
 

Re-evaluation of Fault Tolerant Cache Schemes 
 

Huan-yu Tu and Sarah Tasneem 
Eastern Connecticut State University 

Willimantic, CT 06226 
{tuh, tasneems}@easternct.edu 

 
ABSTRACT – In general, fault tolerant cache schemes can be 
classified into 3 different categories, namely, cache line 
disabling, replacement with spare block, and decoder 
reconfiguration without spare blocks. This paper re-examines 
each of those fault tolerant techniques with a fixed typical size 
and organization of L1 cache, through extended simulation 
using SPEC2000 benchmark on individual techniques. The 
design and characteristics of each technique are summarized 
with a view to evaluate the scheme. We then present our 
simulation results and comparative study of the three different 
methods. 
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1. INTRODUCTION 
 
High-performance VLSI processors results increasing 

demand of memory bandwidth which the memory technology 
never be able to satisfy [2]. Thus, extensive use of on-chip 
cache memories became essential to sustain memory 
bandwidth demand of the CPU. Meanwhile, advances in 
semiconductor technology and continuous down scaling of 
feature size creates extra-space for additional functionality on 
a single chip. The most popular way to make use of this extra-
space is integrating bigger size of cache so that a 
microprocessor is able to gain higher performance. We can 
observe that the area occupied by cache in current processor 
already exceeded 50% of total area of CPU die. However, an 
increase in the circuit density is closely coupled with an 
increase in probability of defect. Furthermore, the increased 
defects can mostly be in the on-chip cache area since the area 
occupied by cache grows larger and larger. Consequently, the 
defect level of the cache has a significant impact on the defect 
level of overall CPU. Therefore, the first fault tolerant cache 
design was proposed in [10] for the purpose of enhancement 
in yield of micro-processors.  

To design fault tolerant cache, we first need to observe 
that cache is a redundant structure which is employed to 
enhance the performance of CPU. Thus, the CPU can work 
correctly without cache-memory. Among many components in 
microprocessor, redundant structures, such as cache is called 
non-critical component and defects in that structure is called 
non-critical defects [10]. The non-critical defects can be easily 
tolerated by simply disabling non-critical component which 
contains defect. Thus, disabling defective part of caches were 
investigated in [7] [10] [8]. However, simply disabling the 
defective part of cache will result degradation of overall 
performance of CPU. Thus, use of redundancy to tolerate 
defect in cache memory is studied in the literature. The 

redundancy techniques that are used for RAM can easily 
applied to cache. Using a SEC-DED code [12] codes can mask 
out defective bits in cache as well as main memory. However, 
a detailed investigation in [10] showed that employing SEC-
DED code for on-chip cache is not appropriate due to the 
delay introduced by SEC-DED hardware. Using redundancy 
and reconfiguration logic is another method to tolerate faults 
in cache by providing spare cache blocks [4] [13]. The 
defective block is switched to spare block by reconfiguration 
mechanism. The reconfiguration can be done either electrical 
or laser fuses to permanently replace defective blocks [4]. In 
[13], instead of permanent replacement, they employed small 
fully associative cache to dynamically replace the faulty block.   

Yet another technique which called PADded cache [9] is 
presented recently. This new technique can sooth the 
degradation of cache performance without spare cache block. 
Instead of using explicit spare blocks, the physical or logical 
neighborhood blocks play a role of spare block.  

In this paper, we re-examine and compare three different 
fault tolerant schemes, namely, cache line disabling [10] [8] 
[7], spare cache [13], and PADded cache [9]. In section 2, a 
brief overview of the organizations of the different schemes as 
well as summary of previous results are presented. In section 
3, we re-evaluate each technique with realistic, unbiased setup 
for fair comparison. Also, the results of our comparisons of 
the schemes are reported. 
  
 

2. FAULT TOLERANT CACHES 
 
2.1 Cache Block Disabling   
 

Although disabling the faulty cache will not affect the 
correct operation of CPU, disabling the entire cache will 
significantly degrade computer performance. Thus, one may 
consider disabling some portion of cache [7]. Also, purging 
the entire way is wasteful since all the other fault free blocks 
in the same unit cannot be utilized. Therefore, one solution is 
to disable faulty byte or word in data array to maximize the 
utilization of fault free bits. However, most cache 
implementation fetches data from the main memory by the 
size of multiple words, instead of by a byte or a word, which is 
usually the same as block size of cache. Hence, disabling a 
single block containing fault/defect was investigated in [10] 
[8], where a single bit is used to indicate the presence of fault 
in a block. This indicator bit is called the availability bit [10], 
the purge bit, or the second valid bit [8]. In the present paper, 
we will call this indicator bit as faulty-bit.  

The faulty blocks can be identified either by a) 
manufacturing test to enhance the yield of micro-processors 
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[8] [10] or b) error detection code to tolerate permanent fault 
occurred even during normal operation [6] [12]. The faulty-bit 
of a faulty block will be set once the block is identified as 
faulty. When access to the certain address of cache occurs, the 
cache control logic makes use of the faulty-bit by treating the 
access as a miss and also excludes the block from cache 
replacement algorithm. Figure 1 illustrates simplified block 
diagram of this scheme. The effect of disabling faulty block is 
first presented in [10] and mathematically extended in [8]. 

 

 
Figure 1. Cache Line Disabling with Faulty Bit  

 
According to their result and analysis, the associativity of 

cache has big impact on the performance degradation incurred 
by disabling defective block. In case of direct mapped cache, 
all the memory blocks that are mapped onto defective block 
will be excluded from the cache. Thus, one can expect the 
linear degradation of performance on fraction of faulty block. 
On the other hand, set associative cache has less degradation 
ratio to the fraction of faulty block. Suppose M-way set 
associative cache. If one block among M-way in a same set is 
defective, the remaining (M-1) healthy blocks are still able to 
accommodate the corresponding memory blocks that are 
mapped onto the set. However, the replacement rate on a 
faulty set will increase due to higher probability of conflict 
miss by decreased number of ways in that set. A fully 
associative cache always allows every memory block to be 
cached in every cache blocks. Therefore, the degradation of 
cache performance would solely depend on the probability of 
conflict miss. To overcome this, the idea of using small fully 
associative spare cache has been evolved which is described in 
the next sub-section.  
 
2.2 Replacement Using Small Spare Cache  
 

To recover the performance loss due to disabling faulty 
blocks, a replacement scheme called the Memory Reliability 
Enhancement Peripheral (MREP) is discussed in [4]. The 
main idea is to provide extra words which can replace any 
faulty words in memory. A similar method is proposed in [13] 
in which while MREP replaces a faulty block with the a spare 
which is dedicated for the specific faulty block, it uses small 
fully associative cache as a spare for the faulty blocks of direct 
mapped primary cache. Since any blocks in fully associative 
spare cache can store data of all possible indexes that is used 
for its primary cache, it can temporary replace more faulty 
blocks than the number of spare blocks in spare cache.  

The organization of spare cache scheme is illustrated in 
Figure 2 and the use of spare cache for direct-mapped cache 
and its performance recovery are extensively studied in [13]. 

In order to limit our scope of study on various fault-tolerant 
cache schemes, it is worth to make some observation from 
their study. First, they defined a matrix called MR (Miss-
recovery Rate) to measure the effectiveness of spare cache 
which is equal to:  

)1(%100×=
faultsbycausedMisses

cachesparebyremovedMissesMR  

Based on MR, their study on spare cache can be 
summarized as follows: 

1. MR decreases as number of faulty block increases.  
2. For a constant block size and number of faulty blocks, 

MR decreases as total cache size decreases.  
3. Block size of 16 or 32 maximizes MR.  
4. One or two blocks are sufficient for a small number of 

faulty blocks. 
 

 
 

Figure 2. Block Diagram of a Fully Associative Spare Cache 
 

It is obvious to see that the first and second results are due 
to the increased conflict miss in spare cache. As the number 
of faulty block increases, more blocks will contend to occupy 
limited number of blocks in spare cache resulting more 
conflict misses in spare cache. Also, as the size of the primary 
cache decreases, the number of addresses which is mapped 
onto faulty block will increase and eventually will increase the 
conflict miss in spare cache. The third observation is more 
complicated. For the block size of less than 16, MR increases 
as the cache’s block size increases because the misses caused 
by fault is greater for caches with larger block size and thus 
the spare caches with same block size will cover those misses. 
However, if block size becomes too big, the addressable space 
in primary cache will decrease and results into more conflict 
misses in spare cache. The fourth observation is related to the 
temporal locality [2] on the access to the faulty blocks in 
primary cache. Due to the presence of temporal locality, the 
number of spare blocks does not have to be proportional to the 
number of faulty blocks in primary cache to achieve 
reasonable MR. Based on the above observations, we re-
examined the use of the spare cache scheme from various 
aspects. First, we investigate the effectiveness of spare cache 
for bigger size of primary cache and spare cache, since 
previous simulation results and conclusion are outdated, 
regarding the size of caches. It might require more than one or 
two spare blocks to achieve reasonable MR. Moreover, we 
examine the effectiveness of spare cache on set-associative 
cache. This is valuable to study because most of today’s 
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micro-processors employ set associative cache to increase hit 
rate. Furthermore, since cache line disabling on set associative 
cache already has acceptable degradation for fault tolerance 
with a very little hardware overhead, it is worthy to investigate 
the effectiveness of spare cache with set-associative primary 
cache. The new simulation results and analysis on extended 
study is presented in next section. 
 
2.3 Programmable Decoder (PADded Cache)   
 

As mentioned before, caches have an intrinsic redundancy 
since the purpose of caches is to improve performance; it 
should not be relative to the preciseness of operation. Many 
architectures can work without any cache at the cost of 
degraded performance. Therefore, adding extra redundancy, 
using spare blocks, could be inefficient. There is a 
phenomenon to cut this second redundancy. Because of the 
spatial and temporal locality of memory references not all of 
the sets in a cache are hot at the same time. Thus, there must 
be some cache sets which can substitute the spare blocks. A 
special Programmable Address Decoder (PAD) [8] is 
introduced to exploit this nature.  

 
Figure 3. 1-level Programmable Address Decoder (PAD) 

 
When a memory reference happens, a decoder maps it to 

the appropriate block. A PAD is a decoder which has 
programmable mapping function for the fault tolerance. Once 
a faulty block is identified, a PAD automatically redirects 
access to that block to a healthy block in the same primary 
cache. For example, let’s consider a PADded cache, which is 
equipped with PAD. If PADded cache has n cache blocks and 
one of the blocks is faulty, the cache will work as if it has n-1 
cache blocks. PAD re-configures the mapping function so that 
a healthy block acts as a spare block. The method to find 
suitable defect-free block is predefined and implemented in 
hardware. Figure 3 shows one implementation of PAD where 
S0 = f’0 · a’0 + f1 and S1 = f’1 · a0 + f0 (a0 is the least 
significant bit of the index). In the case of where block 0 is 
faulty, S0 will be always on. That is, index for both block 1 
and block 0 will be directed to block 1. However, during the 
remapping process, one bit of index information will be lost. 
Therefore, an extra tag bit (shaded boxed in Figure 3) is 
required to determine whether the contents in block 1 is its 
own or not. Otherwise, bogus hits can be generated in block 1. 
For instance, suppose that memory address 000 is originally 
mapped to block 0 but redirected to block 1 because block 0 is 
faulty. If after the reference to block 0, memory address 001 is 
given, it will be a hit even though the contents come from 
memory address 000. More details about multiple-level PADs 

can be found in [8] and Figure 4 illustrates how the PADs 
work. The Shaded block in Set 1 substitutes the faulty block in 
Set 0. The shared block belongs to both of Set 0 and Set 1; the 
faulty block does not belong to any set. That is, Set 0 and Set 1 
have three their own blocks and they share one block. 

 
Figure 4. 4-way Associative Cache Employing PAD 

 
To evaluate PADded caches, they compared this 

technique with the cache block disabling method for several 
configurations: cache size (2, 4, 8, 16 and 32KB), block size 
(8, 16, 32 bytes) and associativity (1, 2 and 4). Many sets of 
traces were used: ATUM traces, traces from SPEC92 and 
SPEC95, and the IBS traces. All PADs were assumed that they 
are programmable for all levels and reverse ordered. The 
results of their simulation showed that the miss rate of 
PADded caches stay relatively flat and increase slowly 
towards the end. Simulations of caches with different sizes 
show that when half of the blocks are faulty, the miss rate of a 
PADded cache is almost the same as a healthy cache of half 
the size. The authors claimed that the full capacity of healthy 
blocks is utilized and the performance decreases with almost 
minimum possible degradation. Hardware overhead of 
PADded cache is also estimated to be 11%, in terms of area 
[9]. According to their calculation, PADs cost 3%, extra tag 
bits cost 7%, and the remaining 1% is due to faulty bits. 
 
 

3. RE-EVALUATION AND COMPARISONS 
 

In this section, we first discuss our simulation set up to 
reevaluate above surveyed techniques and present the results. 
Results are divided into two sub-sections. Each fault tolerant 
schemes are re-evaluated separately and their results are given 
in section 3.1 and the comparisons of different schemes are 
presented in sub-section 3.2. 

We modified the SimpleScalar [2] execution-driven 
architecture simulator to simulate each technique. Five 
benchmark programs (i.e. bzip2, gcc, mcf, vortex, and parser) 
from SPEC2000 benchmark suite were simulated. For each 
benchmark, 5 million instructions were simulated (total 25 
million). Moreover, caches were flushed on every system calls 
to mimic realistic operating system environment. 

We total cache size and block size was fixed to 32KB and 
16 byte, respectively, which is a reasonable configuration for 
most L1 cache of modern days. Although the total size of 
cache and the size of block can affect the performance of each 
technique, the manageable amount of result should be used to 
focus on the comparison of each technique. However, we 
varied associativity (1, 2 and 4) since the performance of 
surveyed techniques were significantly sensitive to the 
associativity. All simulated caches used write-back, allocate-
on-write-miss, and LRU replacement algorithm. No pre-
fetching or sub-blocking was used. Also, unified 

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



instruction/data cache was used since simulation on separated 
caches showed no significant difference with unified caches’ 
results.  

The random spot defect model [11] was assumed to inject 
permanent faults in random locations in the cache. We assume 
that power up BIST identifies faulty block with 100% 
coverage. The fraction of faulty block (hereafter called FFB) 
was set to range from 0% to 100% for all simulations. The 
FFB lower than 15% was examined more closely for realistic 
evaluations. 

Miss rate is used, to measure effectiveness of individual 
techniques. The MR (miss recovery rate, equation 1) is used 
to compare relative performance of spare-cache and PADded 
cache to cache block disabling method.  
 
3.1 Re-evaluations 
 
3.1.1 Cache Line Disabling 
 

Cache line disabling is examined first since it is the most 
primitive way of tolerating fault in cache and will be used as 
the basis of comparing effectiveness of other techniques. In 
addition to direct mapped, a 2-way and 4-way set associative 
cache, and a fully associative cache is also simulated to get the 
lower bound of degradation for cache block disabling. Total 
size of cache and block size is fixed to 32KB and 16 bytes, 
respectively. 

Figure 5 depicts the cache miss ratio versus FFB. For the 
direct mapped cache organization, the miss ratio increases 
almost linearly with FFB. Each block in direct mapped cache 
is mapped to its congruent memory blocks. In other words, a 
specific address can be mapped to no more than one block. 
Thus, the memory blocks those are mapped to disabled block 
can not be cached. All the references to these blocks will be 
missed in cache, resulting linear degradation.  

On the other hand, disabling faulty blocks in fully 
associative cache shows 0.07 increase only, even with 90% of 
faulty blocks. As discussed in previous section, blocks in fully 
associative cache can accommodate every possible memory 
blocks and the miss rate depends only on the increased 
replacement rate. Two-way and four-way set associative cache 
showed their degradation somewhere in between direct 
mapped cache and fully associative cache. 

Our result shows that the fully associative cache can be 
the best solution for cache line disabling. However, the 
implementation of fully associative cache is prohibitively 
large and impractical. Although there is a large probability for 
cache to be faulty, we believe that considering more than 15% 
of FFB is impractical. Thus, we closely re-examined the 
degradation of each cache with FFB lower than 15% and the 
results are plotted in Figure 6. While the relative degradation 
between 2- or 4-way set associative cache and fully 
associative cache is significant for large number of faulty 
blocks, there was only up to 0.01 difference in miss rate 
between 4-way and fully associative cache when FFB is less 
than 15%. Furthermore, there was only up to 0.015 miss rate 
difference between 2-way associative cache and fully 
associative cache with FFS less then 15%. 

In summary, the cache block disabling can be more 
effective when the associativity of cache is larger. However, 

for reasonable value of FFB and feasibility, 2- or 4-way set 
associativity is sufficient to get the advantage of associative 
organization of cache. The results presented for cache block 
disabling will be used in subsequent subsections as the basis 
for comparing effectiveness of other schemes. 

 
Figure 5. Miss Rate of Cache Line Deletion (32KB) 

 

 
Figure 6. Miss Rate of Cache Line Deletion (32KB) 

 
3.1.2 Spare Cache 
 

Extensive simulation on spare cache for the direct 
mapped primary cache is done in [13] and their results are 
summarized in previous section. However, the simulation set 
up is obsolete since the simulated cache size was too small 
(less than 16KB) and the effectiveness of spare cache in the 
conjunction with set associative primary cache is not 
considered. Thus, we extended our simulation for larger cache 
size (32KB). Moreover, a 2- and 4-way set associative primary 
cache as well as a direct mapped cache was simulated. First, 
the effects of varying the spare cache size for three different 
primary caches are considered. Figures 7, 8, and 9 plots miss 
rate versus FFB for Direct-mapped, 2- and 4-way set 
associative cache, respectively.  For each of the cases a 2, 4, 
and 8-block sized spare cache was considered. In those  
figures, DM, 2W, 4W denotes direct-mapped cache, 2-way set 
associative, and 4-way set associative cache, respectively, “-
Del” means cache line disabling or deletion, and “-xS” denotes 
spare cache of x blocks. 

For the entire primary cache configuration, the sensitivity 
to the size of spare cache is noticeable. The direct mapped 
cache is more sensitive to spare cache size as opposed to both 
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a 2- and 4-way set associative caches. While there is more 
than 0.05 miss rate difference between 2-block spare and 8-
block spare with direct-mapped primary cache at 15% of FFB, 
2-way and 4-way set associative caches showed less than 
0.005 miss rate difference between 2-block and 8-block spare 
cache. Especially, the number of blocks in spare cache showed 
negligible miss rate difference for the 4-way set associative 
cache.  

 
Figure 7. Spare Cache with Direct-Mapped Cache 

 

 
Figure 8. Spare Cache with 2-Way Set Associative Cache 

 

 
Figure 9. Spare Cache with 4-Way Set Associative Cache 

 
In case of direct-mapped cache, we notice that employing 

spare cache improves the miss rate significantly as compared 
to set associative caches. While the miss rate of cache line 
deletion already exceeds 0.08 with only 5% of FFB, spare 
cache suppress the miss rate under 0.08 for the FFB of up to 
14%. Similar but less improvement over cache line disabling 
can be observed in 2-way set associative cache. On the other 
hand, there was no significant miss rate improvement (less 
than 1% difference of miss rate) for FFB below15% in 4-way 
set associative cache. This is because the degradation due to 
cache line disabling on set-associative cache is already small 
compared to that of direct-mapped cache. This result brings up 

new question: Is spare cache effective only for a direct 
mapped or a small associativity cache? To answer this 
question, we need to compare MR (Miss-recovery Rate) for 
each of the primary cache organizations. Figure 10 compares 
the MR for three different primary cache organizations for a 
fixed spare cache size of 4 blocks. The size of spare cache is 
fixed to solely compare the effectiveness of employed spare 
cache on primary caches with different associativity. For small 
FFB, the misses recovered by 4-block spare cache is higher 
for lower associativity. However, the MR for direct mapped 
cache quickly drops when FFB exceeds 8% resulting less MR 
as compared to 4-way associative caches. The similar drop of 
MR for 2-way set associative was also observed.  

The following observation can be made from our results: 
• Primary cache with larger associativity is less sensitive to 

the size of spare cache. This is because the associativity of 
primary cache can already be able to reduce the misses 
caused by faulty block access. If misses caused by faulty 
block access is lower, the contention in the spare cache will 
be lower, therefore, a very small number (2 or 4-block) 
spare cache size is enough to tolerate FFB of less than 15%. 

• The MR is higher for smaller associative cache for a lower 
value of FFB, then quickly drops below the MR of higher 
associative primary cache when FFB increases further. The 
reason is that there are more misses caused by fault in 
smaller associativity cache than larger associativity cache, 
while the quick drop occurs when the contention in the 
spare cache causes more replacement in spare cache. 

 
Figure 10. Miss Recovery Rate 

 
3.1.3 PADded Cache 
 

In [9], PADded caches are simulated extensively on the 
range of …… % to 100% to emphasize the effectiveness of 
PADded cache in case of large FFB. Although PADded cache 
has this nice property, we believe that considering more than 
15% of FFB would be impractical. Figure 11 plots miss rate 
versus FFB for Direct-mapped cache from 0% to 15% of FFB. 
Cache block disabling is added to compare the effectiveness. 
As shown in Figure 11, PADded caches show very low and 
flat miss rate for one level of PAD is used,. However, there is 
no significant change of miss rate after level two, which 
implies employing more than two levels could be extravagant 
for small range of FFB. Therefore, we have used only level 
two PADded caches to evaluate PADded caches, although 
other levels have been simulated to verify our result.  

From observation on Figure 11, it seems that PADded 
caches successfully dissolve spare blocks in themselves as 
they are supposed. However, there is another point. Inserting 
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spare blocks into caches cause the change of locality in the 
caches. For example, there is a 2-way associative PADded 
cache. It has a faulty block, block A, so that the references to 
block A are redirected to an adjacent healthy block B. Then, it 
is hard to exploit the spatial locality of the set which contains 
block b. As expected, this phenomenon can be reduced by 
different ordering of address bits in the PAD. The simulation 
results confirm that reverse order indexed PADs have better 
performance than normal ordered PADs. Thus, the result 
presented in this report is based on reverse-ordered index 
PAD. 

To assess the effectiveness of PADded caches, we also 
simulated 2-way and 4-way associated caches. Figure 12 
depicts the variation of MR with FFB for both 2-way and 4-
way associated caches. In Figure 12, PADded caches seems 
that it takes full advantage of associative caches. Figure 13 
shows MR vs. FFB for three different schemes. The results 
shows that the PADded cache has less effectiveness when it is 
used for set-associative cache as opposed to direct mapped 
cacahe.., MR decreases as associativity increases. The conflict 
of these two figures comes from another locality issue. 
Suppose there are two sets of cache block: A and B. Set A has 
a faulty block and its references are re-mapped to set B. Even 
though set B is far away from set A in address space, this 
redirection impedes set B to exploit the temporal locality. 
Increasing associativity gives PADded caches more chances to 
break the temporal locality. As a result, PADded caches do not 
take full advantage of associative cache, which indicates that 
the performance improvement (see Figure 12) is due to mainly 
because of primary cache’s associativity. PADded caches have 
the less portion of contribution to improved performance for 
the higher associativity. In an extreme case of fully associated 
cache, PADded caches have obviously no effect.  

For direct-mapped caches, MR stays close to 1 for the 
entire range of FFB, indicating that PADs recovers all most all 
of misses due to faulty cache blocks. Since there is no other 
redundancy to accommodate the misses, if some of them are 
recovered, it must be done by PADs. For associative caches, 
MR decreases as FFB increases. For low FFB, associativity 
contributes more than PADs. However, as FFB increases, 
PADs start to surpass associativity since PADs have more 
candidates for faulty blocks than associativity. This result 
seems not in accordance with that of spare caches. 
Nonetheless, it is quite in accord. The number of spare blocks 
is very small compared to  the number of total cache blocks. 
Opposite to spare, PADs have huge amount of spare blocks up 
to 50% of the total number of cache blocks depend on PAD 
level. That is, the capacity of PADs is much larger than that of 
the spare the cache method. The following is the summary of 
the simulation results of the PADded caches: 
• Two-level is enough for PADded caches from a practical 

view point. For small percentage of faults, small number of 
levels is actually utilized. Therefore, surplus PAD level is 
not desirable; high level of PADs is expensive. 

• The order of inputs to PADs is important to its performance. 
which affects the spatial locality of caches. 

PADded caches contribute to the performance of direct-
mapped caches more than that of associativity caches. Since 
PADs influence the temporal locality of caches, high 

associativity caches suffer from second conflict miss due to 
PADs. 

 
Figure 11. Miss Rates for Different PADded Levels 

 

 
Figure 12. Miss Rates for Different Associativities 

 

 
Figure 13. MRs for Different Associativities 

 
3.2 Comparisons 
 

In this sub-section we will compare individually 
reexamined schemes together in terms of their characteristics, 
advantages, effectiveness and hardware overhead.  

We compare the simulation results of the cache line 
disabling, 2-level PADded cache, and 4-block spare cache for 
each of direct-mapped and 4-way set associative caches. Since 
2-level PADded cache showed close result to its ideal case 
(i.e. full-level PAD) and there was no significant difference 
between 4-block and 8-block spare cache, these two 
configurations of each scheme would be good candidates for 
the comparison. Direct-mapped and 4-way set associative 
cache is chosen to clearly compare the characteristics of each 
scheme when they are applied to the primary cache with 
different associativities.  
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Figure 14. Comparison of Disabling, Spare Cache, and 

4-way Set Associative Cache 
 

In Figure 14, miss rate for each configuration is compared 
for varying FFB. First of all, we can easily observe that all the 
techniques with direct-mapped primary cache has higher miss 
rate than those with 4-way set associative cache. Even cache 
block disabling method has better performance than the best 
case of direct-mapped primary cache. Thus, one might 
conclude that using higher set associativity cache would be the 
best solution when the hardware cost is the main issue. 
However, if the latency of cache is the primary consideration, 
there is situation where directmapped cache is preferred [3] as 
well as fault tolerant features. In this case, PADded cache 
seems to be the best solution since the miss rate of 2-level 
PADded cache has much less degradation for more than 10% 
of FFB in Figure 14. Furthermore, the hardware cost for 
PADded cache can be minimized when it is applied for direct-
mapped cache. On the other hand, the spare cache scheme can 
achieve the minimum degradation with 4-way set associative 
cache. Although there is a slight difference between the 2-
level PADded cache and the 4-block spare cache, PADded 
cache may not be a good solution for 4-way set associative 
cache since PADded cache will require 4 separate decoders for 
each ways of set-associative primary cache. 
 

 Cache Line 
Disabling 

Spare 
Cache 

Padded Cache 

Suitable 
Primary 
Cache 

Large 
associative 

cache 

Any Direct mapped or 2 
way set associative 

cache 
Hardware 
Overhead 

Lowest 
 

High Low for Direct-mapped 
Higher for set 

associative cache 
Table 1. Comparison on Three Different Fault Tolerant Cache 

Techniques 
 
 

4. CONCLUSION 
 

As VLSI technology and performance of micro-processor 
advances, on-chip cache memory becomes essential and 
continues to grow in size. This trend results more chance of 
defect in cache area. Consequently, many fault tolerance 
scheme had been presented in literature.  

In this paper, we present the results of extensive 
simulation study to investigate and compare three different 
fault tolerant cache schemes. Our simulation results for 
individual technique expose their characteristics and indicate 
ways to achieve low degradation in system performance. In 
addition, the result demonstrates that each of fault tolerant 
techniques has its own advantages and there is no one scheme 
which is better than the other in all the situations considered as 
shown in Table 1. However, more thorough investigation on 
hardware cost of each technique should be done to obtain 
more precise comparison.  
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