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Abstract - This paper presents a performance analysis of 
reversible, fault tolerant VLSI implementations of carry select 
and hybrid decimal adders suitable for multi-digit BCD 
addition. The designs enable partial parallel processing of all 
digits that perform high-speed addition in decimal domain. 
When the number of digits is more than 25 the hybrid decimal 
adder can operate 5 times faster than conventional decimal 
adder using classical logic gates. The speed up factor of hybrid 
adder increases above 10 when the number of decimal digits is 
more than 25 for reversible logic implementation. Such high-
speed decimal adders find applications in real time processors 
and internet-based applications. The implementations use only 
reversible conservative Fredkin gates, which make it suitable for 
VLSI circuits.

Index Terms - decimal arithmetic, delay reduction, reversible 
logic, VLSI implementation

I. INTRODUCTION

Currently, fast decimal arithmetic is gaining popularity in 
the computing community due to the growing importance of 
commercial, financial, and internet-based applications, which 
normally process decimal data. Low power designs with high 
performance are given prime importance by researchers, as 
power has become a first-order design consideration. While 
efforts are being made to reduce power dissipation due to 
leakage currents, alternate circuit design considerations are 
also gaining importance. In recent years, reversible logic has 
emerged as one of the most important approaches for power 
optimization. Landauer’s principle states that a heat 
equivalent to kT*ln2 is generated for every bit of information 
lost, where k is the Boltzmann’s constant and T is the 
temperature [1]. Bennett showed that energy dissipation 
would not occur if the computations were carried out using 
reversible circuits [2] since these circuits do not lose 
information. Classical logic gates such as AND, OR, and 
XOR are not reversible. Hence, these gates dissipate heat and 
may reduce the life of the circuit. So, reversible logic is in 
demand in high-speed power aware circuits.
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A reversible conventional Binary Coded Decimal (BCD) 
adder is proposed in [3] using NG (New Gate) and NTG 
(New Toffoli Gate) reversible gates. Even though the 
implementation is modified in [4] using TSG reversible gates, 
this approach is not taking care of the fanout restriction of 
reversible circuits, and hence it is only a near-reversible 
implementation. An improved reversible implementation of 
decimal adder with reduced number of garbage outputs is 
proposed in [5]. These implementations are for the 
conventional BCD adders, which are relatively slow. 

Parity checking is one of the oldest and the most widely 
used methods for error detection in digital systems. Parity 
preservation proves to be useful for ensuring the robustness of 
reversible logic circuits. Parity-preserving reversible logic 
gates can be used for fault detection. B. Parhami demonstrated 
the feasibility of parity-preserving approach in the design of 
reversible logic circuits with examples of adder circuits [6].

 In this research, carry select and hybrid decimal adders 
suitable for multi-digit BCD addition are implemented using 
parity preserving reversible Fredkin gates. Fredkin gates are 
conservative reversible gates. A gate is conservative if the 
Hamming weight (number of logical ones) of its input equals 
the Hamming weight of its output. If a gate is conservative 
and reversible then it is parity preserving. 

The organization of this paper is as follows: Initially, fast 
decimal adders such as carry select and hybrid adders are 
described. A comparison of carry select and hybrid BCD 
adders with conventional decimal adder in terms of speed and 
area is done for classical gate implementation. Next section 
describes implementations of carry select and hybrid adders 
using only parity preserving reversible Fredkin gates. An 
optimum block size for a hybrid adder is also derived. Finally, 
a graphical delay analysis of different fault tolerant 
implementations normalized to a Fredkin gate is presented.  

II. CARRY SELECT BCD ADDER

The carry select BCD adder shown in Fig. 1 consists of a 4-
bit binary adder, a 6-correction circuit, and a modified special 
adder along with a circuit (2-input AND, 2-input OR and a 
2:1 multiplexer) to generate decimal carry out (dcout). 

The 4-bit binary adder adds the BCD inputs and generates a 
binary sum, S (S3-0) that is checked by the ‘6-correction 
circuit’. 

The output of the 6-correction circuit ‘L’ is given as

L= Cout + S3 (S1+S2)                                                           (1)
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Fig 1:  Carry Select BCD adder 

On receiving Cin, a K-bit can be generated using equation (2).  

K = S3S0Cin + L = P0Cin + L                        (2)

where P0 is the carry propagate signal (S3S0)

If the carry select technique is adopted for K-bit generation 
then k1 denotes the K-bit with Cin = 1 and k0 with Cin = 0 and 
is given by k1=P0+L and k0=L. After computing both bits (k1

and k0) a selection is done using a 2:1 multiplexer.
To reduce the hardware and to increase the speed of the 

circuit, the final adder stage (4-bit special adder) is a modified 
version of a 4-bit binary adder consisting of a half adder, 2 
full adders and an XOR gate as in Fig. 1. 

An N-digit carry select adder will have a total (worst case) 
delay (Tdsum (carry-select)) equal to the sum of the ‘carry delay’ 
through the first digit (Tdcout(carry-select)), the carry select delays 
through the next (N-1) digits, and the ‘sum delay’ through the 
last digit (Tsum-digit(carry-select) ).  This is given in equation (3).

Tdsum(carry-select)  =
Td-cout(carry-select)+(N-1)Tmux+Tsum-digit(carry-select)               (3)

where Tdcout(carry-select) is the delay to generate K-bit from the 
BCD inputs for the first digit
Tmux is the delay of a 2:1 multiplexer
Tsum-digit(carry-salact) is the delay of special adder for last 
digit

III.  HYBRID BCD ADDER

Hybrid logic for N-digit BCD addition can be used for 
delay reduction and is shown in Fig.2. The N-digit BCD input 
is divided into m-digit fixed blocks. Each m-digit adder 
consists of ‘m’ single digit carry select adders. To speed up 
addition, carry lookahead logic is included in m-digit blocks. 
For an m-digit adder, Decimal Cout at mth digit (Km-1) can be 
computed as given in equation (4) using equation (2). 

      m-1          m-1        m-1

Km-1 =   Cin ∏ Pk  +  ∑ Li   [ ∏ Pj ]                                       (4)
     k=0           i=0         j=i+1     

where Li is the L-bit of ith digit
           Pi is the propagate bit for ith digit

This can be written as  
Km-1 = k0(m-1) Cin’ + k1(m-1) Cin                        (5)

where k0(m-1) = Km-1 with Cin = 0   
    k1(m-1) = Km-1 with Cin =1

The computations up to the generation of Li and Pi bits at
each digit are carried out in parallel for all digits.  The delay 
for L-bit generation is given as 

TL = Tadder + T6-correction                                                           (6)

where Tadder is the delay of the 4-bit binary adder, 
    T6-correction is the delay of the 6-correction circuit

k0(m-1) and k1(m-1) for an m-digit block are computed using 
Li and Pi as given in equation (4) after a delay of Tk1(m-1)

which is the delay of an m-input AND gate and (m+1) input 
OR gate. 

Fig 2. Hybrid N-digit Decimal Adder
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On receiving Cin, the Decimal Cout at mth digit (Km-1) is 
generated after an additional delay of a 2:1 multiplexer (Tmux) 
and is given as 

Tm-dcout = TL + Tk1(m-1) + Tmux                          (7)
                               

The total (worst case) delay of an N-digit hybrid BCD 
adder (Tdsum (hybrid)) with fixed size carry look ahead block is 
the sum of the ‘carry delay’ through the first m-digit 
lookahead adder block (Tm-dcout), the carry select delays 
through the intermediate blocks, and the ‘sum delay’ through 
the last m-digit block (Tsum-m-digit ).  This is given in equation 
(8).   

Tdsum (hybrid) = Tm-dcout + [(N/m)-2] Tmux + Tsum-m-digit                        (8)
where Tsum-m-digit = mTmux + Tsum-digit                        (9)          

The total (worst case) delay of an N-digit conventional 
BCD adder (Tdsum (conventional)) given in equation (10) is the sum 
of ‘N’ times the ‘carry delay’ through one digit and the ‘sum 
delay’ through the last digit (Tsum-digit(conventional) ). 

Tdsum (conventional) = N Tdcout(conventional) + Tsum-digit(conventional)          (10)

A comparison of conventional, carry select and hybrid 
(with m=4) BCD adders in terms of area and critical path 
delay is done with the logic synthesis tool Leonardo Spectrum 
from Mentor Graphics Corporation using ASIC Library. The 
critical path delay and area are normalized with respect to a 
full adder critical path delay of 1.98 ns and area of 38μm2. 
Fig. 3 shows the graphical analysis of delay, and Fig. 4 shows 
the area-delay product normalized to that of a full adder. The 
area overhead of carry select and hybrid adders is
compensated by the speed advantage compared to the 
conventional adder.
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Fig. 5 demonstrates the speed up factor of carry select and 
hybrid BCD adders compared to conventional BCD adder as 
the number of digits increases. Hybrid decimal adder is three 
times faster than the conventional BCD adder as the number 
of digits increases above 12 while the carry select BCD adder 
attains a speed up factor of 2.5 at this level. It is noted that the 
hybrid adder attains speed up over carry select BCD adder 
only when the number of input digits increases above 8. The 
delay comparison graphs show that hybrid adder is 5 times 
faster than that for the conventional BCD adder, when the 
input word length is above 25.
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IV.   REVERSIBLE GATES

This section describes parity preserving reversible logic 
gates such as Feynman Double Gate (F2G) and Fredkin Gate 
(FRG). A 3*3 Feynman Double Gate (F2G) [6] has 3 inputs 
A, B, C and 3 outputs P=A, Q=A B, R=A C. A 3*3 
Fredkin Gate (FRG) [7] has 3 inputs A, B, C and 3 outputs 
P=A, Q= A’B AC, R= AB A’C. These two gates satisfy the 
condition A B C=P Q R. In general, a parity preserving 
reversible gate is a gate in which the following condition is 
valid.

∑Xi = ∑Yi                                (11)

where ‘X’ indicates an input, ‘Y’, an output, and ‘i’ the 
number of inputs or outputs of the reversible gate.

V.  PARITY PRESERVING REVERSIBLE CARRY SELECT BCD
ADDER  

Recently, Hafiz [3], Thapliyal [4] and James [5] proposed 
reversible implementations of conventional BCD adders. But 
these implementations make use of reversible gates other than 
parity preserving gates, and hence they are not fault tolerant 
implementations. This research proposes a reversible 
implementation of fast BCD adders using the parity 
preserving reversible Fredkin gates. 

The basic component of any adder is a full adder. A number 
of parity preserving reversible full adders are available in 
literature [6, 8]. Fig. 6 and Fig. 7 show the implementation of 
a half adder and a full adder using parity preserving Fredkin 
gates. The full adder implementation requires only 5 Fredkin 
gates at 3 levels, compared to 3-level 6-gate (5 Fredkin gates 
and 1 Feynman gate) implementation in [6], and 5-level 5-
Fredkin gate implementation in [8] while observing the fanout 
restrictions. 

The 4-bit binary adder realized using a half adder and 3 full 
adders will achieve delay reduction by using implementations 
in Fig. 6 and Fig. 7. The least significant bit (half adder) 
requires a path delay of two FRGs to generate C0 from the
addends. Then the carry ripples through the subsequent full 
adders with a path delay of two FRGs per bit. This is because 
the first Fredkin gates of all full adders work in parallel with 
the first Fredkin gate of half adder in an n-bit binary adder. 
But in the implementation in [6], the delay is of 3 levels for 
each bit. So, an advantage of 1 delay level/bit is achieved in 
this implementation. The delay to generate Cout or ‘Sum’ in 
the n-bit binary adder is 

Tc-ripple = Tsum-ripple = 2+2(n-1)        (12)

Fig. 6: Half adder using Fredkin Gates

Fig. 7: Full adder using Fredkin Gates

For a conventional n-bit adder with ‘n’ full adders, it is 

T c-ripple (conventional) = Tsum-ripple(conventional)  = 3+2(n-1)        (13)

For a BCD adder this delay is the delay with n=4 for each 
digit. In carry select BCD adder, since all digits are added in 
parallel this delay remains the same as a single digit for ‘N’ 
digit addition.

The parity preserving reversible implementation of a 6-
correction circuit is shown in Fig. 8. The implementation 
requires 3 FRGs to generate the ‘L’ output. This circuit takes 
only 2 more delays after generating the ‘Sum’ to generate the 
L-bit. The delays to generate L-bit from the BCD inputs for 
carry select and conventional BCD adders are given in (14) 
and (15).

TL(carry-select) = 4+2(n-1)                                  (14)
TL (conventional) = 5+2(n-1)                             (15)

Fig. 9 shows the generation of K-bit or the Decimal Cout. 
The generation of k1 and k0 takes the delay of only one 
Fredkin gate after receiving L-bit as seen in Fig. 9. After 
computing both values (k1 and k0) a selection is done by a 
single FRG, since an FRG works as a 2:1 multiplexer with 
‘A’ input as control input and ‘B’ and ‘C’ inputs as data 
inputs. So, the additional delay in each digit to generate K-bit 
after receiving Cin is only due to one FRG.

Fig. 8: Generation of L-bit using Fredkin Gates

Fig. 9: Generation of K-bit using k0 and k1
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The delay in generation of K-bit (Decimal Cout) for one 
digit for carry select BCD adder is given in equation (16), 
where n=4. 

Td-cout(carry-select) = 6+ 2(n-1)                      (16)

Special adder implemented using one half adder, two full 
adders and one XOR gate requires 15 Fredkin gates (3 for half 
adder, 5 for each full adder, 2 for XOR gate) to generate the 
BCD sum (d3-0). The Decimal Cout or the K-bit is the last input 
to be received for the special adder. The ‘K’ input passes 
through a maximum of 5 Fredkin gates to generate the BCD 
sum (d3-0). But Cin is received by the special adder along with 
the K-bit only. On receiving Cin the half adder of the special 
adder generates the carry bit after one Fredkin gate delay. The 
2 full adders and one XOR gate adds 5 more Fredkin gate 
delays. So the delay of special adder (Tsum-digit(carry-select) ) is the
delay of 6 Fredkin gates.

For an N-digit BCD adder, Decimal Cout at Nth digit (K(N-1)) 
is generated after a delay equal to the sum of delay of K-bit 
generation for the first digit (Tdcout(carry-select))and the 
multiplexer delays through the next (N-1)digits. It is given in 
equation (17).

TN-d-cout(carry-select)  = Tdcout(carry-select)+(N-1)Tmux

             = 6+2(n-1) + (N-1)                                (17)                              

Substituting the delays in equation (3), the total worst case 
delay (Tdsum (carry-select)) in terms of Fredkin gate delay is 

Td-sum (carry-select) = 6+2(n-1) + (N-1) + 6                                (18)

For a conventional BCD adder the final adder is a 4-bit 
binary adder. The ‘K’ input passes through a maximum of 6
Fredkin gates (3 full adders) of the final adder to generate the 
BCD sum. So total (worst case) delay of an N-digit 
conventional BCD adder in terms of Fredkin gate delay is 

T d-sum (conventional)     =  N Tdcout(conventional) + Tsum-digit (conventional)

=  N TL(conventional) + Tsum-digit(conventional)

= (5+2(n-1)) N + 6            (19)

VI.    HYBRID REVERSIBLE BCD ADDER

The total (worst case) delay of an N-digit hybrid BCD 
adder with fixed size carry look ahead block is given in 
equation (8). The first term in equation (8) requires a delay as 
given in equation (7). In reversible implementation using 
Fredkin gates the delay to generate all Li bits is TL (given in 
equation (14)) with n=4. All Pi will be available when the 
generation of Li gets over. Tk1(m-1) is the delay of an m-input 
AND gate and (m+1) input OR gate. A 2 input AND or a 2 
input OR can be implemented by a single Fredkin gate. 
Higher order AND and OR gates can be constructed using 
Fredkin gates arranged in a binary tree. An m-input AND gate 
or an m-input OR gate requires (m-1) Fredkin gates. In a 
binary tree implementation an input passes through a 

maximum of  m2log Fredkin gates [8]. On receiving Cin, 

the selection of k1(m-1) or k0(m-1) requires one more Fredkin 

delay for each m-digit block. Hence the ‘carry delay’ through 
the first m-digit lookahead adder block is

Tm-dcout = 10 +  m2log  +  )1(log2 m  + 1        (20)

The delay for carry select for intermediate blocks is 
m

N
- 2.

The sum delay through the last m-digit block is (m+6).
Total delay in generating N-digit BCD sum is given as

Td-sum (hybrid)  =

11+  m2log +  )1(log2 m +
m

N
- 2 + m+6               (21)

However, the assumption  m2log =
2

m
is valid for the 

small block sizes applicable to carry look ahead adder 
designs. Thus, (21) can be written as

Td-sum  (hybrid) = 15+2m+ 
m

N
                       (22)

Minimizing Td-sum (hybrid)  with respect to block size m

mopt= N5.0                                      (23)

Substituting (23) into (22) gives the shortest delay for a fixed 
block size hybrid BCD reversible adder.

Td-sum (hybrid) = 15 + N8                         (24)

Fig. 10 graphically demonstrates the computation of 
optimum block size (corresponding to shortest delay) of 
hybrid reversible BCD adders for different input lengths. Fig. 
11 shows a comparative delay analysis of conventional, carry 
select and hybrid BCD adder reversible implementations 
normalized to that of a Fredkin gate.
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Figure 12 demonstrates the speed up factor of reversible 
Fredkin gate implementations of carry select and hybrid BCD 
adders compared to conventional BCD adder. It can be noted 
that the hybrid adder attains speed over carry select BCD 
adder for all values of N in reversible implementation. Speed 
up factor of hybrid adder increases above 10 when the number 
of decimal digits is more than 25 for fault tolerant reversible 
logic implementation.

VII. CONCLUSION AND FUTURE WORK

This research forms the basis of a fast Decimal ALU for a 
reversible CPU. Faster decimal adder circuits have been 
explored for several decades. This paper continues that 
practice by describing several reversible BCD adders using 
only Fredkin gate (FRG), a conservative reversible logic gate. 
VLSI implementations using only one type of modular 
building blocks can decrease system design and 
manufacturing cost.
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The performance comparison of carry select and hybrid 
BCD adders with conventional BCD adder are presented. It is 
noted that the hybrid BCD adder attains speed up over carry 
select and conventional BCD adders, for any input length in a 
reversible implementation.

Varying the size of the carry lookahead blocks can reduce 
the total worst case delay, since carries generated or absorbed 
in the adder center have shorter data paths [9]. Investigations 
into determining alternate implementations can be done using 
logic synthesis methods [10, 11, 12]. Characterization of new 
families of ‘n-input’ – ‘n-output’ reversible gates that can be 
used for regular structures is an area which can be 
investigated further. Additionally, it is noted that there is a 
lack of simulation tools that support reversible gates, and this 
is most definitely an area worthy of attention. 
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