non-input signal a, every signal is the
projection but a is considered as an input signal. These prevent
the logic synthesis to try to solve possible conflicts for the rest
of signals.

Figure 18: Reduced STG and CSC Support of DMA controller

D. Transaction flow
The DMA transaction following on this sequence

a. I/O Module asserts DMA_req signal.
b. DMA asserts Hold signal to processor.
c. Processor asserts Hold_ack signal to DMA (processor
program Base_addr to DMA base register and Count register
[ST command]).
d. DMA asserts DMA_ack signal to I/O Module.
e. I/O Module asserts Device_ready to DMA (transfer type is
set by I/O Module (Read or Write) .
f. DMA transfer (read or writes transaction is occurred).
g. DMA asserts TC indicates zero value of count register.
h. DMA interrupts to processor for complete transaction.

Figure 19: DMA transaction flow

VI. SYNCHRONOUS AND ASYNCHRONOUS INTERFACING

This part is designed for communicating between
Synchronous and Asynchronous section, stretchable clock is
introduced [6].

Figure 20: Stretchable clock for read (a) and write (b)

interfacing

The clock control is generated using the handshaking
signals and the internal state of the synchronous region, a block
has either a read port or a write port. Read port provides data
for an external element while a write port receive data into the
module. In a 4-phase protocol, each module must receive two
asynchronous transitions to complete a cycle. Each
synchronous module must go through to two clock cycles to
allow for two possible stretch signals.

VII. FULL SYSTEM INTEGRATION

The full system integration is shown in figure 21, consider;
only RAM and I/O section are synchronous section, otherwise
it’s fully asynchrony operation. The designed works properly
under FPGA delays, timing summary and device utilization are
shown on next section.

 Components arrangement are shown, each component has
its subcomponent. From figure 21 it’s clearly separating
between synchronous and asynchronous section.

Figure 21: Full System Integration

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

VIII. EXPERIMENTAL RESULT

 TIMING SUMMARY @- Memory 100 MHz
INSTRUCTION
TYPE TIME

INSTRUCTION
TYPE TIME

 (ns) (ns)
Setup Time 32 AND (immediate) 55
Interrupt Response Time 42 AND (Register) 60
Bus Read Cycle 16 AND (Direct) 80
Bus Write Cycle 15 AND (Indirect) 80
DMA Read Cycle 28 OR (Immediate) 80
DMA Write Cycle 30 OR (Register) 80
LD (Immediate) 42 OR (Direct) 120
LD (Register) 40 OR (Indirect) 120
LD (Direct) 65 SUB (immediate) 90
LD (Indirect) 58 SUB (Register) 100
ST (Register) 39 SUB (Direct) 144
ST (Direct) 60 SUB (Indirect) 130
ST (Indirect) 57 ADD (Immediate) 90
JMP 45 ADD (Register) 110
CALL 50 ADD (Direct) 130
RET 45 ADD (Indirect) 130
RETI 43

Table 1: Timing Summary

 Device Utilization Summary

 Used Available Utilization

Slice Flip Flops 2 9312 1%

4-inputs LUTs 1,662 9312 17%

Occupied Slices 880 4,656 18%

Bonded IOBs 82 232 35%

Block RAMs 2 20 10%

 GCLKs 1 24 4%

Gate count 141,063

Table 2: Device Utilization Summary

IX. CONCLUDING REMARK

The paper presents FPGA implementation of 8-bit almost
completely asynchronous computer. The processor employs an
asynchronous system bus, asynchronous cache and
asynchronous DMA controller. All designed circuits are high
level specification, and it operates correctly under FPGA
combinational logic propagation delays, the system uses much
of function generator on FPGA, Only 2 flip-flop slices are
consumed to prepare an interfacing with synchronous one. The
designed has been implemented on Xilinx Spartan-3E FPGA
no. 3S500EFG320, partitioning each module to prevent place
and routing conflicts.

ACKNOWLEDGMENT

The research is supported by TJTTP-OECF (Thailand
- Japan Technology Transfer Project – Japanese Overseas
Economic Cooperation Fund)

REFERENCES

 [1] Davis. A, Nowick.S.M “An Introduction to Asynchronous Circuit Design”
, 1997

 [2] S.Hauck. “Asynchronous Design Methhodologies : An Overview”.
Proceedings of the IEEE. vol.83. No.1. pp.69-93, January 1995.

 [3] J.Bhasker. “A VHDL Primer”. Prentice-Hall, Inc., 1992. ISBN 0-13-
952987-X.

 [4] Molina, P.A.; Cheung, P.Y.K ,“A Quasi Delay-Insensitive Bus Proposal
for Asynchronous Systems” Proceedings Third International Symposium
on

 Advanced Research in Asynchronous Circuits and Systms, 1997
Pages:129-139

 [5] T.Nanya., Y.Ueno., H.Kagotani., M.Kuwako., A.Takamura. TITAC :
Design of a Quasi-Delay-Insensitive Microprocessor. IEEE Design &
Test of Computers., Vol.11., No.2, pp.50-63, Summer 1994.

 [6] Bormann, D.S.; Molina, P.A.; Cheung, P.Y.K, “Combining asynchronous
and synchronous circuits using stretchable clocks” IEEE Colloquium on
Design and Test of Asynchronous Systems, 28 Feb 1996,pp.4/1-4/8

 [7] P.Ruangsilsap. “Design of 8-bit scalable-delay-insensitive microprocessor
using FPGA”. Master thesis, Chlalongkorn University, Bangkok,
Thailand, 2001

 [8] J. Carmona and J. Cortadella. State encoding of large asynchronous
controllers. In Proc. ACM/IEEE Design Automation Conference, pages
939-944, July 2006.

 [9] S.Sudeng, A.Thongtak:” A Design of System Bus for Asynchronous
Circuits” International Technical Conference in Circuits/Systems
Computer and Communication (ITC-CSCC2006), Pang Suan Kaew
hotel, Chiangmai, Thailand on July 10-13, 2006.

 [10] S.Sudeng, A.Thongtak:” Asynchronous System Bus Enhancement by
Interrupt and DMA Technique” International Annual Conference in
Electrical Engineering/ Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON2007), Mae Fah Luang University,
Chiangrai, Thailand on May 9-12, 2007.

 [11] S.Sudeng, A.Thongtak:” Signal Transition Graph Based Logic Synthesis
for Asynchronous Control Circuits Using Template Based Method” IEEE
Tencon 2007, IEEE Region 10 conference (IEEE Tencon2007), Taipei
International Convention center, Taipei, Taiwan on Oct 30- Nov 2, 2007.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

