

Re-evaluation of Fault Tolerant Cache Schemes

Huan-yu Tu and Sarah Tasneem
Eastern Connecticut State University

Willimantic, CT 06226
{tuh, tasneems}@easternct.edu

ABSTRACT – In general, fault tolerant cache schemes can be
classified into 3 different categories, namely, cache line
disabling, replacement with spare block, and decoder
reconfiguration without spare blocks. This paper re-examines
each of those fault tolerant techniques with a fixed typical size
and organization of L1 cache, through extended simulation
using SPEC2000 benchmark on individual techniques. The
design and characteristics of each technique are summarized
with a view to evaluate the scheme. We then present our
simulation results and comparative study of the three different
methods.

Keywords: fault tolerant, cache, disabling, spare, PADded

1. INTRODUCTION

High-performance VLSI processors results increasing

demand of memory bandwidth which the memory technology
never be able to satisfy [2]. Thus, extensive use of on-chip
cache memories became essential to sustain memory
bandwidth demand of the CPU. Meanwhile, advances in
semiconductor technology and continuous down scaling of
feature size creates extra-space for additional functionality on
a single chip. The most popular way to make use of this extra-
space is integrating bigger size of cache so that a
microprocessor is able to gain higher performance. We can
observe that the area occupied by cache in current processor
already exceeded 50% of total area of CPU die. However, an
increase in the circuit density is closely coupled with an
increase in probability of defect. Furthermore, the increased
defects can mostly be in the on-chip cache area since the area
occupied by cache grows larger and larger. Consequently, the
defect level of the cache has a significant impact on the defect
level of overall CPU. Therefore, the first fault tolerant cache
design was proposed in [10] for the purpose of enhancement
in yield of micro-processors.

To design fault tolerant cache, we first need to observe
that cache is a redundant structure which is employed to
enhance the performance of CPU. Thus, the CPU can work
correctly without cache-memory. Among many components in
microprocessor, redundant structures, such as cache is called
non-critical component and defects in that structure is called
non-critical defects [10]. The non-critical defects can be easily
tolerated by simply disabling non-critical component which
contains defect. Thus, disabling defective part of caches were
investigated in [7] [10] [8]. However, simply disabling the
defective part of cache will result degradation of overall
performance of CPU. Thus, use of redundancy to tolerate
defect in cache memory is studied in the literature. The

redundancy techniques that are used for RAM can easily
applied to cache. Using a SEC-DED code [12] codes can mask
out defective bits in cache as well as main memory. However,
a detailed investigation in [10] showed that employing SEC-
DED code for on-chip cache is not appropriate due to the
delay introduced by SEC-DED hardware. Using redundancy
and reconfiguration logic is another method to tolerate faults
in cache by providing spare cache blocks [4] [13]. The
defective block is switched to spare block by reconfiguration
mechanism. The reconfiguration can be done either electrical
or laser fuses to permanently replace defective blocks [4]. In
[13], instead of permanent replacement, they employed small
fully associative cache to dynamically replace the faulty block.

Yet another technique which called PADded cache [9] is
presented recently. This new technique can sooth the
degradation of cache performance without spare cache block.
Instead of using explicit spare blocks, the physical or logical
neighborhood blocks play a role of spare block.

In this paper, we re-examine and compare three different
fault tolerant schemes, namely, cache line disabling [10] [8]
[7], spare cache [13], and PADded cache [9]. In section 2, a
brief overview of the organizations of the different schemes as
well as summary of previous results are presented. In section
3, we re-evaluate each technique with realistic, unbiased setup
for fair comparison. Also, the results of our comparisons of
the schemes are reported.

2. FAULT TOLERANT CACHES

2.1 Cache Block Disabling

Although disabling the faulty cache will not affect the
correct operation of CPU, disabling the entire cache will
significantly degrade computer performance. Thus, one may
consider disabling some portion of cache [7]. Also, purging
the entire way is wasteful since all the other fault free blocks
in the same unit cannot be utilized. Therefore, one solution is
to disable faulty byte or word in data array to maximize the
utilization of fault free bits. However, most cache
implementation fetches data from the main memory by the
size of multiple words, instead of by a byte or a word, which is
usually the same as block size of cache. Hence, disabling a
single block containing fault/defect was investigated in [10]
[8], where a single bit is used to indicate the presence of fault
in a block. This indicator bit is called the availability bit [10],
the purge bit, or the second valid bit [8]. In the present paper,
we will call this indicator bit as faulty-bit.

The faulty blocks can be identified either by a)
manufacturing test to enhance the yield of micro-processors

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

[8] [10] or b) error detection code to tolerate permanent fault
occurred even during normal operation [6] [12]. The faulty-bit
of a faulty block will be set once the block is identified as
faulty. When access to the certain address of cache occurs, the
cache control logic makes use of the faulty-bit by treating the
access as a miss and also excludes the block from cache
replacement algorithm. Figure 1 illustrates simplified block
diagram of this scheme. The effect of disabling faulty block is
first presented in [10] and mathematically extended in [8].

Figure 1. Cache Line Disabling with Faulty Bit

According to their result and analysis, the associativity of

cache has big impact on the performance degradation incurred
by disabling defective block. In case of direct mapped cache,
all the memory blocks that are mapped onto defective block
will be excluded from the cache. Thus, one can expect the
linear degradation of performance on fraction of faulty block.
On the other hand, set associative cache has less degradation
ratio to the fraction of faulty block. Suppose M-way set
associative cache. If one block among M-way in a same set is
defective, the remaining (M-1) healthy blocks are still able to
accommodate the corresponding memory blocks that are
mapped onto the set. However, the replacement rate on a
faulty set will increase due to higher probability of conflict
miss by decreased number of ways in that set. A fully
associative cache always allows every memory block to be
cached in every cache blocks. Therefore, the degradation of
cache performance would solely depend on the probability of
conflict miss. To overcome this, the idea of using small fully
associative spare cache has been evolved which is described in
the next sub-section.

2.2 Replacement Using Small Spare Cache

To recover the performance loss due to disabling faulty
blocks, a replacement scheme called the Memory Reliability
Enhancement Peripheral (MREP) is discussed in [4]. The
main idea is to provide extra words which can replace any
faulty words in memory. A similar method is proposed in [13]
in which while MREP replaces a faulty block with the a spare
which is dedicated for the specific faulty block, it uses small
fully associative cache as a spare for the faulty blocks of direct
mapped primary cache. Since any blocks in fully associative
spare cache can store data of all possible indexes that is used
for its primary cache, it can temporary replace more faulty
blocks than the number of spare blocks in spare cache.

The organization of spare cache scheme is illustrated in
Figure 2 and the use of spare cache for direct-mapped cache
and its performance recovery are extensively studied in [13].

In order to limit our scope of study on various fault-tolerant
cache schemes, it is worth to make some observation from
their study. First, they defined a matrix called MR (Miss-
recovery Rate) to measure the effectiveness of spare cache
which is equal to:

)1(%100×=
faultsbycausedMisses

cachesparebyremovedMissesMR

Based on MR, their study on spare cache can be
summarized as follows:

1. MR decreases as number of faulty block increases.
2. For a constant block size and number of faulty blocks,

MR decreases as total cache size decreases.
3. Block size of 16 or 32 maximizes MR.
4. One or two blocks are sufficient for a small number of

faulty blocks.

Figure 2. Block Diagram of a Fully Associative Spare Cache

It is obvious to see that the first and second results are due
to the increased conflict miss in spare cache. As the number
of faulty block increases, more blocks will contend to occupy
limited number of blocks in spare cache resulting more
conflict misses in spare cache. Also, as the size of the primary
cache decreases, the number of addresses which is mapped
onto faulty block will increase and eventually will increase the
conflict miss in spare cache. The third observation is more
complicated. For the block size of less than 16, MR increases
as the cache’s block size increases because the misses caused
by fault is greater for caches with larger block size and thus
the spare caches with same block size will cover those misses.
However, if block size becomes too big, the addressable space
in primary cache will decrease and results into more conflict
misses in spare cache. The fourth observation is related to the
temporal locality [2] on the access to the faulty blocks in
primary cache. Due to the presence of temporal locality, the
number of spare blocks does not have to be proportional to the
number of faulty blocks in primary cache to achieve
reasonable MR. Based on the above observations, we re-
examined the use of the spare cache scheme from various
aspects. First, we investigate the effectiveness of spare cache
for bigger size of primary cache and spare cache, since
previous simulation results and conclusion are outdated,
regarding the size of caches. It might require more than one or
two spare blocks to achieve reasonable MR. Moreover, we
examine the effectiveness of spare cache on set-associative
cache. This is valuable to study because most of today’s

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

micro-processors employ set associative cache to increase hit
rate. Furthermore, since cache line disabling on set associative
cache already has acceptable degradation for fault tolerance
with a very little hardware overhead, it is worthy to investigate
the effectiveness of spare cache with set-associative primary
cache. The new simulation results and analysis on extended
study is presented in next section.

2.3 Programmable Decoder (PADded Cache)

As mentioned before, caches have an intrinsic redundancy
since the purpose of caches is to improve performance; it
should not be relative to the preciseness of operation. Many
architectures can work without any cache at the cost of
degraded performance. Therefore, adding extra redundancy,
using spare blocks, could be inefficient. There is a
phenomenon to cut this second redundancy. Because of the
spatial and temporal locality of memory references not all of
the sets in a cache are hot at the same time. Thus, there must
be some cache sets which can substitute the spare blocks. A
special Programmable Address Decoder (PAD) [8] is
introduced to exploit this nature.

Figure 3. 1-level Programmable Address Decoder (PAD)

When a memory reference happens, a decoder maps it to

the appropriate block. A PAD is a decoder which has
programmable mapping function for the fault tolerance. Once
a faulty block is identified, a PAD automatically redirects
access to that block to a healthy block in the same primary
cache. For example, let’s consider a PADded cache, which is
equipped with PAD. If PADded cache has n cache blocks and
one of the blocks is faulty, the cache will work as if it has n-1
cache blocks. PAD re-configures the mapping function so that
a healthy block acts as a spare block. The method to find
suitable defect-free block is predefined and implemented in
hardware. Figure 3 shows one implementation of PAD where
S0 = f’0 · a’0 + f1 and S1 = f’1 · a0 + f0 (a0 is the least
significant bit of the index). In the case of where block 0 is
faulty, S0 will be always on. That is, index for both block 1
and block 0 will be directed to block 1. However, during the
remapping process, one bit of index information will be lost.
Therefore, an extra tag bit (shaded boxed in Figure 3) is
required to determine whether the contents in block 1 is its
own or not. Otherwise, bogus hits can be generated in block 1.
For instance, suppose that memory address 000 is originally
mapped to block 0 but redirected to block 1 because block 0 is
faulty. If after the reference to block 0, memory address 001 is
given, it will be a hit even though the contents come from
memory address 000. More details about multiple-level PADs

can be found in [8] and Figure 4 illustrates how the PADs
work. The Shaded block in Set 1 substitutes the faulty block in
Set 0. The shared block belongs to both of Set 0 and Set 1; the
faulty block does not belong to any set. That is, Set 0 and Set 1
have three their own blocks and they share one block.

Figure 4. 4-way Associative Cache Employing PAD

To evaluate PADded caches, they compared this

technique with the cache block disabling method for several
configurations: cache size (2, 4, 8, 16 and 32KB), block size
(8, 16, 32 bytes) and associativity (1, 2 and 4). Many sets of
traces were used: ATUM traces, traces from SPEC92 and
SPEC95, and the IBS traces. All PADs were assumed that they
are programmable for all levels and reverse ordered. The
results of their simulation showed that the miss rate of
PADded caches stay relatively flat and increase slowly
towards the end. Simulations of caches with different sizes
show that when half of the blocks are faulty, the miss rate of a
PADded cache is almost the same as a healthy cache of half
the size. The authors claimed that the full capacity of healthy
blocks is utilized and the performance decreases with almost
minimum possible degradation. Hardware overhead of
PADded cache is also estimated to be 11%, in terms of area
[9]. According to their calculation, PADs cost 3%, extra tag
bits cost 7%, and the remaining 1% is due to faulty bits.

3. RE-EVALUATION AND COMPARISONS

In this section, we first discuss our simulation set up to
reevaluate above surveyed techniques and present the results.
Results are divided into two sub-sections. Each fault tolerant
schemes are re-evaluated separately and their results are given
in section 3.1 and the comparisons of different schemes are
presented in sub-section 3.2.

We modified the SimpleScalar [2] execution-driven
architecture simulator to simulate each technique. Five
benchmark programs (i.e. bzip2, gcc, mcf, vortex, and parser)
from SPEC2000 benchmark suite were simulated. For each
benchmark, 5 million instructions were simulated (total 25
million). Moreover, caches were flushed on every system calls
to mimic realistic operating system environment.

We total cache size and block size was fixed to 32KB and
16 byte, respectively, which is a reasonable configuration for
most L1 cache of modern days. Although the total size of
cache and the size of block can affect the performance of each
technique, the manageable amount of result should be used to
focus on the comparison of each technique. However, we
varied associativity (1, 2 and 4) since the performance of
surveyed techniques were significantly sensitive to the
associativity. All simulated caches used write-back, allocate-
on-write-miss, and LRU replacement algorithm. No pre-
fetching or sub-blocking was used. Also, unified

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

instruction/data cache was used since simulation on separated
caches showed no significant difference with unified caches’
results.

The random spot defect model [11] was assumed to inject
permanent faults in random locations in the cache. We assume
that power up BIST identifies faulty block with 100%
coverage. The fraction of faulty block (hereafter called FFB)
was set to range from 0% to 100% for all simulations. The
FFB lower than 15% was examined more closely for realistic
evaluations.

Miss rate is used, to measure effectiveness of individual
techniques. The MR (miss recovery rate, equation 1) is used
to compare relative performance of spare-cache and PADded
cache to cache block disabling method.

3.1 Re-evaluations

3.1.1 Cache Line Disabling

Cache line disabling is examined first since it is the most
primitive way of tolerating fault in cache and will be used as
the basis of comparing effectiveness of other techniques. In
addition to direct mapped, a 2-way and 4-way set associative
cache, and a fully associative cache is also simulated to get the
lower bound of degradation for cache block disabling. Total
size of cache and block size is fixed to 32KB and 16 bytes,
respectively.

Figure 5 depicts the cache miss ratio versus FFB. For the
direct mapped cache organization, the miss ratio increases
almost linearly with FFB. Each block in direct mapped cache
is mapped to its congruent memory blocks. In other words, a
specific address can be mapped to no more than one block.
Thus, the memory blocks those are mapped to disabled block
can not be cached. All the references to these blocks will be
missed in cache, resulting linear degradation.

On the other hand, disabling faulty blocks in fully
associative cache shows 0.07 increase only, even with 90% of
faulty blocks. As discussed in previous section, blocks in fully
associative cache can accommodate every possible memory
blocks and the miss rate depends only on the increased
replacement rate. Two-way and four-way set associative cache
showed their degradation somewhere in between direct
mapped cache and fully associative cache.

Our result shows that the fully associative cache can be
the best solution for cache line disabling. However, the
implementation of fully associative cache is prohibitively
large and impractical. Although there is a large probability for
cache to be faulty, we believe that considering more than 15%
of FFB is impractical. Thus, we closely re-examined the
degradation of each cache with FFB lower than 15% and the
results are plotted in Figure 6. While the relative degradation
between 2- or 4-way set associative cache and fully
associative cache is significant for large number of faulty
blocks, there was only up to 0.01 difference in miss rate
between 4-way and fully associative cache when FFB is less
than 15%. Furthermore, there was only up to 0.015 miss rate
difference between 2-way associative cache and fully
associative cache with FFS less then 15%.

In summary, the cache block disabling can be more
effective when the associativity of cache is larger. However,

for reasonable value of FFB and feasibility, 2- or 4-way set
associativity is sufficient to get the advantage of associative
organization of cache. The results presented for cache block
disabling will be used in subsequent subsections as the basis
for comparing effectiveness of other schemes.

Figure 5. Miss Rate of Cache Line Deletion (32KB)

Figure 6. Miss Rate of Cache Line Deletion (32KB)

3.1.2 Spare Cache

Extensive simulation on spare cache for the direct
mapped primary cache is done in [13] and their results are
summarized in previous section. However, the simulation set
up is obsolete since the simulated cache size was too small
(less than 16KB) and the effectiveness of spare cache in the
conjunction with set associative primary cache is not
considered. Thus, we extended our simulation for larger cache
size (32KB). Moreover, a 2- and 4-way set associative primary
cache as well as a direct mapped cache was simulated. First,
the effects of varying the spare cache size for three different
primary caches are considered. Figures 7, 8, and 9 plots miss
rate versus FFB for Direct-mapped, 2- and 4-way set
associative cache, respectively. For each of the cases a 2, 4,
and 8-block sized spare cache was considered. In those
figures, DM, 2W, 4W denotes direct-mapped cache, 2-way set
associative, and 4-way set associative cache, respectively, “-
Del” means cache line disabling or deletion, and “-xS” denotes
spare cache of x blocks.

For the entire primary cache configuration, the sensitivity
to the size of spare cache is noticeable. The direct mapped
cache is more sensitive to spare cache size as opposed to both

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

a 2- and 4-way set associative caches. While there is more
than 0.05 miss rate difference between 2-block spare and 8-
block spare with direct-mapped primary cache at 15% of FFB,
2-way and 4-way set associative caches showed less than
0.005 miss rate difference between 2-block and 8-block spare
cache. Especially, the number of blocks in spare cache showed
negligible miss rate difference for the 4-way set associative
cache.

Figure 7. Spare Cache with Direct-Mapped Cache

Figure 8. Spare Cache with 2-Way Set Associative Cache

Figure 9. Spare Cache with 4-Way Set Associative Cache

In case of direct-mapped cache, we notice that employing

spare cache improves the miss rate significantly as compared
to set associative caches. While the miss rate of cache line
deletion already exceeds 0.08 with only 5% of FFB, spare
cache suppress the miss rate under 0.08 for the FFB of up to
14%. Similar but less improvement over cache line disabling
can be observed in 2-way set associative cache. On the other
hand, there was no significant miss rate improvement (less
than 1% difference of miss rate) for FFB below15% in 4-way
set associative cache. This is because the degradation due to
cache line disabling on set-associative cache is already small
compared to that of direct-mapped cache. This result brings up

new question: Is spare cache effective only for a direct
mapped or a small associativity cache? To answer this
question, we need to compare MR (Miss-recovery Rate) for
each of the primary cache organizations. Figure 10 compares
the MR for three different primary cache organizations for a
fixed spare cache size of 4 blocks. The size of spare cache is
fixed to solely compare the effectiveness of employed spare
cache on primary caches with different associativity. For small
FFB, the misses recovered by 4-block spare cache is higher
for lower associativity. However, the MR for direct mapped
cache quickly drops when FFB exceeds 8% resulting less MR
as compared to 4-way associative caches. The similar drop of
MR for 2-way set associative was also observed.

The following observation can be made from our results:
• Primary cache with larger associativity is less sensitive to

the size of spare cache. This is because the associativity of
primary cache can already be able to reduce the misses
caused by faulty block access. If misses caused by faulty
block access is lower, the contention in the spare cache will
be lower, therefore, a very small number (2 or 4-block)
spare cache size is enough to tolerate FFB of less than 15%.

• The MR is higher for smaller associative cache for a lower
value of FFB, then quickly drops below the MR of higher
associative primary cache when FFB increases further. The
reason is that there are more misses caused by fault in
smaller associativity cache than larger associativity cache,
while the quick drop occurs when the contention in the
spare cache causes more replacement in spare cache.

Figure 10. Miss Recovery Rate

3.1.3 PADded Cache

In [9], PADded caches are simulated extensively on the
range of …… % to 100% to emphasize the effectiveness of
PADded cache in case of large FFB. Although PADded cache
has this nice property, we believe that considering more than
15% of FFB would be impractical. Figure 11 plots miss rate
versus FFB for Direct-mapped cache from 0% to 15% of FFB.
Cache block disabling is added to compare the effectiveness.
As shown in Figure 11, PADded caches show very low and
flat miss rate for one level of PAD is used,. However, there is
no significant change of miss rate after level two, which
implies employing more than two levels could be extravagant
for small range of FFB. Therefore, we have used only level
two PADded caches to evaluate PADded caches, although
other levels have been simulated to verify our result.

From observation on Figure 11, it seems that PADded
caches successfully dissolve spare blocks in themselves as
they are supposed. However, there is another point. Inserting

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

spare blocks into caches cause the change of locality in the
caches. For example, there is a 2-way associative PADded
cache. It has a faulty block, block A, so that the references to
block A are redirected to an adjacent healthy block B. Then, it
is hard to exploit the spatial locality of the set which contains
block b. As expected, this phenomenon can be reduced by
different ordering of address bits in the PAD. The simulation
results confirm that reverse order indexed PADs have better
performance than normal ordered PADs. Thus, the result
presented in this report is based on reverse-ordered index
PAD.

To assess the effectiveness of PADded caches, we also
simulated 2-way and 4-way associated caches. Figure 12
depicts the variation of MR with FFB for both 2-way and 4-
way associated caches. In Figure 12, PADded caches seems
that it takes full advantage of associative caches. Figure 13
shows MR vs. FFB for three different schemes. The results
shows that the PADded cache has less effectiveness when it is
used for set-associative cache as opposed to direct mapped
cacahe.., MR decreases as associativity increases. The conflict
of these two figures comes from another locality issue.
Suppose there are two sets of cache block: A and B. Set A has
a faulty block and its references are re-mapped to set B. Even
though set B is far away from set A in address space, this
redirection impedes set B to exploit the temporal locality.
Increasing associativity gives PADded caches more chances to
break the temporal locality. As a result, PADded caches do not
take full advantage of associative cache, which indicates that
the performance improvement (see Figure 12) is due to mainly
because of primary cache’s associativity. PADded caches have
the less portion of contribution to improved performance for
the higher associativity. In an extreme case of fully associated
cache, PADded caches have obviously no effect.

For direct-mapped caches, MR stays close to 1 for the
entire range of FFB, indicating that PADs recovers all most all
of misses due to faulty cache blocks. Since there is no other
redundancy to accommodate the misses, if some of them are
recovered, it must be done by PADs. For associative caches,
MR decreases as FFB increases. For low FFB, associativity
contributes more than PADs. However, as FFB increases,
PADs start to surpass associativity since PADs have more
candidates for faulty blocks than associativity. This result
seems not in accordance with that of spare caches.
Nonetheless, it is quite in accord. The number of spare blocks
is very small compared to the number of total cache blocks.
Opposite to spare, PADs have huge amount of spare blocks up
to 50% of the total number of cache blocks depend on PAD
level. That is, the capacity of PADs is much larger than that of
the spare the cache method. The following is the summary of
the simulation results of the PADded caches:
• Two-level is enough for PADded caches from a practical

view point. For small percentage of faults, small number of
levels is actually utilized. Therefore, surplus PAD level is
not desirable; high level of PADs is expensive.

• The order of inputs to PADs is important to its performance.
which affects the spatial locality of caches.

PADded caches contribute to the performance of direct-
mapped caches more than that of associativity caches. Since
PADs influence the temporal locality of caches, high

associativity caches suffer from second conflict miss due to
PADs.

Figure 11. Miss Rates for Different PADded Levels

Figure 12. Miss Rates for Different Associativities

Figure 13. MRs for Different Associativities

3.2 Comparisons

In this sub-section we will compare individually
reexamined schemes together in terms of their characteristics,
advantages, effectiveness and hardware overhead.

We compare the simulation results of the cache line
disabling, 2-level PADded cache, and 4-block spare cache for
each of direct-mapped and 4-way set associative caches. Since
2-level PADded cache showed close result to its ideal case
(i.e. full-level PAD) and there was no significant difference
between 4-block and 8-block spare cache, these two
configurations of each scheme would be good candidates for
the comparison. Direct-mapped and 4-way set associative
cache is chosen to clearly compare the characteristics of each
scheme when they are applied to the primary cache with
different associativities.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Figure 14. Comparison of Disabling, Spare Cache, and

4-way Set Associative Cache

In Figure 14, miss rate for each configuration is compared
for varying FFB. First of all, we can easily observe that all the
techniques with direct-mapped primary cache has higher miss
rate than those with 4-way set associative cache. Even cache
block disabling method has better performance than the best
case of direct-mapped primary cache. Thus, one might
conclude that using higher set associativity cache would be the
best solution when the hardware cost is the main issue.
However, if the latency of cache is the primary consideration,
there is situation where directmapped cache is preferred [3] as
well as fault tolerant features. In this case, PADded cache
seems to be the best solution since the miss rate of 2-level
PADded cache has much less degradation for more than 10%
of FFB in Figure 14. Furthermore, the hardware cost for
PADded cache can be minimized when it is applied for direct-
mapped cache. On the other hand, the spare cache scheme can
achieve the minimum degradation with 4-way set associative
cache. Although there is a slight difference between the 2-
level PADded cache and the 4-block spare cache, PADded
cache may not be a good solution for 4-way set associative
cache since PADded cache will require 4 separate decoders for
each ways of set-associative primary cache.

 Cache Line
Disabling

Spare
Cache

Padded Cache

Suitable
Primary
Cache

Large
associative

cache

Any Direct mapped or 2
way set associative

cache
Hardware
Overhead

Lowest

High Low for Direct-mapped
Higher for set

associative cache
Table 1. Comparison on Three Different Fault Tolerant Cache

Techniques

4. CONCLUSION

As VLSI technology and performance of micro-processor
advances, on-chip cache memory becomes essential and
continues to grow in size. This trend results more chance of
defect in cache area. Consequently, many fault tolerance
scheme had been presented in literature.

In this paper, we present the results of extensive
simulation study to investigate and compare three different
fault tolerant cache schemes. Our simulation results for
individual technique expose their characteristics and indicate
ways to achieve low degradation in system performance. In
addition, the result demonstrates that each of fault tolerant
techniques has its own advantages and there is no one scheme
which is better than the other in all the situations considered as
shown in Table 1. However, more thorough investigation on
hardware cost of each technique should be done to obtain
more precise comparison.

REFERENCE

[1] Austin, T.M., “The SimpleScalar Architectural Research
Tool Set”, fttp://www.cs.wisc.edu/~mscalar/simplescalar. html,
Rel. 2, Jan. 1998.
[2] Hennessy, J.L., and D.A. Patterson. Computer Architecture.
A Quantitative Approach, 2nd edition, Morgan Kaufmann
Pub., Inc., San Mateo, CA, 1996.
[3] Hill M.D. “A Case for Direct-Mapped Caches”, IEEE
Micro, pp 25-40. December 1988.
[4] Lucente, M.A., C.H. Harris and R.M. Muir, “Memory
System Reliability Improvement Through Associative Cache
Redundancy,” Proc. IEEE Custom Integrated Circuits Conf.,
pp. 19.6.1-19.6.4, May 1990.
[5] Nikolos, D. and H.T. Vergos, “On the Yield of VLSI
Processors with On-Chip CPU Cache,” Proc. 2nd European
Dependable Computing Conference, pp.214-229, Oct. 1996.
[6] O’Leary, B.J., A.J. Sutton, “Dynamic Cache Line Delete,”
IBM Tech. Disclosure Bull., Vol. 32, No. 6A, pp. 439, Nov.
1989.
[7] Ooi, Y., M. Kashimura, H. Takeuchi, and E. Kawamura,
“Fault-Tolerant Architecture in a Cache Memory Control
LSI,” IEEE J. of Solid-State Circuits, Vol. 27, No. 4, pp. 507-
514, April 1992.
[8] Pour, A.F. and M.D. Hill, “Performance Implications of
Tolerating Cache Faults,” IEEE Trans. Comp.. Vol. 42, No. 3,
pp. 257-267, March 1993.
[9] Shirvant, P.P., and E.J. McCluskey, “PADded Cache: A
New Fault-Tolerance Technique for Cache Memories,” IEEE
VLSI Test Symp., pp. 440-445, Aprril 1999.
[10] Sohi, G, S., “Cache Memory Organization to Enhance the
Yield of High-Performance VLSI Processors,” IEEE Trans.
Comp., Vol. 38, No. 4, pp. 484-492, April 1989.
[11] Stapper C.H., Armstrong F.M. Saji.K. “Integrated circuit
yield Statistics” Proc. IEEE vol. 71 pp. 453-470, April. 1983.
[12] Turgeon, P.R., A.R. Stell, M.R. Charlebois, “Two
Approaches to Array Fault Tolerance in the IBM Enterprise
System/9000 Type 9121 Processor,” IBM J. Res. Develop.,
Vol. 35, No. 3, pp. 382-389, May 1991.
[13] Vergos, H.T., and D. Nikolos, “Performance Recovery in
Direct-Mapped Faulty Caches via the Use of a Very Small
Fully Associative Spare Cache,” Poc. Int’l Comp.
Performance and Dependability Symp., pp. 326-332, April
1995.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

