
Optimal Shift-Or String Matching Algorithm for Multiple Patterns

Rajesh Prasad, Suneeta Agarwal

ABSTRACT
In this paper, we develop a new algorithm for

handling multiple patterns, which is based on average
optimal shift-or algorithm. We have assumed that the
pattern representation fits into a single computer word
and length of each pattern is equal. We have adopted
the concept of classes of characters for handling
multiple patterns. We compare the performance of the
proposed algorithm with the standard shift-or
algorithm. The experimental results show that our
algorithm is the faster in most of the cases.

KEY WORDS
 String Matching, finite automata, shift-or, multiple
patterns

1. Introduction

 The problem of searching the occurrences of a
pattern P[0...m-1] in the text T[0…n-1] with m≤n,
where the symbols of P and T are drawn from some
alphabet Σ of size σ, is called exact string matching
problem. Numerous efficient algorithms for solving this
problem exist. The first linear time algorithm was given
in (Knuth et al., 1977), and the first sub linear expected
time algorithm in (Boyer and Moore, 1977). In multi-
pattern string matching problem, the set of patterns P1,
P2...Pr, with r>1, each of length m on the same alphabet,
is searched simultaneously in the text T [0…m-1].
We extend well-known average optimal shift-or
algorithm [1] of single pattern to work with multiple
patterns. The average optimal shift-or algorithm is based
on standard shift-or algorithm, which uses bit parallel
approach to simulate the non-deterministic finite
automaton efficiently.
Experimental results show that our algorithm is faster in
the majority of the cases.

Manuscript received April 11, 2007. This work was
partially supported in part by the Ewing Christian
College Society, Allhabad, India-211004
Rajesh Prasad is research scholar at Motilal Nehru
National Institute of Technology - Deemed University,
Allahabad,India,211004,(email:rajesh_ucer@yahoo.co
m)
Suneeta Agarwal is with the Computer Science and
Engineering Department, Motilal Nehru National
Institute of Technology- Deemed University, Allahabad,
211004, India (email: suneeta@mnnit.ac.in).

2. Multiple Patterns

 In multiple pattern string-matching problems, there
are r patterns P1, P2...Pr, r>1, each of length m. The
objective is to search all occurrences of each pattern in a
given text T[0…n-1]. We further assume that m≤n. The
basic idea in handling multiple patterns using concept of
classes of characters [2] is that each text character is
allowed to match to the characters at any position j in
any of the patterns. For example, if we have patterns
Rajesh. and Prasad then we form a super pattern {R, P},
{a, r}, {j, a}, {e, s}, {s, a}, {h, d}. This matches, for
example, the string Raassh, Paaeah etc. in the given
text string. Therefore, this is a filter and potential
matches require further verification.

 3. Shift-Or

 It assumes that a machine word has w bits,
numbered from the least significant bit to the most
significant bit. We use C language-like notation for the
bit wise operations of words; & is bitwise AND, | is bit-
wise OR, ^ is bit-wise XOR, ~ negates all bits, << is
shift to left, and >> shift to right. For brevity, we make
the assumption that m≤w, unless explicitly stated
otherwise.

3.1 Standard Shift-Or

 We discuss the standard shift-or algorithm for single
and multiple patterns

3.1.1 Standard Shift-or for Single Patterns

 The standard shift-Or [6] automaton is constructed
as follows:
The automaton has states 0…m. The state 0 is starting
state and state m is the only accepting state. For i=0...m-
1, there is a transition from state i to state i+1 for
character P [i]. In addition, there is a transition for every
cεΣ from and to the initial state, which makes the
automaton nondeterministic. The preprocessing
algorithm builds a table B, having one bit-mask entry
for each cεΣ . For 0≤ i≤m-1, the mask B[c] has i.th bit set
to 0 if and only if P[i]=c. These correspond to the
transition of implicit automaton, that is, if the ith bit in
B[c] is 0, then there is a transition from the state i to
state i+1 with character c, otherwise there is transition
from state i to previous states (or on itself). It uses a bit
state vector D of length m for the state of the
automaton. The i.th bit of the state vector is set to 0, if

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

and only if it is active. Initially, each bit of D is set to
1(which denotes starting state). For each symbol c of
text T, the vector D is updated by D← (D<<1)|B[c] (A
new state is obtained only when there is a transition
from the current state on the input symbol c, otherwise
it remains in the current state). This simulates all the
possible transitions of the automaton in a single step. If
after the updating of D, the (m-1)th bit of D is zero, then
there is an occurrence of P. If m≤w, then the algorithm
runs in time O (n).

 3.1.2 Standard Shift-or for Multiple Patterns

 The algorithm and example for handling multiple
patterns using standard shift-or algorithm is given below

MULTIPLE_STANDARD_SHIFT_OR (T, n, P [k][m])
 // T is Text; P is pattern containing k number of
patterns //each of equal size m, n is the length of Text, σ
is the //size of alphabet Σ. We assume that m≤n
1 for i←0 to σ-1
2 do for j←0 to k-1
3 do B[j][Σ[i]] ←~0
4 for i←0 to m-1
5 do for j←0 to k-1
6 do B[j][P[j][i]] ←B[j][P[j][i]]&~(1<<i)
7 for i←0 to σ-1
8 do Bit[Σ [i]] ← ~0
9 for i←0 to σ-1
10 do for j←0 to k-1
11 do Bit[Σ[i]] ← Bit[Σ[i]] & B[j][Σ[i]]
12 D←~0, mm←1<<(m-1), i←0
13 while i<n
14 do D← (D<<1) | Bit [T[i]]
15 if (D & mm≠mm)
16 then for j←0 to k-1
17 do verify occurrence of jth pattern at
 shift i-m-1
18 i←i+1

3.2 Average Optimal Shift-Or

 This algorithm is a category of Shift-Or algorithm,
which allows skipping of text characters. This algorithm
takes a parameter q, and from the original pattern,
generates a set P of q new pattern, i.e. P= {P0, P1..., Pq-1}
each of length m’=⎣m/q⎦ as follows:
Pj[i]=P [j +i ×q], j=0,1,2…q-1, i=0,1,2 …⎣m/q⎦-1
In other words, we generate q different alignments of
the original pattern P each alignment containing only qth

character. The total length of the pattern Pj is q×
⎣m/q⎦≤m.
For example, if P=a b c d e f and q=3, then P0=ad,
P1=be and P2=c f. Assume now that P occurs at T
[i…i+m-1]. From the definition of Pj it directly follows
that Pj[h] =T [i +j +h×q], j=i mod q, h=0, 1, 2…m’-1

This means that we can use the set P as a filter for the
pattern P, and that the filter needs only to scan every qth

character of T.
Figure given below illustrates the concepts.
P= a b c d e f
T= x x a b c d e f x x x
P0= a d
P1

 =b e
P2= c f
P’= a d b e c f
Assume that P occurs at text position T[i…i+m-1] and
q=3. The current text position is p=10 and T [p]=b. The
next character the algorithm reads is T [p + q]=T [13]=e
This triggers a match of P p mod q=P1 and the text area T
[p-1…p-1+m-1]= T [i...i+m-1] is verified. The set of
patterns can be searched simultaneously using the shift-
or algorithm, as long as q×m’≤ w. All the patterns are
preprocessed together, as if they were concatenated

4. The Proposed Algorithm

 The proposed algorithm for handling multiple
patterns has been divided into two parts namely
Preprocessing + Matching and Verification part

4.1 Preprocessing +Matching Algorithm
MULTI_AVG_SHIFT_OR (T, P [k][m], q, n)
//T is a text, P is pattern, k is the number of patterns
//each of size m and n is the size of text
1 for i←0 to σ-1 //σ is the size of Σ
2 do for j←0 to k-1
3 do B [j][Σ [i]] ← ~0
4 for l←0 to k-1
5 do mm←0,h←0
6 for j←0 to q-1
7 do for i←0 to (m/q)-1
8 do B [l][P [l][i×q +j]] ←B [l][P[l][i×q +
 j]]&~(1<<h)
9 h←h+1
10 mm←mm|(1<<(h-1))
11 for i←0 to σ-1
12 do Bit [sigma [i]] ← ~0
13 for i←0 to σ-1
14 do for j←0 to k-1
15 do Bit [sigma [i]]& ← B [j][sigma [i]]
16 D←~0, i←0
17 while i<n
18 do D← ((D &~ mm)<<1)|Bit[T[i]]
19 if((D &mm)≠mm)
20 then print(" Pattern may occur and hence
 Verify");
21 VERIFY (T, i, P, q, D, mm)

4.2 Verification Algorithm
VERIFY (T, i, P [k][m], q, D, mm)
1 j←0
2 D← (D & mm) ^mm
3 while D≠0

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

4 do s←log (D)/log (2)
5 c←-(m/q-1)×q-s/(m/q)
6 for l←0 to k
7 do for j←0 to m-1
8 do if (P [l][j]=T [i+ c+ j])
9 then j←j+1
10 else break
11 if (j=m)
12 then flag←1
13 print ("Pattern k+1 occur with shift
 i+c-1)
14 D←D&~ (1<<s)

4.3 The Example

Let T=a b a a b a b, P1=a b a a , P2= a b a b ,q=2
P1’=a a b a, P2’= a a b b
B1[a]=0100 , B1[b]=1011
B2[a]=1100 , B2[b]=0011

B[a]=0100, B[b]=0011 , mm=1010, D=1111 , i=0
Step 1(i=0): D= (1111&0101) <<1|0100
 =1110
Step 2(i=2):D=((1110&0101)<<1)|0100
 =1100
Now D &mm ≠mm, therefore we need to verify
Call Verify (T, 2, 7, P, 4, 2, 1100, 1010)
 Begin D=(1100&1010)^1010=0010
 s=1,c=-2
 Now, P[0…3]=T[0…3]
 Therefore, pattern occur with shift i+c-1= -1
 End
Step 3:(i=4)
D=((1100&0101)<<1)|0011
 =1011
Step 4: (i=6)
D=((1011&0101)<<1)|0011
 =(0001<<1)|0011
 =0011
Now, D&mm=0011&1010=0010 ≠mm, therefore we
need to verify
Call Verify (T, 6, 7, P, 4, 2, 0011, 1010)
Begin
 D=(0011&1010)^1010
 =(0010)^1010=1000
 s=3, c= -(4/2-1)×2-3/2=-3
Now, T[i+c…….i+c+m-1]=P[0….m-1]
 i.e. T[3…6]=P[0…3]
 Therefore, pattern occur with shift i+c-1=6-3-1=2
End

5. Experimental Results

The performance of the proposed algorithm compared
with the performance of the standard shift or algorithm
for multiple patterns. We have analyzed these
algorithms for ASCII character set where s=256. All
algorithms are tested under on Celeron(R) processor,

2.40 GHz and 256 MB RAM. The fig. 5.1, 5.2 and 5.3
shows the comparison of the said algorithms

0

0.5

1

1.5

2

2.5

r=1 r=2 r=3 r=4 r=6 r=7

No. of Patterns(r)

Ti
m

e(
Se

co
nd

)

standard
shift or

average shift
or(q=2)

File Size=2701
Character Long

Fig. 5.1 Comparison between algorithms for multiple
patterns (Each pattern is of length m=3)

0

0.5

1

1.5

2

2.5

3

3.5

r=1 r=2 r=3 r=4 r=6 r=7
No. of Patterns(r)

Ti
m

e(
Se

co
nd

)

standard shift
or
average shift
or(q=2)

File Size=2701
Character Long

Fig. 5.2 Comparison between algorithms for multiple
patterns (Each pattern is of length m=5)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

r=1 r=2 r=3 r=4 r=6 r=7
No. of Patterns(r)

Ti
m

e(
Se

co
nd

)

standard shift
or
average shift
or(q=2)

File Size=2701
Character Long

Fig. 5.3 Comparison between algorithms for multiple
patterns (Each pattern is of length m=7)

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

0

0.2

0.4

0.6

0.8

1

1.2

m
=2

m
=3

m
=5

m
=7

m
=9

m
=1

1

m
=1

3
Pattern Length(m)

Ti
m

e(
S

ec
on

d)

standard shift-
or

average
optimal shift
or(q=2)

File Size= 6459
Character Long

Fig. 5.4 Comparison between algorithms for single
pattern

6. Conclusions:

We have implemented the average optimal shift-or and
standard shift-or algorithm for various values of r
(number of patterns) keeping m (pattern length) fixed.
Fig. 5.1, 5.2 and 5.3 shows that average optimal shift-or
give better performance when compared with standard
shift-or algorithm. We implemented the same algorithm
of single pattern for multiple patterns and compared
with same algorithm of multiple patterns and found that
algorithm of multiple pattern takes less time/space than
algorithm of single patterns. Our approach reduces the
processing time and the space requirement of the
standard shift-or algorithm for any types of alphabet

References:

[1] Kimmo Fredriksson, Szymon Grabowski, “Practical
 and optimal String Matching” In Proceedings of
 SPIRE.2005, Lecture Notes in Computer Science
 3772, Springer Verlag, Berlin, 2005 ,pp. 374-385
[2] Kimmo Fredrifsson, Jorma Tarhio “Efficient String
 Matching in Huffman Compressed Texts” In
 Fundamenta Informaticae 63(1), 2004, pp. 1-16
[3] Kimmo Fredriksson “Shift or String Matching with
 Super Alphabet” In Information Processing Letters
 87(4), 2003, pp. 201-204
[4] Kimmo Fredriksson “Faster String Matching with
 super alphabets” In Proceedings of SPIRE.2002,
 Lecture Notes in Computer Science 2476, Springer
 Verlag, Berlin, 2002, pp. 44-57
[5] Jeri Kytojoki, Leena Salmela, Jorma Tarhio “Tuning
 String matching for Huge Pattern set” In proceeding
 of Combinatorial Pattern Matching (CPM), Lecture
 Notes in computer Science, 2676, Springer, 2003,
 pp. 211-224
[6] R.Baeza-Yates, G.H.Gonnet “A New Approach to
 text Searching, Communication of the ACM 20
 (10),1992 ,pp.762-772.
[7] A.V. Aho, M.J. Corasick “Efficient string matching
 An aid to bibliographic search” Communication of
 ACM 18(6), 1975, pp.333-340

[8] Leena Salmela, Jorma Tarhio, Jari Kytojoki “Multi-
 Pattern String matching with q-Grams” ACM
 Journal of Experimental Algorithmics, to be
 published
[9] P.D. Michailidis, K.G. Margaritis “On -line String
 Matching Algorithms” Survey and Experimental
 Results International Journal of Computer
 Mathematics, 76(4), 2001, pp. 411-434
[10] Gonzalo Navarro, Mathieu Raffinot “A Bit-Parallel
 Approach to Suffix automata: Fast extended string
 matching” In proceeding of the 9th Annual
 Symposium on Combinatorial Pattern Matching
 LNCS 1448,1998, pp.14-33

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

