
 

 

 

  
Abstract—In this paper we propose a design to develop an 

engineering device for shared access to the decryption key of a 

public key cryptosystem used for secure communication over a 

network. The mechanism of the device is based on cryptanalytic 

tools that are used to attack the Elliptic Curve Discrete Logarithm 

Problem (ECDLP). The device comprises of three components: 

Share Generator, Authenticator and Key Generator, and its 

significance lies in safeguarding the secret keys of a public key 

cryptosystem that is used to transmit messages across the 

communication network. 

 
Index Terms—ECDLP, Elliptic Curves, Pollards rho Attack on 

ECDLP, Secret Sharing, Threshold Schemes. 

 

I. INTRODUCTION 

  The digital world today has brought with it a great demand 

for information security products. The security aspects of these 

products are based extensively on the advancements in the 

science of Cryptology. The techniques used in these products to 

secure information emphasize on the intractability of 

mathematical problems such as the Elliptic Curve Discrete 

Logarithm Problem (ECDLP). The incorporation of such 

cryptographic schemes in devices ensures that data 

communicated across networks are not vulnerable to attacks by 

adversaries. That is, it ensures data authentication and integrity. 

But what is important is to safeguard the secret keys that are 

used to decipher the encrypted data. 

Threshold schemes play a very important role in 

safeguarding cryptographic keys. In a (t, n) scheme, a secret 

piece of information can be shared among a group of n persons 

such that, any t of them, t ≤ n  may pool in their shares to 

recover the secret while (t − 1) persons cannot. This security 

check on the number of persons involved in reconstructing the 

secret helps to distribute control of the access to the data 

communicated across a network. In our paper we give the 

design for a device that works on the principle of the Pollard 

rho attack on the ECDLP.  The algorithm not only provides an 

effective method in generating shares to a secret that can be 

shared among n persons in a group, but also, provides a method 

to verify these shares and thus authenticate the m, t ≤ m ≤ n, 

participants involved in reconstructing the secret key. This (t, 

 
Manuscript received May 16, 2007.  

K.P. Vidya is with the Department of Mathematics, Madras Christian 

College (Autonomous), Affiliated to the University of Madras, Chennai, 600 

059, India. (phone: 0091-044-24919718; e-mail: kpvidya@ hotmail.com). 

n)-threshold scheme that is embedded in the Key Access 

Device enhances the utility of the device with the replacement 

of only one component embedded in the device whenever the 

security needs demand a change in the secret key.  

Section 2 and 3 of this paper gives a brief understanding of 

secret sharing schemes and the mathematical background that 

is required to develop the security system. Section 4 gives a 

brief introduction to our scheme and section 5 describes the 

Key Access Device (KAD), its design and the underlying 

mathematical algorithm with an illustration. Section 6 discusses 

the merits of implementing our cryptographic scheme in the 

KAD. 

 

II. SECRET SHARING SCHEMES 

A secret sharing scheme is that in which a secret α is divided 

into n shares which are distributed among the n participants so 

that a coalition of authorized participants can combine to 

reconstruct the secret. Shamir’s[25] results based on 

Lagrange’s interpolation of polynomials simultaneously with 

Blakley’s[3] contribution on geometric hyper-planes were the 

first ever known secret sharing schemes that were later 

classified as threshold schemes. A generalization of the scheme 

was proposed in [15], and [2] describes its relation to monotone 

functions.  

A scheme is called a threshold secret sharing scheme with a 

threshold value of t if only a coalition of t ≤ n participants can 

reconstruct the secret while t−1 or fewer participants cannot. If 

Φ denotes the group of participants and Γ and ∆ respectively 

denote the set of authorized and unauthorized participants 

where Γ and ∆ are assumed to be mutually disjoint then the 

collection (Γ, ∆) is called the access structure of the secret 

sharing scheme. The access structure is called a monotone 

access structure if a set P containing Γ is also a set of authorized 

participants. A hierarchical threshold access structure [32] 

defines sets of participants distributed in say l levels with 

different or same threshold values for each level. The level zero 

indicates the central point, the lower levels are called level one, 

level two, etc.. If different access structures in a family of 

access structures are to be activated at different instances of 

time then we say that the secret sharing scheme is dynamic. A 

fully dynamic secret sharing scheme as defined in [6] is the 

sharing of a set of secrets among a group of participants such 

that any subset of participants has no information about the new 

secret before knowing the new broadcast message but there 
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exists a perfect secret sharing scheme after seeing the new 

broadcast message. The fully dynamic secret sharing scheme is 

said to be strong if any subset of participants not in the new 

access structure and who know all the previous secrets, still 

have no information about the new secret. 

A perfect secret sharing scheme is one in which the shares 

corresponding to each unauthorized subset provides absolutely 

no information about the shared secret. In fact, they have a 

monotone access structure. The efficiency of any secret sharing 

scheme is measured by its information rate = (Size of the shared 

secret) / (size of that participant’s share). Since in any perfect 

secret sharing scheme the size of a share is greater than or equal 

to the size of the shared secret for all shares of the participants 

of the scheme, it follows that all perfect secret sharing schemes 

have information rate ≤ 1. Secret sharing schemes of rate 1 are 

called ideal. The Shamir’s scheme is an example of a perfect 

and ideal threshold scheme. 

 

III. MATHEMATICAL BACKGROUND 

A. Elliptic Curves, ECDLP and Pollard’s rho Attack on 

ECDLP 

An elliptic curve E defined over a finite field Fq, of 

characteristic greater than three is given by the set of points that 

satisfy the equation y
2
 = x

3
 + ax + b, a, b ε Fq where, 

discriminant ∆ = −16(4a
3 + 27b

2 ) ≠ 0 together with the point at 

infinity Ο. It forms an abelian group over a special type of 

addition, where, Ο serves as the identity element of the group 

and the inverse of a point R = (x1, y1) on the curve is given by 

−R = (x1, −y1). The Group law for addition of two points R = (x1, 

y1) and S = (x2, y2) for R ≠ S and S ≠ −R, is given by the 

co-ordinates (x3, y3) ε E(Fq) where, x3 = λ2
 − x1 − x2,  y3 = λ (x1 − 

x3) − y1 and the slope λ is given by (y2 − y1)/(x2 − x1) if R ≠ S and 

S ≠ −R and (3x1
2 + a)/2y1 if R = S. The order p of the elliptic 

curve over Fq, i.e., the number of elements in the abelian group 

is determined by the bounds stated in Hasse’s Theorem q + 1 − 

2√ q < p < q + 1 + 2√ q while the order of a point R ε E(Fq) is the 

smallest positive integer α  for which αR = Ο. Further, if the 

group is of prime order it implies that the group is cyclic and 

every element of the group other than Ο is a generator of the 

group. 

Definition The elliptic curve discrete logarithm problem 

(ECDLP): Given an elliptic curve E defined over a finite field 

Fq, a point P ε E(Fq) of order p, and a point Q ε <P>, find the 

integer l ε [0, p − 1] such that Q = lP. The integer l is called the 

discrete logarithm of Q to the base P, denoted l = logPQ.  

The Pollard’s rho attack[22] on the ECDLP finds two 

distinct pairs (c ′, d ′), (c″, d″) of integers modulo p such that the 

points X ′ = c ′P + d ′Q and X″ = c″P + d″Q collide. That is, a 

suitable iteration function f: <P> → <P> is defined so that any 

point X0 in <P> determines a sequence {Xi}i ≥ 0 of points where 

Xi = f(Xi−1) for i ≥ 1. Now, since <P> is finite, the sequence will 

collide at some i
th iteration and then cycle for the remaining 

iterations forming a ρ-like shape. Then l can be obtained by 

computing l = (c ′− c″)(d″− d ′)–1 mod p. This is in the case of a 

single processor which has a run time complexity of (πn/2) 

due to Teske[34] who suggested an iterating function in 

pollard’s algorithm that modeled on a random walk. 

 

IV. OUR SCHEME 

Our scheme is a (t, n) threshold scheme which we call the 

Pollard Secret Sharing Scheme(Single Processor), where,  α is 

set as the secret of the threshold scheme. <P> is partitioned into 

n number of sets of roughly the same size and these form the 

shares or shadows that are distributed to all the participants Ai, i 

= 1,2, …, n. The threshold value t of the scheme is set 

depending on the minimum number of partitions (shares) 

required that would determine the computational feasibility of 

the secret within the specified time limit requirement of the 

application. Thus the threshold value t depends not only on the 

number of partitions but also on the processing speed of the 

machine used to compute the secret key.  

The scheme has three main phases, the Share Generation, 

Authentication or Share Verification, and the Reconstruction of 

the Secret. 

An entity T who plays the role of the trusted authority 

generates the public and private key pair. The plain text 

message that is encrypted using the public key is transmitted 

across the network to its destination node. The cipher text 

message can be decrypted using the private key only if a 

coalition of authorized participants at that node combines to 

reconstruct the secret decryption key. The security of our 

scheme relies on the hardness of solving the ECDLP on 

classical computers. We specify classical computers here, since 

there exists a polynomial time algorithm proposed by Shor[26] 

to solve the ECDLP on quantum computers. So we assume that 

the system network is setup such that it is infeasible to compute 

within a specified period of time, a solution to an ECDLP 

instance given less powerful resources. But given more 

powerful machines it is an easy problem to solve. Thus the 

strength of computation of the secret reflects on the security 

level of the cryptosystem. The application of this scheme is 

made use of to design the Key Access Device described below. 

 

V. KEY ACCESS DEVICE 

The Key Access Device (KAD) is an engineering device that 

may be deployed at every terminal of a communication network 

that uses a common public key to encrypt data and shares the 

decryption key amongst a group of authorized agents at each 

terminal node. Its functionality is to derive the secret key of the 

public key cryptosystem from inputs received from authorized 

agents and transmits this secret key as input to an Enc-Dec 

device that encrypts and decrypts the network traffic. The 

shares that are jointly deposited into the KAD by any t or more 

number of participants from a group of n authorized persons at 

each node of a communication network are used to reconstruct 

the secret decryption key. This envisages a greater role for the 
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KAD in providing access to the secret key of a cryptosystem 

without compromise of the secret key to any of the authorised 

agents. 

A trusted third party T generates a public and private key pair 

and publishes the public key so that anyone who wants to send 

a message can encrypt the plain text with the public key. The 

secret α to be used as the private key of the cryptosystem is 

shared among n participants at each centre Ci in the 

communication network. T generates the verification 

parameters P and Q that are points on an elliptic curve E of 

order p such that Q = αP. These parameters P, Q and p are 

stored in a chip at the time of manufacture together with a 

unique device identity number DID. The DID is specific to 

each Key Access Device (KAD) that is installed at the different 

centres Ci of the communication network. The chips are 

parceled to the respective centres where the authorised agents 

at these locations, insert the chip into the KAD to generate their 

shares of the secret decryption key. This generation of the 

shares of the secret key can be carried out only once in the 

lifetime of the chip. Each share also consists of a unique value 

that authenticates each authorized agent at the time of 

reconstruction of the secret key. These unique values are stored 

in the memory chip of the Share Generator component of the 

KAD to be used at the time of reconstruction of the secret key. 

The KAD now operates to receive the shares of any m, t ≤ m ≤ 

n authorised agents whenever the encryption-decryption device 

(Enc-Dec) that is connected to the computer terminal (CT) 

prompts for data decryption. The Authenticator component of 

the KAD verifies the authenticity of these shares that are input 

by the authorised agents. It then creates a data block DB that is 

transmitted to the third component of the KAD called the Key 

Generator.  Here, the secret α is constructed using the 

information in DB which is then delivered to the 

encryption-decryption device. On receiving the secret α from 

the KAD the Enc-Dec decrypts the message based on the 

request received from the terminal.  

A. Components and their functions 

The Key Access Device comprises of two parts a main 

device called the KAD and a detachable chip D. The Share 

Generator, Authenticator, and Key Generator form the three 

components of the KAD. 

 

 

 
 

Fig.1. Components of the Key Access Device (KAD) 

 

Share Generator 

The Share Generator has two sub components, a detachable 

chip D and a fixed programmable memory chip M. The unique 

device identity number DID, the verification parameters P and 

Q, and the order p of the elliptic curve group are stored in D at 

the time of manufacture. When D is inserted into the Key 

Access Device, the function g displays n and p, and receives n 

sets of inputs of the Agents’ choice of random integers, ai, bi 

which belong to the interval [1, p − 1]. It then computes the 

respective unique value Ri a point on the Elliptic Curve E for 

each Agent and stores these Ri in the memory chip M as the 

identity value of the respective agent. These are used later for 

authenticating the agents at the time of generating the secret 

key. However, this process is carried out only if the detachable 

chip D and the KAD are found to be compatible. This 

compatibility of the D with the main device is verified by 

comparing the DID of the detachable chip D with that of KAD. 

 

Authenticator 

When the Enc-Dec device prompts for the secret key the 

Authenticator beeps loudly for the shares of the agents where, 

any m agents, t ≤ m ≤ n, need to combine to reconstruct the key. 

Let us suppose that the Authenticator receives the inputs say, 

(aj, bj) from Agents Aj , j = 1, …, m, respectively. The function 

g′ accesses the verification parameters P and Q from the chip D 

of the share generator and computes Vj = ajP + bjQ,  j = 1, …, m, 

respectively. If these values of Vj are found to be equal to some 

Rj in the memory chip M of the share generator, the 

authenticator proceeds to construct a data block DB that is 

passed as input to the next component the Key Generator. 

Otherwise, the agents Aj are denied access to decrypt the 

messages transmitted across the network. 

The data block DB comprises of the shares (aj, bj, Rj) of the 

agents Aj ,  j = 1, …, m, respectively, the verification parameters 

P and Q and the order p of the elliptic curve group E(Fq). This 

data block is passed as input to the Key Generator component 

to compute the secret key α. 

 

Key Generator 

The process block g″ in this component receives the data 

block DB from the Authenticator and outputs the secret S = α. 

At first, the initial values of the iterative process are computed 

as c ′ = Σ aj and d ′ = Σ bj and X′ = Σ Rj = c′P + d′Q . The 

operations are carried out modulo p. Then, a set L is formed in 

which each element of the set acts as an index to the partitions 

or shares in DB. A partition function H defined from <P> to L 

determines for X′ε <P>, the value h = H(X′) = H(x, y) = x mod m 

+ 1. Here, m is the cardinality of L. Now, the variable h assumes 

a value that is an element of set L. In the iterative process, the 

shares are chosen corresponding to the value of h and the 

process of computing X′ and X″ is repeated till their values are 

found to coincide. The secret S = α is then obtained as α = (c ′− 

c″)(d″− d ′)–1 mod p. 
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B. Design 

 

 
 

Fig.2. Design of the Key Access Device  

 

C. Mechanism 

The Pollard Secret Sharing Scheme (Single Processor) 

 

SUMMARY A secret key α used in a cryptosystem is 

distributed among n participants Ai. i = 1, …, n, 

of the (t, n)-threshold scheme. 

RESULT       Any m participants for t ≤ m ≤ n pool in their 

shares to reconstruct the secret. 

 

 

I Share Generator:  

 

1. E is the chosen elliptic curve over a finite field Fq 

generated by <P> of prime order p. 

2. The secret α that controls the critical action is a random 

integer l and determines the point Q = lP on E. 

3. Random integers ai, bi ε [1, p−1] are chosen such that Ri = 

aiP + biQ, i =1… n. 

4. Si = (ai, bi) are the shares of the participants Ai, i =1,…, n  

5. (P, Q) the verification parameters and the prime p are 

embedded in the chip D. 

 

II Authenticator (in case of m inputs where t ≤ m ≤ n) 

 

1. Any m number of participants, say, Aj ,  j = 1, 2, …m, 

pool-in their shares, t ≤ m ≤ n. 

2. Verification parameters P and Q are accessed from the 

Share Generator to compute  

ajP + bjQ = Vj ,  j = 1, 2, …m 

    and compare if Vj equals respective Rj. 

3. If Vj = Rj, the step 4 and the steps in Reconstruction of 

Secret is carried out.  

4. Set the Data Block DB with the shares (aj, bj, Rj),  j = 1, 2, 

…m and P, Q, p. 

 

III Key Generator 

1. Receive Data Block DB from Authenticator. 

2. Set L = {1, 2, … , m}. 

3. Set H: <P> → L = {1, 2, … , m} a partition function where 

m indicates the number of partitions that are used during 

recovery of secret. Here, we choose a simple partition 

function such that, for X′ ε <P>, h = H(X′) = H(x, y) = x 

mod m + 1 for t ≤ m ≤ n. 

4. Set c′ = Σ aj (mod p), d′= Σ bj (mod p) and X′ = Σ Rj = c′P 

+ d′Q (mod p). 

5. Repeat 

a) Compute h = H(X′) where h corresponds to an element 

in L. 

b) Set X′ = X′ + Rh (mod p), c′ = c′ + ah mod p, d′ = d′ + bh 

mod p. 

c) For r from 1 to 2 do 

i) Compute h = H(X″), where h corresponds to an 

element in L. 

ii) Set X″ = X″ + Rh (mod p), c″ = c″ + ah (mod p), d″ = 

d″ + bh (mod p). 

 Until X″ = X′. 
 6. Compute l = (c′ − c″)(d″ − d′)−1 mod p which is the secret 

α. When reconstruction of α takes place the KAD sends 

this α to the Enc-Dec device for decryption of the 

message received across the network. 

  7. Exit. 

 

 

D. Illustration 

 

Suppose that, Ai, i = 1, …, 5, are the participants of a secret 

sharing scheme and that a subset of two or more participants are 

to combine to reconstruct the secret key of the cryptosystem. 

 

Share Generator: The trusted entity T selects at random the 

elliptic curve E(F29) given by y
2
 = x

3
 + 4x + 20 where the 

discriminant ∆ = −176896 ≡/    0(mod 29). The number of 

elements in the elliptic curve group is 37 a prime, and so, E(F29) 

is a cyclic group. All elements of E(F29) for P = (1, 5) as the 

generator are listed in the Table 1 below. Now assume that, the 

secret S is set as equal to 30. If the point P in our algorithm is 

chosen to be the pair (1, 5) then Q = 30P = (24, 7). 

For inputs ai, bi from the authorized agents the shares are 

computed as Si = (ai, bi, Ri) for i equal to 1 to 5. If the 

corresponding shares for each Ai are S1 = (28 ,  34 ,  (19, 13)), S2 

= (17 ,  27 ,  (16, 27)), S3 = (20 ,  14 ,  (15, 2)), S4 = (14 ,  23 ,  (1, 

5)) S5 = (12 ,  3 ,  (14, 6)), the participants Ai, i = 1, …, 5, retain 

the knowledge of the pairs of random integers (ai, bi) and the 

unique Ri are stored in the chip M to authenticate each Ai at the 

time of reconstructing the secret key. 

 

Authenticator: Now, suppose that, A1, A3 and A5 wish to 

determine the secret key to decrypt the cipher text received at 

their computer terminal Ci in the network. When the agents 

input their random number pairs the respective value of Ri are 

computed and the shares are set as S1 = (28 ,  34,  (19, 13)), S3 = 
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(20 ,  14 ,  (15, 2)) and S5 = (12 ,  3 ,  (14, 6)) after verification of 

their authenticity. 

 

Table 1. 

 

0P=Ο 13P=(16,27) 26P=(10,4) 

1P= (1,5) 14P=(5,22) 27P=(13,6) 

2P= (4,19) 15P=(3,1) 28P=(14,6) 

3P= (20,3) 16P=(0,22) 29P=(8,19) 

4P=(15,27) 17P=(27,2) 30P=(24,7) 

5P=(6,12) 18P=(2,23) 31P=(17,10) 

6P=(17,19) 19P=(2,6) 32P=(6,17) 

7P=(24,22) 20P=(27,27) 33P=(15,2) 

8P=(8,10) 21P=(0,7) 34P=(20,26) 

9P=(14,23) 22P=(3,28) 35P=(4,10) 

10P=(13,23) 23P=(5,7) 36P=(1, 24) 

11P=(10,25) 24P=(16,2)  

12P=(19,13) 25P=(19,16)  

 

Key Generator: The initial values of the iterating function are 

given by (c′, d′, X′) = (23, 14, (1, 24)) where c′, d′ ε [0, 36] and 

X′ = c′P + d′Q = 23P + 14(30P) = 36P modulo 37 = (1, 24). The 

set L is set as L = {1, 2, 3}. The tabulations of c′, d′, X′, c″, d″, 

X″ for the iterations are shown in Table 2. The process 

terminates in the 4th iteration when X′ = X″ = 31P. The 

corresponding values of c′, d′, c″, d″, are 16, 19, 7, 23 

respectively. 

 

Table 2 

 

Itr 
c′ d′ X′ c″ d″ X″ 

-- 
23 14 

36P = 

(1, 24) 
23 14 

36P = 

(1, 24) 

1 
6 28 

32P = 

(6, 17) 
25 22 

19P = 

(2, 6) 

2 
34 25 

7P = 

(24, 22) 
19 10 

23P = 

(5, 7) 

3 
25 22 

19P = 

(2,  6) 
13 35 

27P = 

(13, 6) 

4 
16 19 

31P = 

(17,  10) 
7 23 

31P = 

(17, 10) 

 

Now, l = (16 − 7)(23 − 19)−1 (mod 37) = 30 gives the value of 

the secret α. On the reconstruction of the secret α the critical 

action is carried out by A1, A3 and A5. 

VI. MERITS 

The Key Access Device plays a significant role in 

safeguarding the secret keys of a cryptosystem irrespective of 

the device and the technique used for the encryption and 

decryption process. Our security technique offers a simple 

method to update the secret keys without compromising the 

keys themselves. The use of a detachable chip to update the 

keys increases the functionality of the device with a need to 

replace only one of its components. Also, since the agents at 

each centre are given a share that can be verified, a log file 

generated by the device can ensure non-repudiation in case of 

any controversy involved in the communication process.  

Our scheme based on the Pollard rho attack on ECDLP also 

offers a very efficient iterative function that requires negligible 

memory space. A better choice of the pair (H, f) where, H is the 

hash function that determines a point in a partition and f is the 

iteration function that determines the sequence of points in the 

elliptic curve that collide at some stage, results in better random 

walks that give added advantages in the speed up of the 

algorithm. 

Since the compromise of the secret key used in a 

cryptosystem poses a serious security threat it becomes 

essential that the system is periodically replaced with new 

systems. But the implementation of our scheme in the Key 

Access Device minimises this threat and hence reduces the 

expenses incurred in frequent replacement of cryptosystems.  
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