

Abstract—In-vehicle infotainment applications often have to

contend with different degrees of unpredictability. These
applications can benefit if they can specify quality requirements to
the service they access.

This paper presents our attempt to apply Model Driven
Architecture (MDA) technology to integrate the Quality of Service
(QoS) requirements for In-vehicle Human Machine Interface
(HMI) clients of infotainment applications. QoS subsystem of
Human Machine Interface framework provides the essential QoS
modelling support to specify QoS related requirements. QoS
modelling constructs and components of the Infotainment Human
Machine Interface Framework (iHMIFw) support construction of
platform independent model of infotainment HMI applications
with required QoS specifications. A model transformation has
been described that is supported by the framework and results into
XML description of QoS specifications.

Index Terms— Human Machine Interface (HMI) Framework,
Model Driven Architecture, Quality of Service, Unified modelling
Language (UML).

I. INTRODUCTION

The amount of infotainment software components in modern
cars is increasing at a breathtaking pace. With the development
of infotainment functionality, the car is becoming an
information hub where functions of Mobile Phones, Laptops
and PDAs are interconnected using wired and wireless network
technologies (UMTS, Bluetooth, WiFi) via and with car
information systems. Increasingly, the on-board electronics
systems establish communication links beyond car boundaries,
enabling various applications relating to, among others, sharing
of infotainment content, remote vehicle analysis, software
updates, global positioning and emergency services,
inter-vehicle communication for crash prevention and automatic
convoy forming.

Hemant Sharma is Software Engineer at Delphi Delco Electronics Europe
GmbH, Bad Salzdetfurth, Germany. (e-mail: hemant.sharma @ delphi.com).

Lokesh Madan is Technical Manager at Delphi Delco Electronics Europe
GmbH, Bad Salzdetfurth, Germany. (e-mail: hemant.sharma @ delphi.com).

Dr. A. K. Ramani, is Professor at School of Computer Science, Devi Ahilya
University, Indore, INDIA. (e-mail: headscs@dauniv.ac.in).

In-vehicle infotainment applications often have to contend with
different degrees of unpredictability, which arise from several
factors, such as unanticipated faults in the system and transient
overloads caused by sharing the available in-vehicle network
and computing resources with other applications. Owing to this
unpredictability, infotainment applications can benefit if they
are allowed to specify and control the quality-of-service (QoS)
they receive from the services they access. To support the
diverse QoS requirements of next generation in-vehicle
infotainment applications, we need to build QoS-aware HMI
framework that allows the HMI clients to express their
application-specific requirements using the right level of
abstraction.

The concepts of platform independent and platform specific
models (PIMs and PSMs) are fundamental in MDA [1, 2]. The
PIM and PSM models currently tend to focus on how systems
should realize the desired functionality. However, systems have
additional properties that characterize the system’s ability to
exist in different environments and adapt as its environment
varies. These extra-functional properties, also called qualities or
quality of service (QoS), address how well this functionality is
(or should be) performed if it is realized. In other words, if an
observable effect of the system doing something can be
quantified (implying that there is more than ‘done’/‘not-done’
effect of the behavior), one can describe the quality of that
behavior.

A transition from, for instance, a PIM to a PSM covers
transformation of the concepts from the PIM to the PSM, which
is some what more than a pure meta-model based
transformation. To be useful, the transition process also needs to
take into account and utilize the actual target technology. This
includes use of common patterns and use of standard
mechanisms, e.g., to satisfy the required quality of services
provided by the system. Therefore, we believe utilization of
QoS-specifications when performing model transformation and
code generation is the key to gain efficient and useful results.

In this paper, we present a framework which enables
development and deployment of QoS aware HMI applications
for In-vehicle Infotainment platforms. This Infotainment HMI
Framework (iHMIFw) allows clients to access replicated
services by requesting QoS along two dimensions: timeliness of

Model Driven QoS Provisioning Architecture for
Human Machine Interface Applications of

In-vehicle Infotainment Systems

Hemant Sharma, Lokesh Madan and Dr. A. K. Ramani

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

response and consistency of delivered data. While our
framework ensures that the consistency requirements are always
met, the uncertainty in most distributed environments makes it
hard to provide deterministic guarantees for meeting the
timeliness requirements of applications. Hence, our approach
provides probabilistic temporal guarantees [3].

The rest of the paper is organized as follows: Section 2 provides
the background. Section 3 introduces the iHMIFw framework
and its core components. In section 4, we provide a short
description of QoS subsystem of iHMIFw. In section 5, the
elements of QoS modelling for HMI applications are discussed.
Section 6 presents iHMIFw concepts for QoS modelling. We
present our conclusions in Section 7.

II. BACKGROUND

Over the last few years, some approaches have been proposed
for software adaptation using dynamic change in application
components. [12] Presents an approach for dynamic
reconfiguration of component-based applications for the
Microsoft .NET platform. [13] Provides a framework for
enabling dynamic adaptation of applications executing in
dynamic environments.

It has been shown that application-level QoS specifications of
each service instance are available and collocated with the
service instance. Several programming environment and
specification languages have been proposed to allow
application developers to provide such QoS specifications [4,
5]. There exist translators that can map the application level
QoS specifications into the resource requirements (i.e., CPU,
memory, network bandwidth/latency, etc.). Such a translation
procedure can be performed based on two major approaches:
(1) analytical translation; and (2) offline/online probing
services, which have been addressed by a wealth of research
work [6, 7].

In order to assure the correct and complete specification of QoS
requirements for In-vehicle multimedia and infotainment
applications, it is necessary to follow a valid formal model, as
described in [8].

 The Unified Modelling Language [10, 11] is a collection of
semi-formal models for specifying, visualizing, constructing,
and documenting models of technical systems and of software
systems. It provides various diagram types allowing the
description of different system viewpoints. Static and
behavioral aspects, interactions among system components and
implementation details are captured via UML diagrams. UML is
very flexible and customizable, because of its extension
mechanism. [9] Presents the adopted UML profile for
Schedulability, Performance, and Time. Although this profile
does not cover QoS in a broad sense, defining only
QoScharacteristic and QoSvalue classes in their conceptual
model, our UML profile for QoS is aligned with their approach.
We also follow their lightweight approach to specify a QoS
profile.

Our research work has also been influenced by Options
Configuration Modelling Language (OCML) [14], which is a
Model Driven Development (MDD) tool that simplifies the
specification and validation of complex Distributed Real Time
and Embedded (DRE) middleware and application
configurations, and Benchmark Generation Modelling
Language (BGML) [15], which is the MDD tool that
synthesizes benchmarking test suites to analyze the QoS
performance of OCML-configured DRE systems.

III. FRAMEWORK ARCHITECTURE

In this section, we present the architecture of kernel of iHMIFw
framework. iHMIFw is intended to provide a flexible platform
to develop HMI applications for diverse category of
Infotainment systems.

The kernel of iHMIFw consists of essential components that are
necessary for HMI applications to function as expected. These
core components interact with each other and with external
environment either in synchronous manner or in asynchronous
manner. The core components that form the kernel of iHMIFw
are as follows:

A. Context Engine

This subsystem provides support for specification of context
information for HMI applications. The context information
may contain rules from context repository.

B. Dialog Engine

Dialog Engine maintains the overall look and feel of HMI
views. It is also responsible for deciding the ‘view transition’.

Figure 1: iHMIFw Core Components

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

C. View Modeler

This subsystem maintains the contents of a view and
responsible for refreshing them.

D. Widget Library

This is the library of widgets that are used for creating the
HMI views. This library is part of framework repository.

E. Communication Subsystem.

This subsystem provides an abstraction layer for inter-vehicle
and external communication.

F. QoS Subsystem

QoS subsystem is responsible for specification and
monitoring of QoS for HMI applications. This subsystem
actively communicates with HMI applications for all QoS
related issues.

IV. FRAMEWORK QOS SUBSYSTEM

One of the important responsibilities of our QoS-aware
iHMIFw is the selection of appropriate replicas to service the
HMI client applications to meet their QoS requirements. One
approach would be to select all the available replicas to service
a single client. However, such an approach is not scalable, as it
increases the load on all the replicas and results in higher
response times for the remaining clients [3]. QoS specific
features of iHMIFw are supported by QoS subsystem. This
subsystem is collaboration of following components:

• QoS Controller Factory,

• QoS Event Handler,

• QoS Rule Parser,

• View QoS Configurator.

The QoS controllers provide different QoS management
functions (e.g., (re)configuration, adaptation, scheduling) and
may invoke the QoS-aware resource management functions
(e.g., resource reservations). The QoS Event Handler keeps
track of different view context information and triggers the
appropriate QoS controller(s), provided by QoS Controller
Factory, into action. The QoS Rule Parser translates the HMI
application specific policies into desired data structures with
help of the QoS Event Handler, which steers the QoS
management towards the satisfaction of application-specific
QoS criteria. The View QoS Configurator automatically derives
the user’s preferences and life routines, based on the user’s
inputs and QoS configuration library. These user inputs form
the basis to personalize the QoS management.

QoS Event Handler is distributive in nature. To handle HMI
client specific subscription of QoS events, it provides client side
Facade Proxy interface. This facade proxy has corresponding
QoS Event Facade at QoS subsystem of iHMIFw.

cmp QoS Subsystem

QoSConfigurator

configuration

QoSEv entHandler
QoS Facade Proxy

QoSRuleParser

QoSControllerFactory QoSFactory Interface

Figure 2: QoS Subsystem Architecture

The distributed nature of QoS Event Handler provides
following advantages:

• it can handle much richer context information than the
passive, stand alone QoS monitors;

• it promotes the separation of concerns to relieve the
QoS controllers from the burden of handling complex
events;

• it enables loose coupling between entities to ease the
development and management of ubiquitous
infotainment applications;

• It allows the QoS management functions to be changed
and personalized dynamically during runtime.

V. QOS MODELLING ELEMENTS

In this section, we present the building blocks that are used to
construct PIM for QoS enabled HMI applications.

A. Architectural Pattern

The HMI applications based on iHMIFw has following
characteristics:

• These applications use iHMIFw subsystems via
standardized functional interfaces.

• The quality of the services provided by iHMIFw
subsystems is critical to the application’s conformance
to its requirements.

• The application’s QoS requirements maps directly to
the QoS categories defined or configured at QoS
subsystem of iHMIFw.

It is required that the quality sensitive HMI applications should
be able to specify, monitor and control the QoS of its supporting
components.

QoS Subsystem implements a stripped down Quality Connector
pattern for each framework infrastructure subsystem that
provides only a non-standard QoS-control interface. The

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

objects of Quality Connector pattern configure the iHMIFw
subsystems to provide, if possible, the requested QoS in the
specified modes of operation of HMI application.

The Quality Connector Pattern, used here, includes following
participants.

Static QoS Configurator: This object scans the View Tree
description of HMI application for QoS related statements
and declarations. It then provides these statements to QoS
subsystem to generate corresponding target specifications.

 Run-Time Connector: This acts as a plug-in for HMI
applications at runtime. When the quality connector object
receives a request for a QoS contract, it uses the
Configuration object or similar mechanism to discover the
infrastructure base-objects and corresponding meta-objects
that might be used to provide the requested service in the
specified mode.

sd iHMIFw QoS Dynamics

Appl ication
Description

QoS Connector

Framework
Integration

Framework
Subsystems

Figure 3: iHMIFw QoS Dynamics

Figure 3 provides the dynamics of Quality Connector pattern in
context of an HMI application.

When the components of the iHMIFw subsystems, to which
QoS requests will be made, are known, the HMI dialog
description is, if necessary, modified automatically to insert the
statements that make the runtime requests. Framework
infrastructure components are selected and constructed using
whatever information is known about the required QoS and
peak load imposed on the target service. At runtime, the HMI
application requests a QoS in a specified mode, including the
specification of work load. The Quality Connector pattern
object determines whether the request could be satisfied using
the available functionality of framework subsystem, considering
the QoS contracts accepted previously. If the request is found to

be feasible, the application is granted a contract, and the
strategy by which the service would be provided is recorded.
Further, QoS listeners are attached to the configuration items
whose mode changes might signal transition to or from the
relevant mode.

B. QoS Profile

In this section, we present the customized UML profile for QoS
that is being used by iHMIFw. From the domain viewpoint, we
define the QoS modelling elements needed to specify QoS of a
component (or object) that provides a service subjected to QoS
constraints, and to associate these QoS specifications with the
component.

The iHMIFw introduces a stereotype called QoSContract that
extends the Class metaclass of UML [10]. This introduction is
based on the fact that the HMI contract types can be instantiated
almost like classes in object oriented languages. A View
Description becomes a stereotyped UML Attribute, which is
pretty straightforward because a class contains attributes.
Similarly, QoSContract shall contain one or multiple instances
of QoSViewDescription. The attributes of metaclass
QoSViewDescription shall become so called tagged values in
the stereotype.

class iHMIFw QoS Profile

iHMIFw Class

iHMIFw QoSBase

iHMIFw QoSBinding

iHMIFw QoSContract

iHMIFw QoSAttribute

iHMIQoSInteractionType

iHMIQoSParamDescription

«enumeration»
iHMIQoSView Description«derive»

«derive»
«derive»

«derive»

«derive»

Figure 4: Extended QoS profile

A QoSParamDescription is considered to be a stereotyped
class, too. Therefore, a QoSParamDescription is mapped to an
attribute just like QoSInteractionType. This makes it clear that a
contract does not directly contain a QoSParamDescription.
Instead it can have a normal UML attribute which has a type that
in turn presents a QoSParamDescription. This seems to
introduce some structural differences between iHMIFw QoS
meta-model and the UML profile. However, we map concepts
from UML profile one to one so that we can translate the UML
model in an extended QoS configuration file without loss.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

In UML, components provide interface through which they can
be connected by a Realization dependency. Instead of extending
the UML metaclass Realization, we have introduced
QoSBinding, so that we can map our QoS metaclass. The UML
components always play the role of context for Realization
dependency. In iHMIFw, the connection between component
QoSContract interface and the QoSBinding is depicted by a
derivation. Further, the connection between binding and
contract may also be depicted by a normal dependency (dashed
line with open arrow). If there are no additional dependencies
present then the contract is assumed to be negotiable for all
interfaces of the component at once. Otherwise iHMIFw draws
a normal dependency between the QoSBinding and one or more
interfaces of component to indicate that the QoSContract only
affects these interfaces. An interaction type, represented by
stereotype QoSInteractionType, is needed if the contract is
suppose to affect only certain methods of an interface.
QoSInteractionType is a UML Attribute and therefore it can
store a reference to some UML Operation. This stereotyped
attribute is owned by the class, which is stereotyped as
QoSBinding. Figure 4 gives an overview of QoS profile for
iHMIFw.

VI. QOS MODELLING

In this section, we describe our approach for platform
independent modelling of QoS for HMI applications. The
model transformation approach, presented in the later
subsection, provides an overview for generating an XML based
QoS model.

A. Platform Independent Modelling

Modelling QoS-enabled HMI applications in a platform
independent manner require a platform independent modelling
language (PIQML) enriched with QoS concepts. The QoS
subsystem of HMI framework has adopted UML to provide
abstract syntax, rules, notations and semantics for QoS
specification. The subsystem uses customized meta-model
which support QoS categories. It is possible to refer the QoS
categories by name. The meta-model also provides means for
modelling constraints upon these QoS categories. In order to
express the semantics of QoS categories in the model the
semantics have been mapped to model elements that are well
understood and non-ambiguous. The semantics of QoS category
are further linked to a set of measurement parameters and
evaluation functions. The QoS subsystem shall maintain
repository of measurement parameters and evaluation function
for mapping of QoS categories.

iHMIFw uses component based approach for design of HMI
applications, in order to have strict encapsulation. The
components shall use defined ports to establish communication
with other components or with external environment as well as
with the framework. The advantage of this approach is that it
separates QoS-related modelling elements from the business

logic. The business logic of HMIs shall be encapsulated inside
the components based on iHMIFw framework, whereas the QoS
properties shall be attached to the ports of these components.

Figure 5 partly presents PIM development approach for HMI
applications. Here, the HMI QoS specifications are separated
into Appearance Contract and Behavior Contract. Explanation
of these contracts is beyond the scope of this paper.

class play

«facade»
Apperance Contact «facade»

Behav ioral Contract

«m etaclass»
QoSInteraction «metaclass»

QoSConstraint

«metaclass»
QoSPort

«metaclass»
QoSContractAttribute

«m etaclass»

QoSContract

«interface»
QoSInterface

«m etaclass»
QoSSpecification

«subscribe»«real ize»

Figure 5: Platform Independent QoS Modelling

B. QoS Transformations

Key challenges, for implementing the model-driven paradigm to
QoS specification modeling in iHMIFw, are to define, manage,
and maintain traces and relationships between the platform
independent models and independent model views. This again,
is the foundation for performing model transformation and code
generation. Therefore, transforming a QoS PIM model to PSM
model is done by means of a generic transformation
specification that specifies how a meta-model description of the
source model should appear in the target model.

The iHMIFw extends the XML QoS specification language
(XQoS) [16] for transformation of PIM for QoS. The extended
XQoS uses following main elements to frame the QoS
specifications:

Synchronization and timing elements: The tags <sync> and
<prac> are intended to describe the inter-flow data
synchronization constraints for HMI applications. These
elements shall contain additional tags to detail the constraints to
describe the QoS contract in finer way.

Flow Description Elements: These elements intend to identify
the type constraint on data flow tags <route data>, <control
message> and <view element>.

View Transition Elements: These elements preset constraints on
HMI view transition and view transition information. The tags
<condition>, <immediate> and <composite> describe

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

constraints on view transition.

Figure 6 below, presents the extended XQoS transformed model
for route data request for showing Route Map for turn-by-turn
guidance.

Figure 6: Extended XQoS Mapping

Extensions to XQoS are based on a formal specification model
which is sufficient to describe completely and rigorously, the
QoS needs of existing and new infotainment applications.
Application of extended XQoS constructs to an experimental
Navigation HMI prototype, for intra and inter-flow QoS
description, resulted in adequate QoS requirement description
in form of XML files of optimal size. Details of the specification
model and the prototype are out of scope of this paper. The
experiences with the prototype encourage us to claim that the
QoS description using extended XQoS will provide optimal
transformation of PIM for HMI to a PSM XML description.

VII. CONCLUSION AND FUTURE WORK

Emerging In-vehicle Infotainment and Telematics
applications bring new challenges to the automotive
infotainment and telematics platform research. In this paper, we
have presented a novel QoS provisioning architecture to address
the QoS challenges in the area of infotainment HMI.

We have presented an approach to specify QoS requirements
of infotainment HMI applications with UML designs using
MDA technology. For this purpose, extensions from the UML
Profile for Schedulability, Performance, and Time have been
used to introduce the necessary additional information into
Platform Independent UML Model. A method for the
transformation of the resulting UML model into corresponding
extended XQoS [16] specifications has been proposed.

This contribution introduces the QoS subsystem and QoS
elements that has been integrated to iHMIFw. Our work
identifies a standard means to specify application level QoS

requirements for infotainment HMI applications at design time.

We propose to continue our work on iHMIFw to support the
development of so-called ‘Dynamic Service HMI applications’
and specification of their QoS requirements. QoS subsystem
shall be extended for dynamic QoS adoption and enriched set of
extended XQoS constructs.

REFERENCES

[1] Object Management Group. Model Driven Architecture (MDA), OMG
Document ormsc/2001-07-01 edition, July 2001.

[2] D.S. Frankel, “Model Driven Architecture – Applying MDA to Enterprise
Computing”, OMG Press, Wiley Publishing, 2003

[3] S. Krishnamurthy, W. H. Sanders, and M. Cukier. A Dynamic Replica
Selection Algorithm for Tolerating Timing Faults. In Proc. of the
International Conference on Dependable Systems and Networks, pages
107–116, July 2001.

[4] X. Gu, K. Nahrstedt, W. Yuan, D. Wichadakul, and D. Xu. An
XML-based Quality of Service Enabling Language for the Web. Journal
of Visual Language and Computing, Special Issue on Multimedia
Language for the Web, 2002.

[5] Joseph P.Loyall, David E. Bakken, Richard E.Schantz, John A.Zinky,
David A.karr, Rodrigo Vanegas, and Kenneth R.Anderson. QoS Aspect
Languages and Their Runtime Integration. Lecture Notes in Computer
Science, 1511, May 1998.

[6] Tarek F. Abdelzaher. An Antomated Profiling Subsystem for QoS-Aware
Services. Proc. of IEEE Real-Time Technology and Applications
Symposium, June 2000.

[7] B. Li and K. Nahrstedt. QualProbes: Middleware QoS Profiling Services
for Configuring Adaptive Applications. Proc. of IFIP International
Conference on Distributed Systems Platforms and Open Distributed
Processing (Middleware 2000), April 2000.

[8] Synchronized Multimedia Group of the W3C Synchronized Multimedia
Integration Language (SMIL) 3.0, Dec., 2006.

[9] Object Management Group. UML profile for schedulability,
performance, and time. www.uml.org, March 2002.

[10] Object Management Group. Unified Modelling Language Specification
v.2.0. www.uml.org, September 2003.

[11] Bondavalli, A., Dal Cin, M., Latella, D., Majzik, I., Pataricza, A., Savoia,
G.: Dependability analysis in the early phases of UML-based system
design. International Journal of Computer Systems Science &
Engineering 16(5) (2001) pp. 265-275

[12] A. Rasche and A. Polze. Configuration and Dynamic Reconfiguration of
Component-based Applications with Microsoft .NET. Proc. of 6th IEEE
International Symposium on Object-Oriented Real-Time Distributed
Computing, 2003.

[13] A. Mukhija and M. Glinz. A Framework for Dynamically Adaptive
Applications in a Self-organized Mobile Network Environment. Proc. of
ICDCS 2004 Workshop on Distributed Auto-adaptive and
Reconfigurable Systems, 2004.

[14] E. Turkay, A. Gokhale, and B. Natarajan. Addressing the Middleware
Configuration Challenges using Model-based Techniques. In
Proceedings of the 42nd Annual Southeast Conference, Huntsville, AL,
Apr. 2004. ACM.

[15] A. S. Krishna, D. C. Schmidt, A. Porter, A. Memon, and D. Sevilla-Ruiz.
Improving the Quality of Performance-intensive Software via
Model-integrated Distributed Continuous Quality Assurance. In
Proceedings of the 8th International Conference on Software Reuse,
Madrid, Spain, July 2004. ACM/IEEE.

[16] Ernesto Exposito, Mathieu Gineste, Romain Peyrichou, Patrick Sénac,
Michel Diaz, Serge Fdida. XML QoS specification language for
enhancing communication services, Proceedings of the 15th international
conference on Computer communication, 2002, pp 76- 90.

<Contract>
 <DATAFlow>
 <!--- extended XQoS specification for Route Data Flow --- >

 <SYNC repeat="loop" maxTimeOut="10ms"
 minReliability="80%" >
 <!-- Route Data sequence with 20% losses permitted >

 <DATAType command="route data request" >

 <CONSTRAINTS packetsize="4096" maxPackets
 ="1024">
 </CONSTRAINTS>
 </DataType>
 </SYNC>
 </DATAFlow>
</Contract>

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

