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1 Introduction

In his seminal work [1], Mihalis Yannakakis proved that
“The TSP polytope cannot be expressed by a polynomial
size symmetric LP”, where symmetry of a linear program
(LP) means that the polytope is an invariant under node
relabeling. The theorem is often used as a major argu-
ment against linear modeling of NP-problems. This work
presents an argument against such use of the theorem.

2 Symmetric linear models

Let’s generalize the Subgraph Isomorphism Problem
[2, 3, 4]: whether a given multi digraph g contains a
subgraph which is isomorphic with another given multi
digraph s.
Let n and m be powers of vertex-sets of g and s ap-
propriately. Based on a node labeling/enumeration, let’s
construct adjacency matrices of these digraphs - matri-
ces G and S appropriately. In terms of these matrices,
the problem is a compatibility problem for the following
quadratic inequality with unknown matrix X:

PmnXGXT PT
mn ≥ S, XXT = Un×n, (1)

- where Un×n is n × n union matrix; and Pmn =
(Um×m0)m×n is truncation. Permutation matrix X
presents relabeling of g.
Let’s arbitrarily label/enumerate elements of G and S:
if an element is equal a, then that element has a la-
bels (zero-elements have no labels). Let’s construct in-
incidence matrix IG = (αij): αij = 1 if i-th column of
G contains j-th label; and αij = 0, if otherwise. In the
same way, let’s construct in-incidence matrix IS . Also,
let’s construct out-incidence matrices OG and OS but us-
ing rows instead of columns. Direct calculation proves
the following decompositions:

G = OGIT
G , S = OSIT

S .

The incidence matrices are (0, 1)-matrices with one and
only one non-zero element per column. Let k be total
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of all elements of G; and l be total of all elements of S.
Then matrices IG and OG are n×k; and matrices IS and
OS are m × l. In digraph terms: k and l are powers of
arc-sets of the given (multi) digraphs.
In terms of the incidence matrices, inequality (1) can be
rewritten as a quadratic equivalence with additional un-
known matrix Y :⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

PmnXOGY PT
lk = OS

PmnXIGY PT
lk = IS

XXT = Un×n, Y Y T = Uk×k

. (2)

In digraph terms: X relabels nodes, and Y relabels arcs.
Let’s arbitrarily enumerate all permutation matrices:

{X | XXT = Un×n} = {Xi | i = 1, 2, . . . , n!},
{Y | Y Y T = Uk×k} = {Yj | j = 1, 2, . . . , k!}.

Theorem 1: (2) is compatible iff the following system is
compatible:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
i,j λijPmnXiOGYjP

T
lk = OS

∑
i,j λijPmnXiIGYjP

T
lk = IS

∑
i,j λij = 1, λij ≥ 0

, (3)

- where numbers λij are unknown, i = 1, 2, . . . , n!; j =
1, 2, . . . , k!.
Proof: If X and Y are a solution of (2), then the following
numbers are a solution of (3):

λij =
{

1, (Xi = X) ∧ (Yj = Y ) = true
0, (Xi = X) ∧ (Yj = Y ) = false

.

If λij are a solution of (3), then there is λi0j0 > 0. Be-
cause the incidence matrices are (0, 1)-matrices with one
and only one non-zero element per column, Xi0 and Yj0

are a solution of (2). QED.
System (3) is an explicit exponential size linear model
of NP-problems. It is symmetric in that sense that the
convex hull at the left side of the system is an invariant
under relabeling.
The explicitness of (3) can be exploited in the ellip-
soid/separation design [1]; in the branch/bound-like de-
signs to cut (3) down to a polynomial size; and others.
Let’s call matrices G and S the model’s pattern and input
appropriately. The pattern’s/input’s conjugacy classes
parametrize the whole NP zoo. Let’s illustrate that with
several examples [2, 3, 4, 5, 6]:
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(Sub)GI. Pattern and input are adjacency matrices of
given (multi di-) graphs.

Clique. Pattern is an adjacency matrix of a given (multi
di-) graph. Input is a matrix whose diagonal ele-
ments are 0 and remaining elements are 1.

HC/HP. Pattern is adjacency matrix of a given (multi
di-) graph. Input is a circular permutation matrix
except, in case of HP, one 1 is poked out.

ATSP. Let W be a given weight matrix. A symmetric
exponential size LP:

(W,
∑
i,j

λijXiOGYjP ) → min,

- under the constrains modeling HC. The matrix
scalar product (∗, ∗) totals products of appropriate
elements of its multiplicands.

3-SAT. Let’s arbitrarily enumerate strings in truth ta-
bles of given clauses. By definition, two strings are
compatible if they are consistent and equal true. The
strings’ compatibility matrix is the pattern. The in-
put is a box matrix with 8× 8 boxes: all elements in
the box are 0 except (1, 1)-element which is 1.

2-SAT. The same as above, except the input’s boxes are
4 × 4.

Matrix G was called “pattern” because the left side of (3)
defines a convex hull. The hull is an invariant under re-
labeling. And the compatibility problem is: whether the
incidence matrices of a given input are located in that
convex hull. Regarding LP: when they are, they are an
extreme point of the hull.
Obviously, the independence of node-/arc-labeling is ex-
cessive and (3) can be reduced, at least, to the following:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑n!
i=1 λiPmnXiOGPT

lk = OS

∑n!
i=1 λiPmnXiIGPT

lk = IS

∑n!
i=1 λi = 1, λi ≥ 0

,

3 Asymmetric linear models

For a given NP-instance G and S, all happens in the
O(nmlk)-dimensional vector space of matrices involved
in (3). Thus, in accordance with the Carathodory’s the-
orem (convex hull), the system can be replaced with its
subsystem of O(nmlk) linear equivalences:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑O(nmlk)
i,j=1 λijPmnXiOGYjP

T
lk = OS

∑O(nmlk)
i,j=1 λijPmnXiIGYjP

T
lk = IS

∑O(nmlk)
i,j=1 λij = 1, λij ≥ 0

, (4)

- where λij are unknown; and permutation matrices are
enumerated appropriately. The system is asymmetric:
relabeling will rotate the convex hull defined at the sys-
tem’s left side. The hull would rotate inside of the hull
defined at the left side of (3). But, that rotation does not
affect the right side of system (4), which is an extreme
point of the hull defined by (3). That proves that the
convex hull defined by (3) has O(nmlk) extreme points
only, or
Theorem 2: There are asymmetric polynomial size linear
models for any NP-problem.
Let mention, a model can be asymmetric polynomial size
LP

O(nmlk)∑
i,j=1

λij → min,

- under constrains (4).
To find an asymmetric polynomial size linear model, all
heuristics are good. That could be fixing of particular G
and S; exclusion of unknown from (3); basis manipula-
tions in the linear hull of permutation matrices; creating
of appropriate mathematical tables; and others.
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