

Abstract— Inheritance anomaly and crosscutting concerns are

major problems in object-oriented programming. These
problems have been discussed in several publications and there
are still ongoing researches to find appropriate solutions. In this
paper, we try to solve those two problems by presenting an
aspect-oriented approach that handles the inheritance anomaly
problem. In our proposed approach, both the functional
components and aspects are presented in the Microsoft
Intermediate Language (MSIL), which means that our approach
is language independent.

Index Terms— Aspect-Oriented Programming, Crosscutting
Concerns, Concurrent Programming, and Inheritance Anomaly.

I. INTRODUCTION
Inheritance anomaly arises when additional methods of a

subclass cause undesirable re-definitions of the methods in the
superclass. Instead of being able to incrementally add code in
a subclass the programmer may be required to re-define some
inherited code, thus the benefits of inheritance are lost [1]. It
has been pointed out that the combination of inheritance and
synchronization constraints in concurrent object systems
causes the inheritance anomaly problem [2].

Several approaches have been proposed for solving the

inheritance anomaly problem in concurrent object-oriented
languages (COOLs). The common idea of the proposed
approaches is based on decoupling the synchronization code
from the business code of class definition [3].

Crosscutting concerns are issues that could not be clearly

localized or modularized into a single class often are
implemented in multiple places throughout the program. Since
the implementation of these concerns “crosscut” the system,
they are called crosscutting concerns [4]. The most common
concerns include: data representation, synchronization,
location control, real-time constraints, failure recovery, and
declarative specification [5,6].

Several approaches have been proposed for modularizing

crosscutting concerns [7, 8, 9]. The approach that handles
most of crosscutting concerns is known as aspect-oriented

Manuscript received July 5, 2007.
A. Shahen, Computer and Information Science Dep., Institute of Statistical

Studies and Research, Cairo University. Egypt. (e-mail:
ashraf_shahen@yahoo.com).

programming (AOP) [10]. The goal of AOP is to provide
methods and techniques for decomposing problems into a
number of functional components as well as a number of
aspects, which crosscut functional components and then
composing these components and aspects to obtain system
implementations.

The current aspect-oriented languages that try to solve the

problem of crosscutting concerns do not solve the inheritance
anomaly problem. In this paper, we introduce an aspect-
oriented approach that is suitable for modularizing
crosscutting concerns and solves the inheritance anomaly
problem.

The rest of this paper is organized as follows. In the next

section, we show through an example where and how the
inheritance anomaly problem occurs in COOLs. Section 3
describes the crosscutting concerns in more details. Section 4
shows that the current aspect-oriented languages that
successfully handle the crosscutting concerns suffer from the
inheritance anomaly problem. In section 5, we briefly describe
our proposed approach that solves the inheritance anomaly
problem. The effectiveness of our approach is demonstrated in
section 6 through some examples. Finally, section 7
summarizes our conclusions and gives directions to future
work.

II. THE INHERITANCE ANOMALY PROBLEM
As briefly mentioned in the Introduction, the term

inheritance anomaly refers to the problems arising from the
coexistence of inheritance and concurrency in concurrent
object oriented languages (COOLs). In this section, we use the
classic bounded buffer example to show where and how the
anomaly occurs. By using this example, we do not mean that
the inheritance anomaly problem is a reader-writer problem.
The reader-writer problem pertains to any situation where a
data structure, database, or file system is read and modified by
concurrent threads [11]. But, the inheritance anomaly arises
when additional methods of a subclass cause undesirable re-
definitions of the methods in the superclass.

Consider the following pseudo-code for a bounded buffer:
class Buffer
{ void put(Object el) { ... }
 Object get() { ... }
}

An Aspect-Oriented Approach for Solving the
Inheritance Anomaly Problem

A. Shahen, Student Member, Institute of Statistical Studies and Research, Cairo University, Egypt.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

The methods get and put respectively to remove and insert
an element. In a concurrent setting we need to refine the code
above with suitable synchronization code, so as to make sure
that no get is executed on an empty buffer and, that no put is
executed on a full buffer. The synchronization code is simply
a Boolean expression, known as a guard, which must be true
for the method to be executable. If the guard evaluates to false
the calling thread must ‘wait’ for the guard to become true.

The occurrences of the inheritance anomaly problem have

been classified into three broad categories [1, 2, 3]. The
inheritance anomaly problem in each of these categories will
be explained through defining subclasses for the bounded
buffer class.

Category 1: History-sensitiveness of acceptable states
Anomaly occurs when the synchronization code defined in

a subclass depend on the history of the object. As an example,
assume that we want to refine the bounded buffer class by
defining a subclass with the method gget that works like the
method get but cannot be executed immediately after the
method get. Clearly, this can only be achieved by modifying
code of the method get in the superclass to keep track of its
invocations.

Category 2: Partitioning of states
Anomaly occurs when the addition of a subclass forces a

refinement of the object’s state partition. As an example,
assume that we want to refine the bounded buffer class by
defining a subclass with the method get2 that retrieves two
elements at once. Before adding such a subclass the object’s
state can be partitioned into three sets: empty, partial, and full.
But adding the subclass that contain the method get2 forces
the state transitions to be re-described to include the state
where the buffer contains exactly one element.

Category 3:Modification of acceptable states
A third kind of anomaly occurs in the multiple inheritance

situations where the acceptance states of the original class’
methods are influenced by adding subclasses. As an example,
assume that we want to define a lockable buffer subclass
based on two classes: the buffer class and another class, called
lock, with lock capabilities (lock and unlock). In this case, we
need to modify the get and put methods in the buffer class to
keep into account the state of the lock component of the
object.

III. CROSSCUTTING CONCERNS
As mentioned in the Introduction, crosscutting concerns are

issues that appear in multiple places in the program and could
not be easily modularized to a separate class. For example,
consider a figure editor that is used to build figures/images on
the screen from different objects (points, lines, circles, etc.).
Every time that a change is made to one of the figures on the
screen (like moving it from one point to the next), something

must occur (like a method call) that tells the screen to repaint.
The issue of repainting the screen would be considered a
crosscutting concern since it is a concern with several
different objects.

In typical object-oriented programming a crosscutting

concern (such as screen repainting) is accomplished by calling
the appropriate screen method whenever one of the several
methods of the objects on the screen is called. One of the
issues when working in this type of an environment involves
the ability to maintain the code. Whenever the screen repaint
method changes either its name or its parameters, the change
would need to be propagated to the calling methods.
Therefore, all of the objects that call on those methods must
be changed as well. Those calls may not be easy to locate [4].

The idea behind aspect-oriented programming is to take

those types of concerns that are scattered throughout the
program and bring them together into a single structure called
an aspect. By allowing a crosscutting concern to be handled
within a single aspect, the implementation of the concern can
be localized.

IV. CURRENT ASPECT-ORIENTED LANGUAGES
Several aspect-oriented languages (AOLs) have been

proposed for solving modularity problems. Some of these
languages solve the problems of crosscutting concerns very
well, but they still suffer from the inheritance anomaly
problem as a result of the difficulty of inheriting the aspect
code in the presence of inheritance. As an example, suppose
we have developed an aspect TraceBefore to trace the start of
execution of the get and put methods in the buffer class as
given in Fig. 1 and 2.

Now consider the subclass SpecialBuffer, as defined in Fig.

3, which redefines the method put of the Buffer class; and
assume that we do not need to trace the start of execution of
the method put in the subclass SpecialBuffer. In principle, it
should be possible to "inherit" the TraceBefore aspect just
modifying the code associated to the method put.
Unfortunately, this is not possible because some languages
don’t support the "sub-aspect" concept. Thus, it is necessary
to rewrite the aspect code as given in Fig. 4.

public class Buffer
{ protected Object[] buf;
 protected int MAX;
 protected int current = 0;
 Buffer(int max)
 {
 MAX = max;
 buf = new Object[MAX];
 }
 public synchronized Object get() throws Exception {//….}
 public synchronized void put(Object v) throws Exception
 { //………. }
}

Fig. 1: Buffer Class in Java

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

V. OUR APPROACH
Based on the discussion in the previous section, we propose

an aspect-oriented approach that solves the problem of
inheriting the aspect code. Our approach is composed of two
models: aspect model and weaving model, together with a
.NET tool: .NET Weaver, which implements the weaving
model. The aspect model provides a technique for separating
the synchronization constraints from functional requirement in
development time. The weaving model composes the
synchronization constraints with the functional requirement in
runtime so that these constraints can be enforced on functional
entities in run-time system. In the next subsections we
describe these two models and the .NET Weaver.

A. Aspect Model
The aspect model has three elements: a join point model, a

means of identifying join points, and a means of affecting
implementation at join points. These elements correspond to
the characteristics that allow an aspect-oriented mechanism to
crosscut an application [12].

1) Join Point Model

The join point model provides the common frame of
reference that makes it possible to define the structure of
crosscutting concerns. The join point model includes several
kinds of join points, which are certain well-defined points in
the execution flow of the program. Join points can be
categorized as follows:

Method call join point: A method call join point

encompasses the actions of an object receiving a method call.
It includes all the actions that comprise a method call, starting
after all arguments are evaluated up to and including normal
or unexpected return.

Create join point: When an object is built and a constructor

is called.

 Field reference and assignment: When a field is retrieved

or assigned to.

2) Identifying Join Points
Pointcut designators (or simply pointcuts) identify

particular join points by filtering out a subset of all the join
points in the program flow. In our model, we use four pointcut
designators: call(Signature), create(Signature),
get(Signature), and set(Signature).

3) Modifying Join Point Behavior

Advice declarations are used to define additional code that
runs at join points. In our model, we use the following
advices:

Before advice: runs when a join point is reached and before

the computation proceeds, i.e. it runs when computation
reaches the method call and before the actual method starts
running.

After advice: runs after the computation 'under the join

point' finishes, i.e. after the method body has run, and just
before control is returned to the caller, regardless of whether it
returns normally or throws an exception.

Around advice: runs instead of the reached join point, and

has explicit control over whether the computation under the
join point is allowed to run at all.

After returning advice: runs just after each join point picked

out by the pointcut, but only if it returns normally.

 After Throwing advice: runs just after each join point

picked out by the pointcut, but only if it throws an exception.

public aspect TraceBefore
{

private void Buffer.print (String methodName, int currentValue)
{
 System.out.println("Tracing method " +methodName+" before");
 System.out.println("current = " + currentValue);
}

 before(Buffer x):(call(void Buffer.put(object)) ||

 call(object Buffer.get()))
&& target(x)

{
 x.print(thisJoinPoint.getSignature().getName(), x.current);
}

}

Fig. 2: TraceBefore Aspect in AspectJ

class SpecialBuffer extends Buffer
{

public SpecialBuffer(int max)
{ super(max); }

public synchronized void put(String v) throws Exception
{ //……… }

}

Fig. 3: SpecialBuffer class in Java

public aspect TraceBefore
{

private void Buffer.print(String methodName,int currentValue)
{

System.out.println("Tracing method "+ methodName+"
before");

 System.out.println("current= "+currentValue);
}

 before(Buffer x):

((call(void Buffer.put(String)) ||
call(String Buffer.get())) &&
(!call(void SpecialBuffer.put(String))))
&& target(x)

{
 x.print(thisJoinPoint.getSignature().getName(), x.current);
}

}
Fig. 4: TraceBefore Aspect in AspectJ

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

VI. WEAVING MODEL
The weaving model is used for describing the kinds of

weaving techniques. There are two techniques in current
aspect-oriented languages and tools, in which classes and
aspects can be woven: static or dynamic [13]. Static weaving
means to modify the source code of a class by inserting
aspect-specific statements at join points. The result is highly
optimized woven code, whose execution speed is comparable
to that of code written without using aspects. However, static
weaving makes it difficult to later identify aspect-specific
statements in woven code.

Dynamic weaving means to weave aspects with classes

during runtime. Dynamic weaving allows a dynamic
adaptation of an application at any time. However, dynamic
weaving increases the time and the amount of memory needed
for the program’s execution.

To combine the advantages of both techniques, we

introduced the Just in time (JIT) weaving technique. During
the program’s execution, JIT weaver uses inheritance to add
aspect-specific code to classes instead of modifying the source
code of classes while weaving aspects. Generated subclasses
are saved to a new component for the next use. Aspects are
not weaved with classes until the first time the classes are
used. This is done on a per-class, so the delay for JIT weaving
is only as long as needed for the classes you want to use. The
time spent in the JIT weaving is so minor that it is almost
never noticeable, and once a class has been weaved, you never
incur the cost for that class again. JIT Weaver can
dynamically add, adapt, or remove aspects at any time. For
example, if an aspect has been modified, the Weaver updates
its woven methods. If an aspect is to be removed completely,
the Weaver removes the respective subclass.

JIT Weaver relies on XML to perform binary-level

weaving, meaning that the weaving specification is not written
in terms of, or using extensions to, a particular programming
language. By separating the weaving specification from the
aspect code, we can modify each of them without affecting the
other.

JIT Weaver uses metadata and reflection mechanisms

provided by .NET Framework to examine the compiled
assemblies and to generate weaved subclasses. Reflection
information is mandatory for every .NET assembly. It does
not care weather an assembly is written in java or in C#. This
means that JIT Weaver works language independently.

VII. THE .NET WEAVER TOOL
We have implemented our approach as a .NET component

called “.NET Weaver”. .NET weaver weaves already
compiled .NET aspect components with already compiled
.NET functional components. We can change each of them
without affecting the others. When we write .NET functional

component, we do not need to know which aspects will be
applied to it. In addition, we can write general aspects
separately from any classes to which they may apply. This
feature increases software reusability, flexibility and
extendibility. The only restriction is that target class methods,
which should become interwoven, have either to be virtual or
to be defined via an interface. Each aspect is defined as a
NETWeaver.Aspect subclass. Programmer uses .xml file to
define assembly information and weaving specifications.

.NET weaver provides a class named weaver to weave a

given target class. This class does the same as the new
statement; it creates a new object of a given class (the target
class). Furthermore, this class weaves the target class with an
aspect-object. .NET weaver is depicted in Fig. 5.

Once the running application reaches one of the new

statements, Instance Creator is invoked to create a new object
of a given class. Instance Creator sends the class type to the
Weaving Descriptor. Immediately after sending, Weaving
Descriptor inspects the class type to find the set of join-points
and sends them back to Instance Creator. Instance Creator
passes the class type and the set of join-points to Weaver.
During this step, Weaver creates a new subclass instance from
the target class and creates aspect instances for the join-points.
Weaver weaves all the created aspect instances to the subclass
instance and sends them back to the Instance Creator. The
weaver weaves different aspects with the class by determining
and adapting all parts where aspect specific elements are
needed. Finally, Instance Creator sends the new object to the
running application.

We used the Unified Software Development Process

together with a popular CASE tool: Rational Rose, in
developing .NET Weaver. The Unified Software Development
Process is the end product of three decades of development
and practical use. Its development has been guided by three
leading figures in software development: Jacobson, Booch,
and Rumbaugh [14].

VIII. OUR APPROACH EFFECTIVENESS
In this section, we demonstrate the effectiveness of our

approach through some examples. The crosscutting concerns
example in section 3 and the inheritance anomaly examples in

Fig.5: .NET Weaver

weaver.xml
file

 Functional
Components in MSIL

 Aspects in
MSIL

Weaving
Descriptor

Instance
Creator

Weaver

.NET Weaver runtime library

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

sections 2 and 4 are now solved using our proposed system.

A. FIGURE EDITOR EXAMPLE
Fig. 6 shows the class diagram of the Figure Editor. A

Figure consists of a number of FigureElements, which can be
either Points or Lines. The Figure class is also a factory for
figure elements. There is a single Display on which figure
elements are drawn. Using .NET weaver we can easily
modularize crosscutting concerns (such as screen repainting)
to a separate class as shown in Fig. 7. Fig. 8 shows the
weaving specification declared in XML file.

Display

 + needsRepaint ()

Figure

+ makeLine ()

+ makePoint ()

FigureElement

+ moveBy ()

Point

+ getX ()

+ getY ()

+ setX ()

+ setY ()

+ moveBy ()

Line

+ getP1 ()

+ getP2 ()

+ setP1 ()

+ setP2 ()

+ moveBy ()

1..*

We define a pointcut named move that designates any

method call that moves figure elements. After advice on move
poincut informs the display it needs to be refreshed whenever
an object moves.

B. BOUNDED BUFFER EXAMPLE
In this example, we use the .NET Weaver for solving the

inheritance anomaly examples in sections 2 and 4.

i. History-sensitiveness of acceptable states
As mentioned in section 2, anomaly occurs when the

synchronization code defined in a subclass depend on the
history of the object. We have implemented the Buffer class in
the C# without any synchronization code as shown in Fig. 9.
In Fig. 10, the synchronization code of the Buffer class is
implemented in the BufferSyn aspect.

Fig. 6:Figure Editor Class Diagram

public class DisplayUpdating: NETWeaver.Aspect
{

 public DisplayUpdating() { … }
 public virtual void move(object[] args)
 {
 TestWeaver.Display.needsRepaint();
 return;
 }
}

Fig. 7: DisplayUpdating aspect

<Pointcuts>
<Pointcut name="move">
 Call(*.* *.Point.setX(..)) ||
 Call(*.* *.Point.setY(..)) ||
 Call(*.* *.Line.setP1(..)) ||
 Call(*.* *.Line.setP2(..)) ||
 Call(*.* *.Point.moveBy(..))||
 Call(*.* *.Line.moveBy(..))
</Pointcut>

</Pointcuts>
<Aspects>

<Aspect name="DisplayUpdating" inherited="true">
 <Method name="move">
 <After>move</After>
 </Method>

 </Aspect >
</Aspects>

Fig. 8: Figure Editor Weaving Specification

public class Buffer
{
 protected object[] buf;
 public int max;
 public int current = 0;

 public Buffer(int max)
 {
 this.max = max;
 buf = new object [max];
 }

 [MethodImpl(MethodImplOptions.Synchronized)]
 public virtual void put(object v)
 {
 buf[current] = v;
 current++;
 }

 [MethodImpl(MethodImplOptions.Synchronized)]
 public virtual object get()
 {
 current--;
 object ret = buf[current];
 return ret;
 }
}

Fig. 9: The Buffer class in C#

public class BufferSyn: NETWeaver.Aspect
{ public BufferSyn():base() { }
 [MethodImpl(MethodImplOptions.Synchronized)]
 public virtual void putsyn(object[] args)
 { object instance = target.Instance;
 Monitor.Enter(this);
 while (((Buffer)(instance)).current>=((Buffer)(instance)).max)
 { Monitor.Wait(this); }
 target.Proceed(args);
 Monitor.PulseAll(this);
 Monitor.Exit(this);
 }
 [MethodImpl(MethodImplOptions.Synchronized)]
 public virtual object getsyn(object[] args)
 { object instance = target.Instance;
 Monitor.Enter(this);
 while (((Buffer)(instance)).current<=0) { Monitor.Wait(this); }
 object ret=target.Proceed(args);
 Monitor.PulseAll(this);
 Monitor.Exit(this);
 return ret;
 }
}

Fig. 10: The BufferSyn aspect

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

The HistoryBuffer class extends the Buffer class with the
method gget that works like the method get but that cannot be
executed immediately after the method get. As shown in Fig.
11, we do not need to rewrite the entire Buffer class code.
Only the gget method functional code is defined. The re-
defined synchronization conditions are implemented in the
HistoryBufferSyn aspect. HistoryBufferSyn aspect is shown
in Fig. 12.

ii. Partitioning of states
Synchronization conditions can be implemented by

describing the enabling of methods according to a partition of
the object’s states. Fig. 13 shows the BufferSynWithStates
aspect that implements the Buffer class synchronization code
with states: empty, partial, and full. In Fig. 14,
StatePartitioningBuffer class extends the Buffer class with the

method get2 that retrieves two elements at once. As shown in
Fig. 14, we do not need to re-define the methods get and put.
Only the get2 method functional code is defined. The re-
defined synchronization conditions are implemented in the
StatePartitioningBufferSyn aspect. The StatePartitioning-
BufferSyn aspect is shown in Fig. 15.

public class HistoryBuffer : Buffer
{
 public HistoryBuffer(int max) : base(max) {}

 [MethodImpl(MethodImplOptions.Synchronized)]
 public object gget()
 {
 return base.get();
 }
}

Fig. 11: HistoryBuffer class

public class HistoryBufferSyn: BufferSyn
{
 public bool afterGet = false;
 public HistoryBufferSyn():base() { }

 [MethodImpl(MethodImplOptions.Synchronized)]
 public override void putsyn(object[] args)
 {
 base.putsyn(args);
 afterGet = false;
 }

 [MethodImpl(MethodImplOptions.Synchronized)]
 public override object getsyn(object[] args)
 {
 object ret=base.getsyn(args);
 afterGet = true;
 return ret;
 }

 [MethodImpl(MethodImplOptions.Synchronized)]
 public virtual object ggetSyn(object[] args)
 {
 object instance = target.Instance;
 Monitor.Enter(this);
 while ((((HistoryBuffer)(instance)).current<=0)||(afterGet))
 { Monitor.Wait(this); }
 object ret=base.getsyn(args);
 afterGet = false;
 Monitor.PulseAll(this);
 Monitor.Exit(this);
 return ret;
 }
}

Fig. 12: HistoryBufferSyn aspect

public class BufferSynWithStates: NETWeaver.Aspect
{
 public bool full;
 public bool empty;
 public bool partial;

 public BufferSynWithStates():base()
 {
 full=false;
 partial=false;
 empty=true;
 }

 [MethodImpl(MethodImplOptions.Synchronized)]
 public virtual void putsyn(object[] args)
 {
 object instance = target.Instance;
 Monitor.Enter(this);
 while (full) { Monitor.Wait(this); }
 target.Proceed(args);
 if(((Buffer)(instance)).current>=((Buffer)(instance)).max)
 {
 partial=false;
 full=true;
 }
 else
 {
 partial=true;
 full=false;
 }
 empty=false;
 Monitor.PulseAll(this);
 Monitor.Exit(this);
 }

 [MethodImpl(MethodImplOptions.Synchronized)]
 public virtual int getsyn(object[] args)
 {
 object instance = target.Instance;
 Monitor.Enter(this);
 while (empty) { Monitor.Wait(this); }
 object ret=(object)(target.Proceed(args));
 if(((Buffer)(instance)).current<=0)
 {
 partial=false;
 empty=true;
 }
 else
 {
 partial=true;
 empty=false;
 }
 full=false;
 Monitor.PulseAll(this);
 Monitor.Exit(this);
 return ret;
 }
}

Fig. 13: BufferSynWithStates aspect

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

iii. Inheriting the aspect code
.NET Weaver solves the difficulty of inheriting the aspect

code by:
 decoupling the aspect code from the weaving
specification.

 supporting sub-aspects.
 Weaving aspects with classes without modifying the
source code of classes and aspects.

Assume, for example, we have developed the aspect
TraceBefore and the weaving specification using the .NET
Weaver as given in Fig. 16 and Fig.17. As shown in Fig 18,
we can modify the weaving specification associated to the
method put without rewriting and recompiling the aspect
code.

public class StatePartitioningBuffer : Buffer
{
 public bool afterGet = false;
 public StatePartitioningBuffer(int max) : base(max) {}

 [MethodImpl(MethodImplOptions.Synchronized)]
 public virtual object[] get2()
 {
 object[] ReturnValues=new object[2];
 ReturnValues[0]=base.get();
 ReturnValues[1]=base.get();
 return ReturnValues;
 }
}

Fig. 14: StatePartitioningBuffer class

public class StatePartitioningBufferSyn:BufferSynWithStates
{ public bool one;

 public StatePartitioningBufferSyn(): base() { one=false; }

 [MethodImpl(MethodImplOptions.Synchronized)]
 public override void putsyn(object[] args)
 {
 base.putsyn(args);
 object instance = target.Instance;
 if(((Buffer)(instance)).current==1)
 one=true;
 else
 one=false;
 }

 [MethodImpl(MethodImplOptions.Synchronized)]
 public override object getsyn(object[] args)
 {
 object instance = target.Instance;
 object ret=(object)(base.getsyn(args));
 if(((Buffer)(instance)).current==1)
 one=true;
 else
 one=false;
 return ret;
 }

 [MethodImpl(MethodImplOptions.Synchronized)]
 public virtual object[] get2syn(object[] args)
 {
 object instance = target.Instance;
 Monitor.Enter(this);
 while (empty ||one) { Monitor.Wait(this); }
 object[] ret=(object[])(target.Proceed(args));
 if(((Buffer)(instance)).current==1)
 one=true;
 else
 one=false;
 if(((Buffer)(instance)).current<=0)
 empty=true;
 else
 empty=false;
 full=false;
 Monitor.PulseAll(this);
 Monitor.Exit(this);
 return ret;
 }
}

Fig. 15: StatePartitioningBufferSyn aspect

public class TraceBefore: NETWeaver.Aspect
{
 protected void print(string methodName,int currentValue)
 {
 Console.Out.WriteLine("Tracing method "+ methodName+" before");
 Console.Out.WriteLine("current= "+currentValue);
 }
 public virtual object AspectMethod(object[]argu)
 {
 print(target.MethodName.ToString(), ((Buffer)(target.Instance)).current);
 return target.Proceed(argu);
 }
}

Fig. 16: TraceBefore Aspect in .NET Weaver

<Pointcuts>
 <Pointcut name="pointcut1">

Call(* TracableBuffer.Buffer.put(..))
</Pointcut>

<Pointcut name="pointcut2">

Call(*.* TracableBuffer.Buffer.get())
</Pointcut>

</Pointcuts>

<Aspects>
 <Aspect name="TracableBuffer.TraceBefore" inherited="true">
 <Method name="AspectMethod">
 <Around>(pointcut1||pointcut2)</Around >
 </Method>
 </Aspect >
</Aspects>

Fig. 17: The weaving specification in .NET Weaver

<Pointcuts>
 <Pointcut name="pointcut1">

 Call(* TracableBuffer.Buffer.put(..))
</Pointcut>

 <Pointcut name="pointcut2">
Call(*.* TracableBuffer.Buffer.get())

 </Pointcut>
 <Pointcut name="pointcut3">

Call(* TracableBuffer.SpecialBuffer.put(..))
 </Pointcut>

</Pointcuts>

<Aspects>
 <Aspect name="TracableBuffer.TraceBefore" inherited="true">
 <Method name="AspectMethod">
 <Around>(pointcut1||pointcut2)&&(!pointcut3)</Around >
 </Method>
 </Aspect >
</Aspects>

Fig. 18: Modifying the weaving specification associated to the method put

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Now consider that we want to refine the aspect TraceBefore

by defining the sub-aspect TraceBeforeSub, which redefines
the method AspectMethod and trace the start of execution of
the method put in the subclass SpecialBuffer. As shown in
Fig. 19 and Fig. 20, we do not need to rewrite the aspect code
or the weaving specification. The modification is only as long
as needed.

C. PERFORMANCE
.NET Weaver addresses program complexity by reducing

the number of lines of code in an application. This is
confirmed when we compare the number of lines of code that
.NET Weaver requires to implement the Figure editor example
in Fig. 6 to the number of lines of code required by other
aspect-oriented tools to implement the same functionality.
This comparison is shown in Table 1, which provides the
source code line count for implementing the Figure editor
example in regular C#, .NET Weaver, EOS, LOOM.NET, and
AspectC#.

Table 1: Comparison of lines of source code in the Figure editor example

C# .NET Weaver EOS LOOM AspectC#

Number
of lines 154 140 173 190 255

As shown in Table 1 .NET Weaver reduces 9% of lines of

source code. This line count is on the code size of the C#
implementation. Unfortunately, our comparison is somewhat
native, as the .NET Weaver and AspectC# source code size
does not take into account the XML weaving specification.

Table 2 shows the execution times of the Figure editor
example implemented in C#, .NET Weaver, EOS,
LOOM.NET, and AspectC#. Although .NET Weaver
increases the program execution time compared with the
regular C#, its performance is better than the others.

Table 2: Comparison execution time of the Figure editor example in different
languages (Time in Microseconds)

C# .NET Weaver EOS LOOM AspectC#

866,637 1,034,150 5,372,101 5,630,869 2,008,097

.NET Weaver uses JIT weaver at run-time which means

that it adds more run-time penalty to the program execution.
The weaving process is done once on executing the program
for the first time only. In other words, the first execution time
of the program is increased by the weaving time. After the
first execution time of the program is done, the weaving time
will never be added again to the execution time. Table 3
shows the weaving times for weaving aspects with
components in the Figure editor example. The execution and
weaving times in Table 2 and 3 are the averages of 10 trials.

Table 3: Weaving times for the Figure editor in different aspect-oriented
languages (Time in Microseconds)

.NET Weaver EOS LOOM AspectC#

636,865 585,636 244,482 1,068,629

In dynamic weaving languages, like LOOM, the weaving

time is added to each program execution time. In EOS and
AspectC#, the weaving is done statically at compile-time.
Therefore, there is no run-time overhead. The total execution
times are shown in Table 4.

Table 4: Comparison of total execution times of the Figure editor example in
different languages (Time in Microseconds)

C#

.NET

Weaver
EOS LOOM AspectC#

The first

execution

time

866,637 1,671,015 5,372,101 5,875,351 2,008,097

The

second

execution

time

866,637 1,034,150 5,372,101 5,875,351 2,008,097

N 866,637 1,034,150 5,372,101 5,875,351 2,008,097

Fig. 21 compares the execution times for the same

programs with the same numbers of source code lines
implemented in C# and .NET Weaver. As shown in Fig. 21,
.NET Weaver increases the program execution time by an
amount that does not depend on the program size. Therefore,
in large applications the execution time overhead is not
noticeable.

IX. CONCLUSIONS AND FUTURE WORK
This paper has presented the .NET Weaver, an aspect-oriented
approach that is designed and implemented on the .NET
platform. This implementation takes advantage of the
language independence features present in the .NET platform.

public class TraceBeforeSub: TraceBefore
{
 public override object AspectMethod(object[]argu)
 {
 print(target.DeclaringType.ToString()+"."+target.MethodName.

ToString(), ((Buffer)(target.Instance)).current);
 return target.Proceed(argu);
 }
}

Fig. 19: The TraceBeforeSub Aspect in .NET Weaver

<Aspect name="TracableBuffer.TraceBeforeSub" inherited="true">
 <Method name="AspectMethod">
 <Around>pointcut3</Around>
 </Method>
</Aspect >

Fig. 20: The weaving specification in XML file

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

N u m b e r o f s o u rc e c o d e l i n e s

.NET Weaver
C#

The weaving specification is written in XML to avoid the

need to recompile the components to store the crosscutting
semantics. .NET Weaver does not suffer from inheritance
anomaly problem (as was discussed in section 6), whereas
most of the current aspect-oriented languages suffer from this
problem.

A number of issues were not covered in this paper; these

are the subjects of our future research. One of these issues is
the weaving of aspects with aspects. Weaving aspects with
aspects increases the reusability of aspects and reduces the
number of lines of code.

In addition, we intended to evaluate our approach with

different types of anomaly, for example, real-time constraints
inheritance anomaly. Recently, there have been some attempts
in defining real-time object-oriented languages. Similar to
concurrent object-oriented languages, real-time object-
oriented languages may suffer from the real-time constraints
inheritance anomaly. In contrast to concurrent object-oriented
languages, there has been almost no study on the origins of the
real-time constraint inheritance anomaly problem. Needless to
say, the combined analysis of concurrent and real-time
constraint inheritance anomalies has not been addressed,
although most real-time systems are concurrent. Finally, we
evaluated our approach with C++, C#, VB.NET, and J# and
we are keen to evaluate our approach with other .NET
languages.

X. REFERENCES
[1] L. Crnogorac, A. Rao, and K. Ramamohanarao, “Inheritance anomaly - a

formal treatment”, FMOODS'97, England, July 1997, pages 319--334.
Available: http://citeseer.ist.psu.edu/article/crnogorac97inheritance.html

[2] S., Matsuoka, and A., Yonezawa, “Analysis of inheritance anomaly in

object-oriented concurrent programming language”, In Research
Directions in Concurrent Object-Oriented Programming, pages 107–150,

1993. Available: http://citeseer.ist.psu.edu/cache/papers/cs/3223/
ftpzSzzSzcamille.is.s.u-tokyo.ac.jpzSzpubzSzpaperszSzbook-
inheritance-anomaly-a4.pdf/matsuoka93analysis.pdf

[3] G., Milicia, and V., Sassone, “The inheritance anomaly: ten years after”,

SAC’04, March 14–17, 2004, Nicosia, Cyprus. ACM 1-58113-812-1/
03/04.Available: http://www.cogs.susx.ac.uk/users/vs/research/paps/
anomalySurvey .pdf

[4] R. Kaiser, “Aspect Oriented Programming”, Technical Report Number

CTU-CS-2002-006, Colorado Technical University, 2002. Available:
http://iis-
web.coloradotech.edu/Computer_Science/Tech_Reports/KaiserTR.pdf

[5] W. Hürsch and C. Lopes, "Separation of concerns", College of

Computer Science, Northeastern University, Boston, MA 02115, USA,
February 24, 1995. Available: ftp://www.ccs.neu.edu/pub/people/crista/
papers/ separation.ps

[6] J. Aldrich, “Evaluating Module Systems for Crosscutting Concerns”,

Ph.D. General Examination Report, Department of Computer Science
and Engineering, University of Washington, September 28, 2000.
Available: http://www.cs.washington.edu/homes/jonal/papers/
generals.pdf

[7] F. Holljen, “Compilation and Type-Safety in the Compose* .NET

environment”, M.Sc. thesis, University of Twente, May 6, 2004.

[8] G. Tandon and S. Ghosh, "Using Subject-Oriented Modeling to Develop

Jini Applications", In Proceedings of the 8th IEEE International
Enterprise Distributed Object Computing Conference (EDOC 2004), pp.
111-122, Monterey, California,2004. Available: September 20-24, 2004.
http://www.cs.colostate.edu/~ghosh/papers/edoc2004.pdf

[9] H. Ossher and P. Tarr. "Multi-Dimensional Separation of Concerns and

The Hyperspace Approach." In Proceedings of the Symposium on
Software Architectures and Component Technology: The State of the Art
in Software Development. Kluwer, 2000. Available:
http://www.research.ibm.com/hyperspace/Papers/sac2000.pdf

[10] E. Kendall, “Aspect-oriented Programming in AspectJ”, Evolve 2000,

Sydney, March, 2000. Available: http://www.pscit.monash.edu.au
/~kendall/evolve2000.pdf

[11] A. Downey, “The Little Book of Semaphores”, The Free Software

Foundation, Second Edition, 2007, page 71. Available:
http://greenteapress.com/semaphores/downey05semaphores.pdf

[12] D. Lafferty, “Aspect-Based Properties”, Ph.D. thesis, University of

Dublin, Trinity College, October 2004. Available: http://www.precise-
concise.com/Thesis_Final.pdf

[13] S. Almajali and T. Elrad, “A Dynamic Aspect Oriented C++ using MOP

with Minimal Hook Weaving Approach”, Aspect-Oriented Software
Development conference, Lancaster, England, March, 2004, pages 1-8.

[14] I. Jacobson, G. Booch, and J. Rumbaugh, “The Unified Software

Development Process”, Addison-Wesley, 1999.

Fig. 21: The execution time overhead does not depend on the program size

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

