
 
 

 

  
Abstract—Database outsourcing is becoming increasingly 

popular, which leads to a new scenario, called 
database-as-a-service where an organization’s database is stored 
at an external service provider[14].  In such a scenario, it’s very 
important to control the access to the database if the data owner 
wishes to publish his or her data for external use.  Previous 
researchers had made many efforts in designing and querying 
encrypted outsourced databases aiming at  protecting data on the 
server side.  However, protecting outsourced database from the 
unauthorized access on the client side is still an open issue.  Since, 
knowledge of the decryption key allows clients to not only access 
authorized data, but also the entire outsourced database, which 
violates data confidentiality and owners privacy.  This paper 
addresses one of the major deficiencies of the outsourced database 
model: confidentiality.  We propose a key management schema 
which is suitable for the dynamic environment.  This schema can 
be efficiently applied to the outsourced databases and is based on 
the widely used Rivest-Shamir-Adelman (RSA) cryptographic 
algorithm. 
 

Index Terms— database-as-a-service(DAS), security, access 
control, outsourced database.  
 

I. INTRODUCTION 
The Internet has made it possible for all computers to be 

connected to one another. It has facilitated an opportunity to 
provide data usage over the Internet, and has led to a new 
category of businesses called “application service providers” or 
ASP [2]. ASPs make it possible that  worldwide can use data 
over the Internet. They can also  provide storage and file access 
as services, that is, database as a service.  Database as a service 
inherits all the advantages of the ASP model since a great 
number of organizations have their own database management 
systems (DBMS).  The challenge is the feasibility of providing 
the next value-add layer in data management. 

The solution is outsourced database model, which allows 
organizations to reduce cost by using the related hardware and 
software services provided by the service providers, without 
having to develop their own.  In this model, database owners 
(e.g., an organization) outsource their data management needs 
to an external service provider.  Organizations rely on the 
premises of the provider for the storage, maintenance, and 
retrieval of their data.  A third-party database service provider 

 
The authors are with the Computer Science Department, California State 

University at Los Angeles, Los Angeles, CA 90032.  Email:  
hpguo@calstatela.edu 

hosts client's databases and offers mechanisms to efficiently 
create, update and query  outsourced data.   

Database outsourcing is becoming increasingly popular in 
recent years because it offers great advantages of cost 
reduction, team of expert resources and also better database 
protection to the organizations that outsource their data.   First, 
it provides significant cost savings over the full time resources 
and consultants.  Second, organizations receive better support 
system for the databases. Most of the outsource companies 
provides all day long support for critical databases, which 
ensures higher availability and more effective disaster 
protection.  Perhaps more importantly, it offers a way to share 
the expertise of database professionals, thereby cutting the cost 
of managing a complex information infrastructure, which is 
important both for industrial and academic organizations [4].  
For the public sector, this is effective solution for the 
unclassified type projects with limited budgets. 

From the technological angle, the DAS model introduces 
numerous research challenges and thus has rapidly become one 
of the hot topics in the research community [14, 5, 11, 6, 13]. 

As mentioned, in DAS model, a database owner stores its 
private data at an external service provider, who is typically not 
fully trusted. Therefore, securing outsourced data, i.e. making it 
confidential, is one of the foremost challenges in this model. 
Basically, regardless of the untrusted server at the provider’s 
side, the final goal that database owner’s want is that they can 
use the outsourced database service as an in-house one.  This 
includes a requirement that users can operate on outsourced 
data without a leak of sensitive information. This requirement 
in turn poses several additional challenges related to 
privacy-preserving for user’s queries as well as for the 
outsourced data during the execution of operations at the 
untrusted server. 
Overall, with an assumption that server side is not trusted and 
users of the database is trusted only with the data that they have 
privilege to access; the following security requirements must be 
met: 

• Data confidentiality: outsiders and the server’s operators 
(database administrators) cannot see the owner’s outsourced 
data contents in any cases.  Users of the database have only 
partial access to the outsourced data, they can not access whole 
database, but only the part that owner allowed them to see.  

• Owner privacy: owner does not want the server to know 
about their queries and the returned results. 

• Authentication and data integrity: database users must be 
ensured that data returned from the untrusted server is 
originated from the data owner and has not been tampered with. 

Dynamic Group Key Management in 
Outsourced Databases 

Alla Lanovenko and  Huiping Guo 

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



 
 

 

The above security requirements are different from the 
traditional database security issues [29, 30] and can not be 
taking care of by build-in functions in existing database 
products such as Oracle, Microsoft SQL Server or IBM DB2. 

In this paper, we concentrate on addressing the first two 
security objectives for the outsourced databases that come 
together with access control as discussed below.  

These first two security objectives are obviously related to 
each other. To deal with the data confidentiality issue, 
outsourced data is usually encrypted before being stored at the 
external server.  By encrypting the data, the database owner can 
ensure  that  no one except the permitted users can read the data.  
Although this solution can protect the data from outsiders as 
well as the server, it introduces difficulties in querying process: 
it is hard to protect the database owner privacy as performing 
queries over encrypted data.   

The existing proposals for outsourced databases security 
only focus on protecting data on the server side, and assume the 
client has complete access to the query result [1, 8, 9, 11]. In 
these schemes,  a single key is used to encrypt all tuples, so the 
knowledge of the key grants complete access to the whole 
database. Obviously, this type of assumption would not fit in 
real world, where the data owners often require enforcing 
access restrictions to different sets of users. In the real world, 
we can’t allow users to see the whole database. There is some 
restricted information such as credit card information, bank 
account information, social security information of other users, 
which can be misused.  Rather than using a single key to 
encrypt whole database, we can use different keys to encrypt 
different data.  To access the encrypted data, users need to 
know the decryption algorithm and the specific decryption key 
to decrypt the data. 

The existing group key management for dynamic 
environment suggests the group key has to be re-encrypted 
each time a user leaves or joins the group [1, 5].  However, 
re-encrypting the database whenever there is a change in the set 
of users is not feasible.  Hence, this approach would be highly 
inefficient.  

In this paper, we propose a secure group key management 
schema that is suitable for dynamically changing group 
environment. Our schema performs scalable 
encryption/decryption algorithm both at the server side and the 
client side using key pairs generated from the group keys based 
on most widely used Rivest-Shamir-Adelman (RSA) 
cryptographic algorithm.  Without re-encrypting outsourced 
data each time group membership is changed, this schema 
ensures security and confidentiality to the database.  It protects 
outsourced data not only from the untrusted server, but also 
solves the problem of unauthorized access of the group 
members that are evicted from the group and other intruders.  
We also present the experimental results, which demonstrate 
the applicability of our proposal.  

The rest of this paper is organized as follows: Section 2 
presents previous and related work.  Section 3 is dedicated to 
presenting our contributions to solve the problem radically. 
Experimental results are shown in section 4 and section 5 
concludes the paper. 

II. REALTED WORK 
Outsourced databases are typically composed of three 

entities that are database owner, database users (clients) and 
server.  Database-as-a-service (DAS) model poses many 
significant challenges.   In such model owner’s database is 
stored at a third-party database service provider (server), which 
is not trusted.  Untrusted server hosts owner’s databases and 
offers mechanisms to efficiently query outsourced data. 

The main problem with DAS model is that sensitive data are 
stored on a third party site which is not under the data owner’s 
direct control; thus, data privacy and security can be put at risk.  
Ensuring an adequate level of protection to databases’ content 
is therefore an essential part of any comprehensive security 
program.  Database encryption is a time-honored technique that 
introduces an additional layer to conventional network and 
application-level security solutions, preventing exposure of 
sensitive information even if the database server is 
compromised [13].  Database encryption prevents unauthorized 
users, including intruders braking into a network, from seeing 
sensitive data in databases; similarly, it allows database 
administrators to perform their task without being able to 
access sensitive information (e.g., sales or payroll figures) in 
plaintext.  However, a simple solution that  store only  the 
encrypted database on the external server does not work, 
because it disables the ability of the external server to query the 
encrypted database. Since the external server is not trusted, it is 
required that data only be  decrypted on the client  side. To 
solve this problem, we need techniques which enable external 
servers to execute queries on encrypted data. In this way, all the 
relations involved in a query do not have to  be sent to the client 
for query execution. To execute query over encrypted data 
different indexing methods have been proposed, each one 
suitable for the remote execution of a particular kind of query. 
The index of range technique proposed [2] to support efficient 
evaluation on the remote server of both equality and range 
predicate query.  This work relies on partitioning client tables’ 
attributes’ domains into sets of intervals. The value of each 
remote table attribute is stored as the index countersigning the 
interval to which the corresponding plain value belongs. 
Indexes may be ordered or not, and the intervals may be chosen 
so that they have all the same length, or are associated with the 
same number of tuples.  

In [10, 13] the authors present a method for databases based on 
hash. The proposed schemes are suitable for selection queries, 
but they do not support well interval-based queries. To enable 
interval-based queries, the authors in [3] adopt the B+-tree 
structures which are typically used in DBMSs. Furthermore, to 
allow aggregation queries on encrypted databases, privacy 
homomorphism is proposed in [15, 12]. In these schemes, an 
encrypted table is stored on the server with an index for each 
aggregation attribute, which is an attribute on which the 
aggregate operator is applied. By computing the aggregation on 
the server side and  decrypting the result on the client side, an 
operation on an aggregation attribute can be evaluated. In this 
way, arithmetic operations but not comparison operations can 
be performed[7]. In order to support range queries on encrypted 
tables,  an order preserving encryption schema is proposed in 

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



 
 

 

[3]. This scheme  only applies to  integer values and the query 
results are complete but contain redundant tuples. 

In the existing schemes for designing encrypted outsourced 
databases [2, 8, 9, 14], it is  assumed that the entire database is 
encrypted with a single key and the users are granted the key. 
The assumption is only limited to protecting data on the server 
side and the users have complete access to the database. 
However, in real world, complete access to the encrypted 
outsourced data is not acceptable. It is desirable that the users 
can only have selective access to the encrypted data. Though 
DAS scenario has been studied in depth in the last few years, 
the problem of guaranteeing an efficient mechanism for 
implementing selective access to the remote database is still an 
open issue, despite the fact that the access control is an 
important entity in outsourced database security. Proposed 
access control mechanism [1] exploit data encryption by 
including authorization in the encrypted data themselves. In 
this way it enforces access restriction to deferent sets of users. 
The scheme uses different encryption keys to encrypt different 
data. Users have to use the encryption algorithm and the 
specific key to decrypt the encrypted data in order to access 
them. If the decryption key  is differentiated based on the users' 
identity, different users are given different access rights. 

This paper proposed a different method where users are 
grouped with the same access privileges and each tuple (or 
group) is encrypted with the key associated with the set of users 
that can access it. The proposed scheme is described in detail in 
the next section. 
 
 

III. DYNAMIC GROUP KEY MANAGEMENT IN OUTSOURCED 
DATABASE 

 
Previously proposed access control mechanism for the DAS 

model on the client side is limited to the static groups.  
Whenever group membership changes,  outsourced database 
has to be re-encrypted in order to protect database contents.  
This solution is not efficient and does not fit real world 
applications where authorizations, users and objects can be 
dynamically changed.  In this section, we present a novel group 
key management schema, which is suitable for dynamic 
groups.  Our group key distribution schema is based on 
modification of widely used Rivest-Shamir-Adelman (RSA) 
cryptographic algorithm.  This schema solves the database 
re-encrypting problem in the event when group membership 
changes dynamically (i.e, eviction of the group member).  It 
efficiently solves the security problem of data confidentiality 
and owner privacy. 

Our key distribution scheme is designed to keep database 
encrypted with the same group key while protecting database 
from the access of unauthorized users.  We conduct group key 
distribution scheme in order to avoid the needs of database 
re-encryption in case of group evict or join events. 

Below, we list the main notations (Table 3.1) used in the 
paper. 

Notation Description 
N 
K 

GR0 
U 
I 

Ke 
Kd 
Kd1 
Kd2 
DAS 

C 
C’ 
Ee 
Dd 

ASP 
RSA 
Mod 

n 

Universe of all users 
Set of all possible secrets 

Initial user group 
User 

Group or user index or identifier 
Group encryption key 
Group decryption key 

Group subkey for the group users 
Group subkey for the server 
Database-as-a-service model 
Ciphertext or encrypted text 

Ciphertext 
Encrypt with group encryption key 
Decrypt with group decryption key 

Application service provider 
Rivest-Shamir-Adelman cryptographic algorithm 

Modulus 
A big number 

 
Table 3.1  Notations 

A. System description 
All the users of the outsourced database are divided into 

different groups.  Users with the same database access privilege 
are grouped together and can access the same part of the 
outsourced data.  Each group of database users has a  pair of 
keys and modulus.  One key is called encryption key Ke and 
another key is a decryption key Kd. These keys and the 
modulus n (mod n) are generated by the database owner using 
RSA algorithm.   

Encryption key Ke and decryption key Kd are kept secret by 
the database owner and never should be revealed neither to the 
group members, nor to the untrusted server.    

• Group encryption key Ke  is used by the database owner to 
encrypt a set of tuples in the database based on group 
access privilege such that  

                              C =  EKe [ Data ] mod n                     (3.1) 
    Where C is ciphertext (or encrypted data),  EKe is the  

encryption function that  takes encryption key and  plain  
text (Data), mod n, and  produces ciphertext C.  

    
• Group decryption key Kd is used by the owner to randomly 

generate a pair of group subkeys Kd1 and Kd2  such that 

       DKd [ C ] mod n <=>  DKd1 [ DKd2 [ C ] ] mod n    (3.2)                   

Where function DKd2 [ C ]  takes ciphertext  and subkey. 
Kd2 and generates ciphertext C’, and function DKd1 [ C’ ] 
takes ciphertext C’  and subkey Kd1, mod n and produces 
the same result as it would been produced by the function 

DKd [ C ] mod n, or by applying the decryption key Kd  mod n.  
Thus, by applying decryption key Kd in a form of  key pair Kd1 
and Kd2  outsourced data can be decrypted on the user side:  

Data =  DKd [ C ] mod n                                   (3.3) 

or the same result can be acquired as follows: 

Data = DKd1 [ DKd2 [ C ] ] mod n                   (3.4) 

   
By hiding both encryption key and decryption key from the 
group members and from the untrusted server in this way, we 
are solving a major problem of access control technique 

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



 
 

 

described before. This problem involves re-encrypting the 
outsourced databases by the owner in the case of dynamic 
group of users.  In particular, whenever a user leaves a group, 
the database owner has to re-encrypt the database with a new 
key to prevent leak of information, so that the evicted user can 
not access the database anymore. This involves a lot of 
performance overhead and becomes practically impossible for 
large databases accessed by a dynamic group of users. To solve 
this problem, there should be some way of preventing the 
access of the database from the evicted user without having to 
re-encrypt the whole database frequently. Instead of disclosing 
the whole decryption key to the users only a decryption subkey 
is disclosed to them.  This subkey can be changed and securely 
transmitted to all the authorized users whenever a group user is 
evicted from the group. Hence according to the proposed 
schema, by keeping the encryption and decryption keys secret 
from the group users, an evicted member will never be able to 
access the decrypted sensitive data from the encrypted 
outsourced database anymore.   

B. System architecture 
 
 Our group key distribution schema uses centralized setting. 
There is a single trusted entity, database owner that decides and 
manages the system keys, including system setup and keys 
update.  This setting is mostly suitable for one-to-many group 
where there is a single sender and a large number of receivers.  
Thus, it perfectly fits in the DAS model. 
  Dynamic group key management schema includes tree 
entities data owner, server and user, as shown in Figure 3.1: 

 Figure 3.1:  Dynamic group key management schema 
The roles of the DAS entities in this dynamic group key 
management schema are as follows: 

• Database owner: is responsible for producing, distributing, 
managing and updating group keys. 

• Group User:  decrypts the result from the server using the 
first part of the group decryption subkey Kd1 in the 
decryption algorithm in order to get the plaintext result.  

• Server:  is responsible for producing the query result on the 
encrypted database, decrypting the result with the second 
part of the group decryption subkey Kd2 and sending 
encrypted result to the group user. 

C. Group Key Distribution Model 
Let the set N denote the universe of all users, and let K denote 

the set of all possible secret keys in the system.  There is a 
trusted entity, called the database owner that initializes the 
system, and an initial group of users GR0 = {U1, U2,… , Un} ⊆ 
N.  Each user Ui∈GR0  holds a secret key K(GRi) ⊂K. The 
index i is a unique group number identifier.  In the groups 
initialization, database owner generates group keys, gives 
secret information to each initial user and the server by using 
secure communication protocol (ex. Diffie-Hellman Key 
agreement protocol).   

After the initialization phase, the system is dynamic and its 
lifetime consists of lifetime of all the groups.  Group keys 
GRi∈K are shared by users belonging to a particular group i, 
while unauthorized users not belonging to this group do not 
share those keys.  The collection of group keys {GR1, GR2, …, 
GRn} ⊂K. 

There are three events in the system: initialization, 
adding new group member, and evicting existing 
group member.  These events will be described in 
following steps: 
1) Initialization phase 

Initialization phase establishes group keys.  A group 
initialization is performed by the database owner.  Recall that 
GRi is the initial group of n0 users. 

a) The database owner uses RSA cryptographic algorithm 
to generate two keys: group encryption key  (Ke , n) and 
group decryption key (Kd  , n). 

b) The database owner randomly splits decryption key Kd  
on two parts and produces two group subkeys Kd1  and 
Kd2. 

c) The database owner sends to each user Ui  ∈ GRi  a 
subkey Kd1 and modulus n.  Group members hold a 
group subkey Kd1 and mod n as their secret key. 

d) The database owner sends to the server a group subkey 
Kd2.  The Server holds a group subkey Kd2  as group 
GRi secret key. 

e) Database owner encrypts set of tuples to which group 
members have access with group GRi encryption key 
(Ke, mod n) and store them in the outsourced database. 

 
2) Adding a group member 
Adding a new member to a group does not require re-keying 

the group keys.  While adding a new member Ui to a group 
GRi, users’ group subkey Kd1 is sent by the database owner to 
the new group member through the secure channel.  Upon 
receiving a group key Kd1 the new group member can access 
the server, query the outsourced database and using the group 
key Kd1   to decrypt the result received from the server.  Table 
3.2, shows the process of adding a new group member: 

 

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



 
 

 

 
Figure 3.2:  Group keys tree 

 

 
Table 3.2:  Add event 

 
3) Evicting a group member 
 
 The evict operation is most demanding because it 
necessitates a compromise re-keying, where the group subkeys 
have to be changed in order to prevent the evicted member of a 
group from accessing the restricted data.   When a group 
member Ui is evicted from the group GRi  database owner has 
to go through three steps: 

a) In this step database owner has to establish new group 
subkeys Kd1 and Kd2 in order to prevent evicted user from 
accessing constrained data.  The database owner generates a 
new pair of group GRi  subkeys  Kd1’ and Kd2’ from the 
existing group GRi decryption key Kd , such that  Kd1’ ≠ Kd1   
and  Kd2’  ≠    Kd2.  

b) The database owner sends the new users’ group GRi 
subkey Kd1’ to all the group members. 

c) The database owner sends new group GRi subkey Kd2’ to 
the server. 
 

Every time group keys has to be send by the database owner 
to the database users or to the server through unsecured 
channels, they have to be secured with one of the cryptographic 
protocols (e.g. Diffie-Hellman key exchange cryptographic 
protocol).  
 

 
Table 3.3:  Evict event 

Whenever a group user is evicted from the group, the 
database owner does not have to re-key the group decryption 
key Kd  and group encryption key Ke because both keys are 
secret to the group members. Only the group subkeys Kd1 and 
Kd2 need to be changed since the knowledge of these subkeys 
grants the evicted group member access to the database.  The 
advantage of this proposed key distribution schema is that the 
outsourced database owners do not have to re-encrypt all or 
part of the database every time a user is evicted from the group 
to protect the database from unauthorized access by evicted 
users.  Re-encrypting outsourced database each time a group 
membership changes (member eviction) is not efficient.  Our 
proposal solves this problem; hence, it improves the outsourced 
database performance. 

D.  Query processing 
User Ui is belongs to a particular group GRi.  

Whenever user Ui needs to retrieve data from the outsourced 
database he or she generates a query (1).  Each query is mapped 
onto a query on encrypted data, which is based on the use of 
indexing information associated with each relation in the 
encrypted database [2, 13] and (2) it is then sent to the server.  
Server on receiving queries from the group member Ui 
processes the query [2, 13].  The result of this query is a set of 
encrypted tuples, which had been encrypted by the database 
owner with the group GRi encryption key Ke such that C =  
EKe [ Data ] mod n. 

 
Figure 3.3: Owner encrypts database with group encryption key 

 
The query result is decrypted by the server with group subkey 
Kd2 that is stored on the server such that C’ = DKd2 [ C ]  (C is 
the encrypted result from the database, C’ is the result of the 
decryption function performed by the server that is still 
encrypted data, D is decryption).  The user Ui on receiving the 

Group keys 

(Ke,n) (Kd, n) 
Kd = Kd1 * Kd2

Kd1 Kd1 

(user key) (server key) 

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



 
 

 

result from the server, using decryption algorithm and group 
GRi subkey Kd1, decrypts data as follow:  Data = DKd1 [ C’ ], 
discard spurious tuples that may be part of the result and gets 
final plaintext result.  All the mappings are based on catalogs 
stored at the user side that describe the structure of the remote 
database [4]. 

 
Figure 3.4:  Query processing 

 

IV. EXPERIMENTAL RESULTS 
For the experiment we used the programming language Java 

with the following characteristics:  JDK1.4. We also used 
Microsoft Access database for the data storage. Real data are 
encrypted and stored in the database.In table Customerk 
{etuple, CustomerInd, AccountInd, AmountInd, Subkey}, 
etuple column is an encrypted data, CustomerInd, AccountInd, 
AmountInd columns are indexes that used to retrieve the data 
and Subkey column is used to decrypt tuples in the table with 
group GRi subkey KGRd2.  There are six tuples in the table. 
The members in group 1 can see the first four tuples while 
members in  group 2 can only see the last two tuples. 

The query “Select * from the Customer” of a group 1 
member is mapped to the query “Select etuple from the 
Customer* and send to the server.  The result of this query, all 
the tuples in the table are decrypted with group 1 subkey 2 and 
send to the user.  On receiving the result from the server, user 
decrypts the query result with the group subkey 1 stored on the 
user side. 

First four tuples in this test are accessible for the group 1 
members and tuple five and six are accessible for group 2 
members.   

The above test is shown that even group 1 members can 
retrieve all the tuples in the table they can only view tuples 1, 2, 
3, and 4, the tuples that they have privilege to see. The other 
tuples (e.g. tuples 5 and 6) are still unreadable to the group 1 
members. 

V. CONCLUSION 
Selective access to the encrypted  database is a very 

important issue in the DAS scenario, especially the encrypted 
database is published on un-trusted third party’s server for 
external use.  In this paper, we propose a scheme which enables 
users selective access to the encrypted database.  Based on the 
modification of the RSA cryptographic algorithm, we present a 

key management schema for outsourced databases.  This 
schema applies to the dynamic environment where 
authorizations and users can dynamically change.  

 
 

REFERENCES 
 [1] Ernesto Damiani, S. De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, 
Stefano Paraboschi, Pierangela Samarati, Key Management for Multi-User 
Encrypted Databases, Proceedings of the 2005 ACM workshop on Storage     
security and survivability, November 2005. 
 
[2] H. Hacig¨um¨us, B. Iyer, S. Mehrotra, and C. Li. Executing SQL over   
encrypted data in the database-service-provider model. In Proc. of the ACM    
SIGMOD’2002, Madison, WI, USA, June 2002. 
 
[3] R. Agrawal, J. Kierman, R. Srikant, and Y. Xu. Order preserving encryption  
for numeric data. In Proc. of ACM SIGMOD 2004, Paris, France, June 2004. 
 
[4] E. Damiani, S. De Capitani di Vimercati, S. Foresti, . Jajodia, S.Paraboschi,  
and P.Samarati. Metadata management in outsourced encrypted   databases. In 
Proc. of the 2nd VLDB Workshop on Secure Data Management (SDM’05), 
Trondheim, Norway, September 2005. 
 
[5] Alan T. Sherman and David A. McGrew. Key Establishment in Large 
Dynamic Groups Using One-Way Function Trees. IEEE Transactions on   
Software Eng., 29(5):444–458,  2003. 
 
[6] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing.  
In Proc. CRYPTO 01, pages 213–229, 2001. 
 
[7] C. Boyens and O. Gunter. Using online services in untrusted environments – 
a privacy-preserving architecture. In Proc. of the 11th European Conference   on  
Information Systems (ECIS ’03), Naples, Italy, June 2003. 
 
[8] R. Brinkman, J. Doumen, and W. Jonker. Using secret sharing for searching 
in encrypted data. In Proc. of the Secure Data Management Workshop,  
Toronto, Canada, August 2004. 
 
[9] A. Ceselli, E. Damiani, S. De Capitani di Vimercati, S. Jajodia, 
S.Paraboschi, and P. Samarati. Modeling and assessing inference exposure in 
encrypted   databases. ACM Transactions on Information and System Security 
(TISSEC),      8(1):119–152, February 2005. 
 
[10]  E. Damiani, S. De Capitani di Vimercati, M. Finetti, S. Paraboschi, 
P.Samarati, and S. Jajodia. Implementation of a storage mechanism for 
untrusted DBMSs. In Proc. of the Second International IEEE Security in 
Storage Workshop, Washington DC, USA, May 2003 
 
[11] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in  
outsourced database. In Proc. of the 11th Annual Network and Distributed   
System Security Symposium, San Diego, CA, USA, February 2004. 
 
[12] H. Hacig¨um¨us and S. Mehrotra. Performance-conscious key 
management in encrypted databases. In DBSec, pages 95–109, 2004. 
 
[13] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and 
P.Samarati. Balancing confidentiality and efficiency in untrusted relational  
DBMSs. In Proc. of the 10th ACM Conference on Computer and 
Communications Security, Washington, DC, USA, October 27-31 2003. 
 
[14] E. Mykletun, M. Narasimha, G. Tsudik. Authentication and Integrity in 
Outsourced Databases. The 11th Annual Network and Distributed System  
Security Symposium – NDSS2004, San Diego, California, USA, February 5-6, 
2004 
 
[15] H. Hacig¨um¨us, B. Iyer, and S. Mehrotra. Efficient execution of  
aggregation queries over encrypted relational databases. In Proc. of the 9th  
International Conference on Database Systems for Advanced Applications, Jeju 
Island, Korea, March 2004. 

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007


