
A New Approach to VPR Tool’s FPGA Placement
Ednaldo Mariano Vasconcelos de Lima, Dr. Antônio Carlos Cavalcanti

and Dr. Lucídio dos Anjos Formiga Cabral

ABSTRACT- Versatile Place and Route Tool (VPR) is the state
of art in FPGA (Field Programmable Gate Array) placement and
route academic tool. Concerning the placement stage, its great
success in terms of quality is based on the use of Simulated
Annealing and simple routines that generate random positions
for swapping logical and I/O blocks. For complex circuits,
however, the search of the best result can consume too much
computing time. This work is focused on the development of
three main points: a constructive heuristic for the initial
placement, in order to accelerate the iterative phase of the VPR
Tool; an alternative implementation of the VPR logical blocks
swapping routines, reducing the random factor; a new way to
calculate the initial temperature for the annealing phase. In
comparison to the original VPR, this new implementation
produces considerable reduction of the total computational cost,
verified by the execution time at least 2X speed-up, without
significant loses in the placement quality.

Keywords: FPGA, Placement, Simulated Annealing

INTRODUCTION

Field Programmable Gate Arrays (FPGAs), since their
commercial introduction in the mid-80's, have revolutionized
the way digital hardware has been designed and build. FPGAs
are integrated circuits consisting of large number of
programmable functional blocks and programmable
interconnect network that allow, among other things, rapid
complex circuits (re) implementation and time-to-market
reduction. Two important goals of FPGA design optimization
are reducing area and increasing speed, both closely related to
the physical place where the blocks are located inside the
FPGAs. So, by placing blocks which are functionally connected
closer, there will be a reduction of the wiring required. On the
other hand, balancing the wiring density on the FPGA will
maximize the circuit speed, but can compromise the area
optimization. Maximization of all those metrics simultaneously
implies an exponential growth of the solution space; therefore,
it may require prohibitive computation times.

We can summarize the design stages of FPGA circuits as
follows: Synthesis and packaging of logical blocks, Placement
and Routing .

Manuscript received July 22, 2007; revised August 8,2007 This
work was supported by Laboratory of Systems and Integrated Circuits
(LASIC) at Federal University of Paraíba, Brazil.

Lima, E. M. V. and Cavalcanti, A. C. are with the Departament of
Computer Science, Federal University of Paraíba, Brazil
(edinlima@gmail.com and caval@lasic.ufpb.br).

Cabral, L. A. F. is with the Departament of Statistics, Federal
University of Paraíba, Brazil (lucidio@de.ufpb.br).

 (i) Synthesis consists of converting logical descriptions or
schematic diagrams, into a list of interconnected basic logic
gates. Then, those gates are packed into actual FPGA logical
blocks, generating another list. That netlist can be optimized,
aiming either to reduce the total amount of blocks or to increase
the overall speed. (ii) The placement stage is responsible to
determine which logic block within an FPGA should implement
each of the logic blocks required by the circuit, on which this
article is focused, consists of determining the best position for
each logical block in a FPGA design. (iii) The Routing stage
determines which programmable switches will be closed in
order to physically interconnect all the logical block nets.
Usually, FPGA routings are represented through guided graphs,
where each node represents a logical block connection pins and
each arc represents a wire.

This paper presents the improvements on compiling time of
FPGA placement, obtained by new heuristics added to VPR
tool. Some improvements on area and/or delay occurred, but
were not significant.

1. THE PLACEMENT PROBLEM

The VLSI cell placement problem involves placing a set of cells
on a VLSI layout, given a netlist that provides the connectivity
between each cell, and a library containing layout information
for each type of cell. This layout information includes the width
and height of the cell, the location of each pin, the presence of
equivalent (internally connected) pins, and the possible
presence of feed through paths within the cell.

FPGA placement is a NP-complete combinatorial optimization
problem to determine the best position for each logical block in
a FPGA design. A placement algorithm, must not only minimize
the total wire length by grouping the interconnected cells, but
must also ensure the routability of the circuit, by confining them
in minimized areas and, simultaneously, taking care of
balancing theirs distribution in order to avoid the saturation of
the FPGA channels with lots of connections. The placement
quality affects both the area and speed of circuits. In case of
FPGAs where wiring resources are strongly limited, placement
becomes a key issue for routing success. Placement is one of the
most time consuming tasks of integrated circuits physical
design.

For a long time, the most popular method for placement is
known as simulated annealing and Versatile Place and Route
(VPR) Tool [5] has been the state-of-art academic FPGA
placement tool. Recently, there are a number of works that
incorporate additional optimization to further improve the
results of VPR. In [9], [10], logic replication is proposed as a
post-processing step after placement by VPR to further
improves circuit delay. Singh and Brown [11] proposed a post-
placement retiming and showed how to modify VPR to make it
“retiming aware”. Chen and Cong [12] presented a

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

simultaneous placement and replication to minimize the longest
path delay.

Figure 1: Island Cells Style FPGA

There are other initiatives using iterative heuristics like
Thermodynamic Combinatorial Optimization [14], Tabu Search
based placement heuristics[13] proposed by Emmert; and
Maidee, who proposed a partition-based placement method[15].

To improve FPGA CAD tools performance, fast placement
methods are critical. Currently, there are two main categories of
placement algorithms: construction algorithms that, from a
partial or incomplete placement, issue a complete placement;
and iterative algorithms, that transform a complete placement
into another one, improved, complete placement.

1.1. CONSTRUCTION ALGORITHMS

Growth of groups algorithm is a construction algorithm that
makes use of a bottom-up method that selects components not
yet placed and incorporates them it a partial positioning. The
election of components is made on the basis of the already
placed components, providing a local optimization. This
algorithm is of easy implementation, has low computational
complexity - O(n2), but they produce low quality results [2].

Partitioning-based placement algorithm [9] has a top-down
approach, or the opposite of the precedent. It considers the
circuit as a whole and then proceeds the partitioning of it,
recursively, until each part is composed by a single component,
when the placement is considered done. The major problem
here is that the optimum partitioning search is NP-Complete;
however, good heuristics have been developed to attack this
problem, as is the case of mincut [3], of easy implementation
and reduced computational cost.

1.2. ITERATIVE ALGORITHMS

The objective of iterative algorithms is to optimize a complete
positioning already existing, normally gotten from construction
algorithms. In this class we can mention:

Permutation of Pairs algorithm: each component is selected
and swapped with another one. If that swap results in a
placement improvement, then it is accepted as final, else it is
discarded. The complexity of this algorithm type is O(n2)[2].

Disconnected Sets algorithm, developed for Steinberg [2],
selects the components, dividing them in sets that do not have
common nets. Thus, the placement of each set is individually
optimized, without tacking into account the other sets. This
algorithm produces a number of permutations far lesser than in
the permutation of pairs algorithm, since the sets possess a
lesser number of components than the complete circuit.

Experiments with this algorithm do not present good results,
since in circuits with densely linked components – typical case
in VLSI circuits - it is very complex to partition the circuit in
disconnected sets.

Simulated Annealing algorithm [4][5][18]: differently of the
two above, that only accept a given intermediate positioning in
the case of having an improvement, limiting them to a local
optimization, this metaheuristics tries to solve this problem
through out the use of a search algorithm to find the
configuration of lower energy of a confined set of molecules. Its
name and inspiration come from annealing in metallurgy, a
technique involving heating and controlled cooling of a material
to increase the size of its crystals and reduce their defects. The
heat causes the atoms to become unstuck from their initial
positions (a local minimum of the internal energy) and wander
randomly through states of higher energy; the slow cooling
gives them more chances of finding configurations with lower
internal energy than the initial one.

Procedure SA(f(),N(), α, SAmax, T0, s)
s*← s; {better solution until now}
IterT ← 0;{# iterations at temperature T}

 T ← T0; {current temperature}
 while (T > 0) do
 while (IterT < SAmax) do
 IterT ← IterT + 1;
 Generate a neighbor s’  N(s);
 ∆ = f(s0) - f(s);
 if(∆ < 0) then s ← s’;
if (f(s’) < f(s*)) then
 s* ← s’;
else

 take x  [0,1];

 if(x <
Te) then

 s ← s’;
 end if;
end if;
 end while;
 T ← α×T;
 IterT ← 0;
 end while;
 s ← s*;
 Return s;
end SA;

Table 1 – Simulated annealing algorithm

2. PLACEMENT BY VPR

In order to assist the understanding of the implementation
presented in this work, it will be described, in general lines, the
execution of placement in the VPR tool.

In the old versions at VPR, the cost function, showed at (1), is
focused only in wire length and penalizes placements which
require more routing in areas of the FPGA that have narrower
channels. All the results in this paper are obtained with FPGAs
in which all channels have the same capacity, hence Cav is a
constant and the linear congestion cost function reduces to a
bounding box cost function resulting in wire cost how showed
at equation (2). The last version of VPR (4.30) implements a
new cost function considering wirelength-based driven

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

placement and timing-driven based placement, like proposed by
Maquardt [16], according to showed at (3).


 













netsN

i yav

y

xav

x

iC

ibb

iC

ibb
iqt

1 ,,)(

)(

)(

)(
)(cos  (1)

 



netsN

i
yx ibbibbiqtwiring

1

)()()(cos_ (2)

In timing-driven placement VPR use a normalized cost function
that depends on the change in timing cost and wiring cost. It
uses a trade-off variable called  to determine how much weight
to give each component.

Timing_Cost(i,j) = Delay(i,j). (Critically(i,j))


 = critically expoent
(3)

Cost =  (timing_cost / prev_timing_cost) +

 (1-)(wiring_cost / prev_wiring_cost)
(4)

The  factor adjusts the weight of the two components. If  = 1
then we have an algorithm that focuses only on timing, but
ignores wire-length minimization. If  = 0, then we have an
algorithm that focuses only on minimizing wire-length. The
default (adopted) value on VPR is =0.5.

As described in [4] and [5], the algorithm starts with a random
initial positioning. The initial temperature is defined through
the execution of Nblocks moves (Nblocks = # of CLBs + I/Os). The
standard deviation of the cost of this Nblocks moves, multiplied
for twenty, defines the initial temperature that will allow any
movement to be accepted at anneal start. After that, inner_num
x (Nblocks)

1.33 moves are evaluated at each temperature. The
default value of inner_num is 10. This default number can be
overridden on the command line; however, to allow different
CPU time or placement quality tradeoffs. At iteration, a block
(CLB or IO) and a position of block are randomly chosen; that
position will be internal if the block is a CLB. If it is an IO, the
position will be peripheral. The number of moves evaluated by
simulated annealing at each temperature is quite large. The
evaluation of a move may result in three cases: (1) a block is
moved to a new (empty) position; (2) two blocks are swapped;
(3) the move is rejected.

When the temperature is so high that almost any move is
accepted, we are essentially moving randomly from one
placement to another and little improvement in cost is obtained.
Conversely, if very few moves are being accepted (due to the
temperature being low and the current placement being of fairly
high quality), there is also little improvement in cost. Then, a
new temperature update schedule, which increases the amount
of time, spent at temperatures where a significant fraction of,
but not all, moves are being accepted.

Fraction of moves accepted Alfa
Raccept > 0,96 0,5

0,8 < Raccept < 0,96 0,9
0,15 < Raccept < 0,8 0,95

Raccept < 0,15 0,8
 Table 2 – temperature update schedule

A new temperature is computed as Tnew = α*Told, where the
value of α depends on the fraction of attempted moves that were
accepted (Raccept) at Told, as shown at Table 2.

Another important factor in this process is the variable Dlimit that
defines the range of search for the destination positions. This
value is initially defined for the whole chip and is updated
whenever the temperature is calculated by:

Dlimit_new = Dlimit_old (1 – 0,44 + Raccept_old) (5)

and then clamped to the range: 1≤ Dlimit ≤ M (maximum
dimension of chip)

Figure 2: VPR moves

This way, at the beginning of anneal, the area where the blocks
are swapped concerns the whole chip extension; as the
temperature decreases, at intermediate stages, this area goes
shrinking, becoming 1 at the final stage, when the temperature
is the lowest.

Finally, the anneal is finished when

T < 0.005 * Cost / Nnets. (6)

The movement of a logic block will always affect at least one
net. When the temperature is less than a small fraction of the
average cost of a net, it is unlikely that any move that results in
a cost increase will be accepted, so we terminate the anneal.

3. IMPROVING PLACEMENT ON VPR

In this section it will be described the actions proposed to
improve the placement stage present on VPR tool, achieve an
execution time speedup at least 2X in comparation with VPR
and without to lose quality in results.

As verified in the analysis and description of the original VPR
placement algorithm, it is based on simulated annealing
heuristic and use a random routine to choice the blocks to swap
when trying improves the placement cost. Neither the choice of
the source block to swap nor the choice of the position to locate
it requires any complex routine; the only required routine is to
generate a random coordinates. This routine is showed below.

Despite the good results, the necessary number of movements
for the attainment of good quality results is extremely high and
exponentially grows with the amount of logical blocks to be
placed. The most important part of the VPR placement routine
is the function shown at Table 3, called TRY_SWAP() and is
responsible for the choice of blocks and positions to try to
swap.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Procedure TRY_SWAP
 b_from, b_to {source and destination block }
 x_to, y_to {coordinates at destination position}
 T {current temperature}
 choice b_from { draw b_from }
 choice x_to e y_to { draw a valid cell }
 if position(x_to,y_to) empty then
 move b_from to position(x_to,y_to)
 else
 b_to = block(x_to,y_to)
 swap (b_from , b_to)
 endif
 calculate cost variation (∆C)
 Take x  [0,1]; { draw x value}

 if (x <
TCe 

) then
 return move accept;
 else
 move is rejected (undo move);
 return move rejected;
 endif
end TRY_SWAP

Table 3 – Try_swap function

For each temperature value, and depending of inner_num value,
at each iteration the routine try_swap () is called, a block of
origin and a position of destination is randomly chosen until
either the amount of movements has reached its limit or the net
temperature has reached its minimum limit.

The proposal of this work is modifying tree points in VPR tool.
(i) First, replace the random initial placement by a constructive
heuristic for initial placement; (ii) a new function to calculate
the initial temperature to anneal, (iii) modify the TRY_SWAP
routine to minimize the random on choice at destination
position to place a selected block.

How to purposed by Banerjee [8], in a k x k array L, instead of
randomly placing the entire netlist of CLBs and IOBs, are
placed only the primary outputs randomly along the periphery
of L. For the given circuit specified as a netlist, let us define a
directed graph D = <V,E>, where V = { v | v is either a CLB or
an IOB} and E = { <vi,vj> | vi  fanin(vj) and vj  fanout(vi)}.

For each of the primary outputs present in the netlist a cone is
defined. A cone i of Oi is the set consisting of Oi and all its
predecessors [17]. In other words, i = cone(Oi) = {u |  a
simple directed path from u to Oi D}. The apex of the cone is
the primary output Oi itself and let its level l be 0. We
transverse the fan-in blocks of every block at previous level in
breadth-first manner, till we find no new CLBs or primary
inputs for the cone i . Breadth-first transversal of the cone
results in a tree structure with Oi as root.

Thus when placed all CLBs and input blocks on Oi root
neighbor. This gives the initial placement configuration for the
technology-mapped netlist specified, as input to an iterative
procedure for further improvement in the placement
configuration. In comparation with VPR, the initial wiring-cost
was improved in average fifty percent. Hence, to further
improve the placement, an ultra-low temperature simulated
annealing is executed on this initial placement to obtain the
final placement configuration.

Then, is necessary a new manner to calculate the initial
temperature to anneal. Because, on the old form, the execution

of N (N = # CLBs + #IOBs) moves on high temperature, the
good initial placement is so much perturbed and deteriorated.

Procedure Modified_TRY_SWAP
 define b_from; {source block }
 define, b_to; {destination block }
 define x_to, y_to{destination coord position}
 define T {current temperature}
 define FACTOR {depends on the temperature }
 choice b_from { random value }
 choice x_to and y_to { random cell }
 do
 if position(x_to, y_to) is empty then
 move b_from to position(x_to,y_to)
 else
 b_to = block at position(x_to,y_to)
 swap(b_from, b_to)
 endif
 calculate cost variable (∆)
 Take x  [0,1];

 if (x <
Te) then

 return accept
 else
 undo move
 if (b_from == CLB and T < 10
 and total moves < FACTOR)
 b_to = search neighbor to b_to
 endif
 endif
 enddo (move not accept
 and total moves < FATOR
 and b_from=CLB)
 return rejected

end Modified_TRY_SWAP

Table 4 – Modified TRY_SWAP() function

A new form to calculate the temperature is trying moving all
blocks, one by one, with zero temperature. The initial
temperature then is defined by t_init = 0.035 to wirelength-
driven placement, and by t_init = 54.05 / num_blocks to
timing-driven placement ( = standard deviation of costs over N
swaps and num_blocks = # CLBs + #IOBs, the values 0.035
and 54.05 was defined to force the same conditions at VPR).

On the TRY_SWAP routine, a variable FACTOR limits a
number of attempts to swap using a some source block, whose
for each temperature range there are specific values defined
empirically.

It is defined that from a given temperature, at each iteration,
after the origin block and the destination position are chosen, if
a movement is not accepted, a new movement is attempted,
keeping the origin block and choosing a new position of
destination. Then, another movement can be tested without the
need of choosing a new origin block. If the initial movement is
not accepted and the origin block is a CLB, then an empty
position at the destination block immediate neighborhood is
searched. In case of success, an attempt to swap the origin block
to this position is made; conversely, any of the neighbor blocks
position can be used to perform the same attempt. This
procedure is repeated until a movement is accepted or the limit
of attempts defined through the variable FACTOR is reached.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Temperature (t) FACTOR value
t > 50.0 2

2.0  t < 50.0 1
0.005  t < 2.0 4

0.0025  t < 0.005 2
t  0.0025 1

Table 5 : FACTOR range

Figure 3 : search in neighborhood

Finally, a new default number of moves evaluated at each
temperature is defined by mov_lim=.10.(Nblocks)

1.33 . In case
of wirelength-driven placement,  = 1/3 and, in case of timing-
driven placement,  = ¾, reducing the number of moves per
temperature and speed up placement without prejudice the final
result. The loss in quality of result is recompensed by gain
provided by heuristics showed above.

4. EXPERIMENTAL RESULTS

The implementation and corresponding tests discussed in this
article had been carried out in a microcomputer HP Pavilion
zv6000, with AMD Athlon 64 Processor, 756MB of memory
RAM and operational system Linux Fedora 5 - 64. The results
is obtained by implementing 20 MCNC benchmark circuits
[19], presented at Table 6, in the FPGA architecture
technology-mapped to cells enclosing one four inputs LUT and
one flip-flop, in according to [5].

Circuit # CLBs # I/O # nets FPGA Size
clma 8383 144 8445 92x92
s38417 6406 135 6435 81x81
s38584 6447 342 6486 81x81
ex1010 4598 20 4608 68x68
pdc 4575 56 4591 68x68
spla 3690 62 3706 61x61
elliptic 3604 245 3736 61x61
frisc 3556 136 3576 60x60
bigkey 1707 426 1937 54x54
apex2 1878 41 1916 44x44
dsip 1370 426 1600 54x54
seq 1750 76 1791 42x42
s298 1931 10 1935 44x44
diffeq 1497 103 1562 39x39
alu4 1522 22 1536 40x40
misex3 1397 28 1411 38x38
apex4 1262 28 1271 36x36
ex5p 1064 71 1072 33x33
tseng 1047 174 1100 33x33
e64-4lut 274 130 339 17x17

Table 6 – MCNC benchmark circuits

The comparison between VPR (version 4.30) and this approach
denominated Modified-VPR (M-VPR) presented in table 7,

show the relative improvement of M-VPR with respect to VPR
on wirelength-driven placement, and in table 8, is showed the
measures on timing-driven placement.

As shown at Tables and figures 7 and 8, the processing time
reduction average is 53% is wire-driven case, and 56% in time-
driven case, without compromising significantly the quality of
the final results, and even improving it in some cases. In all
tables are considered the wire length cost (Bounding-box cost).

VPR M-VPR
BB-Cost BB-Cost

Init Final
Time
 (s) Init Final

Time
(s)

clma 7979 138
7

1035 3676 1398 707
s3841 5791 672 874 1966 637 433
s3858 5597 658 656 1807 641 438
ex101 3326 655 361 2094 654 245

pdc 3249 898 357 1581 873 185
spla 2370 594 303 1148 611 126

ellipti 2291 457 239 986 455 158
frisc 2284 516 242 1081 523 163

bigkey 1093 186 75 335 186 46
apex2 902 270 85 529 272 53
dsip 889 170 56 322 176 34
seq 796 248 92 419 255 28

s298 750 204 77 319 209 26
diffeq 670 146 60 328 145 39
alu4 607 190 57 316 190 28

misex 578 190 54 308 192 26
apex4 510 179 46 322 180 28
ex5p 424 162 38 276 164 19
tseng 410 92 43 185 93 20
e64- 73 29 7 54 29 3

2029 395 238 903 394 140
Table 7 - benchmark results in wirelength-driven placement

VPR M-VPR
BB-Cost BB-Cost

Init Final
Time

(s) Init Final
Time

(s)

clma 7964 150
8

2397 3730 1555 1207
s3841 5790 702 1360 1983 710 760
s3858 5626 673 1350 1823 677 561
ex101 3347 683 841 2129 689 394

pdc 3254 944 876 1617 945 463
spla 2350 628 597 1179 637 360

ellipti 2283 511 565 992 511 281
frisc 2257 587 546 1109 607 315

bigkey 1108 214 163 336 216 92
apex2 912 279 177 533 282 95
dsip 906 202 125 324 203 72
seq 797 263 157 424 261 68

s298 769 228 174 328 227 84
diffeq 658 161 118 336 160 66
alu4 614 200 112 317 200 47

misex 575 197 101 309 199 43
apex4 503 196 89 329 198 42
ex5p 423 180 71 279 179 38
tseng 418 104 67 190 104 41
e64- 73 30 11 54 30 6

2031 425 495 916 430 252
Table 8 - benchmark results in timing-driven placement

average

average

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

In next figures, are present the comparative at execution time to
VPR and M-VPR .

Figure 4: - benchmark results wirelength-driven placement

Figure 5: - benchmark results wirelength-driven placement

Figure 6: benchmark results in timing-driven placement

Figure 7: benchmark results in timing-driven placement

CONCLUSION AND FUTURE PROPOSAL

In this article, only some simple changes in the heuristics of
VPR placement routines were considered. In this approach is
not necessary to make any changes on the input netlist. A
constructive initial placement apparently is very promising, as
demonstrated by the results. Those changes can provide
considerable gains in the processing time.

Since the initial objective has been reached we think this
approach can be add to use clusters to generate a ultra-fast
placement. We also intend to implement, in future works,
changes on swap routines combining the strategies presented
here with Tabu search [13] and change the simulated annealing
by Thermodynamic Combinatorial Optimization [14].

REFERENCES

[l] Sait, S. M.,Youssef, H. “VLSI Physical Design Automation
– Theory and Practice”. IEEE Press, New York, 1995.

[2] Preas, B., Lorenzetti, M. “Physical Design Automation of
VLSI Systems”. Benjamin/Cummings Publishing Company,
1988.

[3] Kernighan, B. W. & Lin, S., “An Efficient heuristic produce
for partitioning graphs”. Bell System Technical journal. Vol
49, n. 2, pp. 291-307, February 1970.

[4] Betz V., Rose J., Marquardt A., “Architecture and CAD for
Deep-Submicron FPGAs”. Kluwer Academic Publishers,
1999.

[5] Betz V., Rose J., Marquardt A., “VPR: A new Packing,
Placement and Routing Tool for FPGA research”. In
International Workshop on Field Programmable Logic and
Applications, 1997.

[6] Júnior, L. F. L. “Pré-Posicionador de células em circuitos
VLSI Standard-cells”. Master's degree dissertation
presented at UFPB, Campina Grande – PB - Brazil, 1994.

[7] Haldar M., Nayak A., Choudhary A., Banerjee P.
“Parallel Algorithms For FPGA Placement”, Northwestern
University, 2000.

[8] Banerjee, P., “Accelerators for fpga placement,” in The 4th
Annual Inter Research Institute Student Seminar in
Computer Science”, April 2005.

[9] G. Beraudo and J. Lillis, “Timing optimization of FPGA
Placements by Logic Replication”, in proc. of Design
Automation Conf., pp. 196-201, 2003.

[10] M. Hrkic, J. Lillis and G. Beraudo, “An approach to
Placement-Coupled Logic Replications”, in proc. of Design
Automation Conf., pp. 711-716, 2004.

[11] D.P. Singh and S.D. Brown, “Integrated Retiming and
Placement for Field Programmable Gate Arrays”, in proc. of
International Symp. On Field-Programmable Gate Array,
pp. 67-76, 2002.

[12] G. Chen and J. Cong, “Simultaneous Timing-driven
Placement and Duplication”, in proc. of International Symp.
On Field-Programmable Gate Array, pp. 51-59, 2005.

[13] J.M. Emmert and D.K. Bhatia, “Tabu Search: Ultra-Fast
Placement for FPGAs”, in 9th Intl. Workshop on Field
Programmable Logic, pp. 81-90, 1999.

[14] J.D. Vicente, J. Lanchares, R. Hermida, “Annealing
Placement by Thermodynamic Combinatorial
Optimization”, ACM Trans. On Design Automation of
Electronic systems, vol 9, no. 3, pp. 54-60, 2004.

[15] P. Maidee, C. Ababei and K. Bazargan, “Fast timing-
driven Partitioning-based Placement for island style
FPGAs”, Design Automation Conference, June 2003.

[16] A. Maquardt, V.Betz and J. Rose, “Timing-driven
Placement for FPGAs”, In ACM/SIGDA Int. Symp. on
FPGAs, pages 203-213, 2000.

[17] A.Mathur and C.L.Liu, “Compression-Relaxation: A New
Approach to Timing-Driven Placement for Regular
Architectures”, Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on Volume 16,
Issue 6, pp. 597-608, June 1997.

 [18] Zhuo Y., Li H., Zhou Q., Cai Y., Hong X., “New timing
and routability driven placement algorithms for FPGA
synthesis” In: ACM Great Lakes Symposium on VLSI
2007, pp 570-575, 2007.

[19] http://www.eecg.toronto.edu/~vaughn/vpr/download.html

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

