
Synchronization on Speculative Parallelization of
Many-Particle Collision Simulation∗

Hung-Chi Su† Hai Jiang‡ Bin Zhang§

Abstract—High performance particle simulations

are on demand. As more and more computers switch

from the traditional uniprocessor architectures to

multi-core and multiprocessor parallel architectures,

many computer simulations will be migrated to par-

allel environments to shorten the execution time of

simulation. A recently developed speculative paral-

lelization for many-particle collision simulation shows

a performance gain. However, as multiple execution

threads exist, overheads of common shared resources

and data are unavoidable. To reduce these overheads,

this paper proposes a new synchronization scheme

that aims at improving the simulation efficiency by

relaxing the requirements for locks when executing

events by multiple threads. Our experiments indicate

the performance gains of using this new synchroniza-

tion scheme for speculative parallelization.

Keywords: speculative execution, parallel simulation,

particle collision

1 Introduction

The behavior of particle systems can be analyzed and
simulated by studying interactions among moving parti-
cles. Such method has been adopted in atomic physics
[1, 2], chemistry [3, 4], and many other academic research
fields [5, 6, 7]. A system of partons (quarks and gluons) in
the Quark-Gluon Plasma produced in relativistic heavy
ion collisions is a typical many-particle system. The al-
gorithm used in the parton cascade model aims to solve
Boltzmann equations involving large numbers of parti-
cles [1]. Similar to many other simulation applications,
this realistic simulation process is computationally inten-
sive. When the number of moving particles in the system
is large, it is common for computers to run for days or
months to obtain the results. As long as the running
time of simulation is concerned, scalable simulation sys-

∗Manuscript received July 22, 2007. This research was partly

supported by the U.S. National Science Foundation under grant

No. PHY-0554930.
†H. C. Su is with the Department of Computer Science,

Arkansas State University, Jonesboro, Arkansas 72401, USA

Email:suh@cs.astate.edu
‡H. Jiang is with the Department of Computer Science,

Arkansas State University, Jonesboro, Arkansas 72401, USA

Email:hjiang@cs.astate.edu
§B. Zhang is with the Department of Chemistry & Physics,

Arkansas State University, Jonesboro, Arkansas 72401, USA

Email:bzhang@astate.edu

tems are on demand for these so-called Grand Challenge

Problems.

Since more and more computers switch from the tradi-
tional uniprocessor architectures to multi-core and mul-
tiprocessor parallel architectures, many computer simu-
lations have been migrated to parallel environments to
utilize extra system resources and shorten the execution
time [8, 9]. However, there are many restrictions and
overheads in the process of parallelizing many-particle
collision simulations. The main restriction is the strong
serialization characteristic of particle-collision events that
prohibits running multiple events simultaneously. To
deal with this problem, a speculative parallelization of
many-particle collision simulation has been proposed so
that more system resources from multi-core and multiple
CPUs can be employed to simulate future events aggres-
sively [8]. Based on this speculative parallelization, more
flexible speculative parallelization models (dynamic mas-
ter and hybrid speculative models) have been proposed
[9] to improve the simulation efficiency by reducing the
idle time in the original speculative parallelization.

As multiple execution threads exist, overheads in shar-
ing common resources and data are unavoidable. The
main contribution of this paper is to reduce these kinds
of overheads. As a result, we propose a new synchroniza-
tion scheme that aims to improve simulation efficiency
by relaxing the requirements for blocks when executing
events by multiple threads.

The paper is organized as follows. Section 2 describes
background information. Section 3 illustrates how a nor-
mal speculative parallelization works and its data struc-
ture. Section 4 analyzes all the possible critical sections
on shared objects and then proposes new synchroniza-
tion scheme. Section 5 provides performance analysis and
simulation results to illustrate the performance gains ac-
quired from our new synchronization scheme. The paper
ends with some concluding remarks.

2 Preliminaries and Relevant Work

Most particle systems, including particle collision systems
[1] and molecular dynamics [3, 4], adopt the more efficient
event-driven approach that displaces all the particles over
a series of predicted collision events so that simulation
time can advance to the next event time directly instead

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

of crawling through all time periods in between as in the
time-driven approach. Cell structure [3, 10, 11, 12] is
brought into the simulation system to improve the effi-
ciency of selecting the next collision event based on the
observation that a future collision for a particle will most
likely occur in its neighborhood. Consequently, a new
kind of event (boundary crossing event) is introduced to
allocate particles to cells.

To simulate all the events one by one, a sequential pro-
gram for the event-driven approach repeats the following
three essential steps for every event until the end of the
simulation:

1. finding the new globally next event and advancing
the simulation time,

2. processing the new globally next event by updating
the states of the particles involved in this event, and

3. computing the next event time for particles involved
in Step 2 or affected by this event.

In Step 1, we need to find out the overall next earliest
event in the simulation system. A tree-like data struc-
ture such as min-heap and complete binary trees can help
this step with the time complexity O(log N) [5, 7, 13, 10]
where N is the total event number. The idea is to main-
tain a global queue mapped to the tree-like data structure
for all possible events according to their timestamps. In
Step 2, the actual event will be simulated. This step up-
dates the states of the involved particles, including for-
mation time, position, and momentum, etc. Then, the
system goes on Step 3 where only the local information of
the affected particles need to be updated. Such particles
include the ones conducting the event and other affected
particles in neighboring cells. After finishes these three
steps, system will loop back to Step 1.

The difficulty in parallelizing the many-particle simula-
tions is that collision events exhibit strong serialization
characteristics. That is, even if more computers are avail-
able, only one event can be simulated and it might inval-
idate future events. To deal with this problem, specula-
tive parallelization has been proposed [8, 9] so that mul-
tiple events can be processed simultaneously. Only one
of them is the globally current event and its simulation
will be correct for sure. Others are simply processed in
advance and need to be verified later. On multiprocessor
machines, multi-threading strategy is employed for these
events. To share common resources, some threads might
be blocked and such idleness slows down the overall simu-
lation. Hence, further fine-grained scheduling strategies,
such as optimized locking mechanism, are on demand.

E9 SRA

(speculative
 computation)

thread 3thread 2thread 1thread 0

E3 SRA

E1 SRA
E2 SRA

(speculative
 computation)

(speculative
 computation)

(speculative
 computation)

 computation)

(speculative
 computation)

(speculative
 computation)

(speculative
 computation)

(speculative
 computation)

time

E6

E2E1

(speculative
E7

 computation)

E0
(real

(speculative
 computation)

(speculative
 computation)

(speculative
 computation)

E5

E8

E11E10

E9

E12

E4

E7 SRA
E6 SRA
E5 SRA
E4 SRA

E8 SRA

E3

Figure 1: An ideal scenario of speculative parallelism

3 Speculative Parallelization

Due to the strong serialization among events, it is not ap-
propriate to directly use normal parallelization to execute
several events at same time. Speculative parallelization
is, therefore, adopted to allow threads executing events
simultaneously by ignoring any possible dependency tem-
porarily. Basically, the globally earliest event will be han-
dled first and this process is called real computation. At
the same time, some future events can be speculatively
simulated as well. Such early execution, called speculative

computation, can take good advantage of extra comput-
ing resources (e.g., processors) for further parallelism and
possible speedup.

3.1 Real vs. Speculative Computation and
Simulation Models

Normally, when multithreading technique is applied, one
thread (called master thread) is dedicated to all real com-
putations, and other threads (called speculative threads)
are dedicated to speculative computations. The master
thread always gets the next earliest event from the global
queue in the simulation. When the master thread obtains
a next earliest event that has not been speculatively han-
dled, the master thread will start the real computation
for this event. On the other hand, when the obtained
event has been handled by a speculative thread, the mas-
ter thread needs to verify the validity of the speculative
result for dependency violation. If no dependency vio-
lation exists (i.e., the speculation is correct), the master
thread only needs to take the speculative result as the
real one instead of executing the whole event (see Fig-
ure 1). This whole process is called Speculative Result
Adoption (SRA), which is much faster than an event exe-
cution. Conversely, if a dependency violation is detected,
the speculative result should be abandoned, and then this
event will be simulated as normal by the master thread
(Figure 2). The assumption here is that speculative com-
putation always uses extra computing resources without
slowing down the real computation, so the proposed strat-
egy is only good on parallel computers.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

E4

(speculative
 computation)

thread 3thread 2thread 1thread 0

E3 SRA

E1 SRA
E2 SRA

(speculative
 computation)

(speculative
 computation)

(speculative
 computation)

 computation)

(speculative
 computation)

(speculative
 computation)

(speculative
 computation)

(speculative
 computation)

time

E6

E2E1

(speculative
E7

E5 SRA
E6 SRA
E7 SRA

 computation)

 computation)

E0
(real

E4
(real

(speculative
 computation)

(speculative
 computation)

(speculative
 computation)

E5

E8

E11E10

E9

E12

E3

Figure 2: A scenario with an invalid result (E4) from
speculation computation

When many-particle systems exhibit low dependencies
among events, the master thread uses most of its time
to accomplish SRAs whereas other threads are busy with
speculative computations. With the implementation of
pointer swapping, the overhead of SRA is much smaller
than a regular event simulation. Hence certain perfor-
mance gains can be expected.

Based on the above discussion, three different models for
speculative parallelization have been accordingly devel-
oped [9] for improving computational efficiency. The first
model is pure speculative model, and the other two are
flexible simulation models, called dynamic master and
hybrid speculative models. The dynamic master model
lets the master thread act as a speculative thread when
needed, but the hybrid speculative model may promote
a speculative thread as the master thread temporarily.
Breadth-first search on the heap by a speculative thread
is applied to select an event for speculative computation
in all three models, because it is simple and prevent the
master thread from constantly waiting when the num-
ber of processor is limited [9]. Our new synchronization
scheme will be implemented on these three models in or-
der to evaluate its performances.

3.2 Data Structure

In this subsection, we discuss the objects (particle, cell,
and heap) and their data structures in a simulation sys-
tem for later analyses on synchronization.

3.2.1 Particle

A particle has two identical structured records saved. The
first record (called real record) is to keep the current state
of a particle (including its weight, position, momentum,
etc.) and this particle’s next event time (including next
collision time and next boundary crossing time). The
second record (called speculative record) is used to record
this particle’s speculative future state and next event time
for this future state. After each event simulation (real

computation), the real record of each participating par-
ticle needs to be updated at Step 2 for its new current
state and at Step 3 for its new next event time, but the
speculative record stays intact. Similarly, after each spec-
ulative computation, the speculative result will be saved
in the speculative record for a possible adoption by the
master thread without modifying the real record.

3.2.2 Cell

A cell records all its accommodating particles by using
a linked list data structure. It also maintains the time
(epoch) of the last event occurred in this cell to help the
master thread to verify the validity of a speculative result
before SRA. After each event simulation (real computa-
tion), a cell needs to remove a leaving particle from (or
add an entering particle to) its linked list at a boundary
crossing event, but it does not change the linked list at a
collision event. Meanwhile, epoch needs to be increased
by 1 to indicate a new change in this cell.

3.2.3 Heap

A heap is adopted in a simulation with smaller next event
time of a particle as higher priority and is implemented
in an array with each of elements containing a pointer to
one unique particle. Thus, the particle that is pointed by
the root of the heap will be involved in the globally next
event. Accordingly, the master thread always gets the
event pointed by the root of the heap while a speculative
thread does breadth-first search for an unhandled event.
Actually, a breadth-first search is a scan on the array
from the second element (not the first element because
the first element is the top of the heap and is always given
to master thread). After each event (real computation)
is executed by the master thread, the heap needs to be
updated (by the master thread) for the removal of the old
earliest event and the addition of newly generated events.

4 Synchronization

In a parallelized simulation system, all objects including
particles, cells and heap become shared data that may
cause race conditions. Applying regular locks in a sim-
ulation can enforce mutual exclusion to solve the race
conditions, but it could result in long waiting threads. It
could be even worse for being deadlocked when not care-
fully using locks on more than one object at the same
time. In this section, we analyze the problems of using
locks on an object to synchronize the conflicting threads,
and then develop a better synchronization scheme for the
speculative parallelization.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

4.1 Assumption and Observation

An assumption is established for an operation on a vari-
able of primitive data type: an operation is translated
into three consecutive (atomic) instructions in machine
language. These three consecutive instructions are: load
(from a shared memory to a local CPU register), operate
(on this local CPU register), and store (from this local
CPU register to the shared memory). Normally, this as-
sumption is true in a typical machine. As a result, when
a thread reads a variable that is being executed in CPU,
it gets the value of this variable either before or after the
operation.

Similarly, lock mechanisms ensure data consistency when
any two conflicting threads compete accessing an object.
That is, they ensure a thread obtaining data either before
or after data locked (then released) by others. However,
they do not guarantee that data obtained by threads are
in the order of event time. For example, a speculative
thread is working on a future event (speculative compu-
tation) in advance, and it needs to access the neighboring
particles while one of which is being updated by the mas-
ter thread. This speculative thread will collect up-to-date
information of that particle if it accesses the particle after
the master thread issued lock and unlock on that parti-
cle. Otherwise, it collects obsolete data, which will be
re-computed when the master thread obtains and verifies
this obsolete result. However, a speculative thread will
not collect inconsistent data such that part of the data is
before the update and part of the data after the update.

4.2 Locks on an Object

In this subsection, we examine objects and also check
how lock and unlock enforces mutual exclusion and the
derived problems. In addition, whether removing the lock
and unlock to avoid blocking threads is beneficial to the
simulation system will be investigated as well.

4.2.1 Heap

In a simulation system, a heap may be updated by a mas-
ter thread and read by many speculative threads at the
same time. Intuitively, the access to the heap should be
in a critical section to enforce mutual exclusion between
the master and speculative threads. However, while en-
forcing mutual exclusion, using lock and unlock on the
heap may lose the concurrency greatly.

After observing the selection of next event in a specula-
tive thread, we relax the requirement of locks for a thread
to access the heap. As stated earlier, the selection for
next speculative computation by a speculative thread is
a scan on the heap array (breadth-first search), and the
chosen particle is not necessarily selected in the order
of next event time. Thus, without using locks and un-

locks, the speculative thread can still get a unique particle
(pointer) to execute speculative computation, although
the position of this particle (pointer) in the heap may be
changed (by the master thread) after this pointer is se-
lected. In short, removing the lock and unlock to avoid
blocking threads will be beneficial to the simulation sys-
tem.

4.2.2 Particle

Basically, locks and unlocks might be necessary for two
different kinds of accesses to a particle. In the first kind
of access, no two threads are allowed to do either real
or speculation computation on the same particle at the
same time during the whole simulation, so a lock is nec-
essary to inform others when a particle is being executed.
Note that this lock does not block any other threads from
reading the locked particle’s information. However, if a
particle is involved in the globally next event and it is
currently locked (held) by a speculative thread, this lock
will block the master thread, which causes the master
thread to wait till this lock is released. Two speculative
parallelization models have been proposed to prevent the
master thread from suffering such waiting time [9].

The second kind of access to a particle happens when
speculative threads check particles in the neighboring
cells for future collisions at Step 3. The information of
the neighboring particles might be changed by the real
computation. Thus, locks are necessary to ensure no ac-
cess conflict between the master and speculative threads,
and a priority lock is applied to the master thread to
avoid starvation. All these locks can still block the con-
flicting threads, even though waiting time may be short.
Worst of all, they may bring in deadlock (discussed in
Section 4.2.3) when threads need to lock cells. To avoid
such problems, we will relax the lock requirements in our
new lock scheme in Section 4.3.

4.2.3 Cell

A cell records its accommodating particles and the time
(epoch) of the last occurring event in it. This information
can be updated only by the master thread (at Steps 2
and 3), but it can be read by all threads (at Step 3).
Normally, the master thread issues a write-lock (priority
lock) on a particle and a write-lock (priority-lock) or two
(if boundary crossing) on this particle’s resided cell(s) be-
fore updates this particle, but a speculative thread issues
a read-lock on a particle and a read-lock on this particle’s
resided cell. By doing so, two problems may occur, which
are long waiting threads and deadlock. For example, the
master thread will not be granted for a lock on a cell if
that cell is locked by a speculative thread (or more spec-
ulative threads). In other words, the master thread has

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

1. if (invalid or no speculative result)
2. speculative computation;

3. swap real and speculative records;

Figure 3: Algorithm for real computation and SRA.

1. SpeculativeRecord.epoch = RealRecord.epoch + 1;
2. copy data to SpeculativeRecord from RealRecord

except the value of its epoch;
3. speculative computation for simulation;
4. speculative computation for next event time;

5. SpeculativeRecord.epoch++;

Figure 4: Algorithm for speculative computation

to wait till the speculative threads finish all the computa-
tions in this resided cell. The waiting time could be long
especially when there are many particles in this cell.

The worse case is the possible deadlocks if all the locks
are not carefully issued and arranged. A simple solution
to this deadlock problem is that the master thread is-
sues the write-lock(s) on the cell(s), not on the particle
when updating the particle and cell states, and specu-
lative threads issue read-lock on the cell (and this cell
only), not on the particle while they checking neighbor-
ing particles for the (speculatively) next collision event.
This simple solution can avoid deadlock because a thread
can issue one lock only (except the master thread that is-
sues two for a boundary crossing event). However, this
coarse-grain synchronization may decrease concurrency
and increase threads’ waiting time. A constantly long
waiting master thread can degrade the performance of a
simulation since the master thread is on the critical path
of simulation.

4.3 New Scheme for Synchronization

In this section, a new scheme is developed to synchro-
nize the master and speculative threads without creating
deadlock and long waiting threads when threads are com-
peting for the same objects. Based on the observation in
Section 4.1 that the results of speculative computations
are not always valid because the lock mechanisms do not
guarantee the executions of speculative computations in
their event time order, our new synchronization scheme
relaxes the requirements for locks with the guarantee of
obtaining consistent information of an object. That is,
the scheme ensures the information consistency when a
thread retrieves the data of an object.

As discussed in Section 4.2.1, there is no need for locks
when threads accessing the heap, we will show the new
scheme for synchronization on particles and cells only.
Since the master thread is the only one thread to update
the information about an object, it always obtains consis-
tent information of an object. Regarding a particle, the
master thread is the only one allowed to update the real
record of a particle. For the master thread to conduct

1. copy pointer of the particle’s RealRecord to RecordPtr;
2. RecordEpoch = RecordPtr->epoch;
3. if (RecordEpoch is an odd number)
4. return -1; //inconsistent data could occur
5. read all the data for computation;
6. if (RecordEpoch == RecordPtr->epoch)
7. return 0; // has obtained consistent data

8. else return -1; // inconsistent data

Figure 5: Algorithm to read data of a particle.

an event simulation (at Steps 2 and 3), it does either real
computation or SRA (Figure 3). When the master thread
does the real computation, it can first do the speculative
computation (Figure 4), and then SRA, which swaps the
pointers of real and speculative records. Consequently,
the original real record becomes the current speculative
record, and the original speculative record that has the
new state of this particle becomes the current real record.
Thus, when a thread reads the information of a particle, it
can copy the pointer of the real record to its local variable,
and then retrieves the data consistently via this local vari-
able even if the master thread is working on this particle
simultaneously. There could be a problem, even though
rarely occurs, if the particle is updated too frequently
and too fast while a speculative thread is reading it. To
overcome this problem, a thread can increase particle’s
epoch twice when it conducts speculative computation,
one before and one after any computation (Lines 1 and 5
in Figure 4). For a thread to read a particle, it needs to
verify the epoch being even number and unchanged after
it finishes reading the data (Lines 3 and 6 in Figure 5).

In addition to the information of a particle, we have to
enforce the consistency of the retrieved information for
a cell. Similar to the particle access, we use the same
scheme to verify the consistency of the obtained data for
a cell object by increasing the resided cell’s epoch twice
when the master thread executes an event simulation.
However, there is a special case caused by a boundary
crossing event: a leaving particle is added to the linked
list of its new resided cell while it is being read by a
speculative thread. Consequently, the speculative thread
will jump to other cell’s linked list and will miss all the
rest particles in its original linked list because the spec-
ulative thread follows the obtained particle’s link to get
another one. Under such circumstance, the speculative
thread should check the resided cell after finishes access-
ing a particle, although it is fine (but possibly wasting
time) to consider the particles in other cells for specula-
tive computation. Figure 6 gives the algorithm for the
master thread to update a particle in a cell and Figure 7
is for a thread to read the particles in a cell.

Similar to the access to a particle, there could be a prob-
lem that a cell is changed by the master thread so fre-
quently and so fast to cause the speculative result invalid
and make the speculative thread redoing the accesses. A

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

1. Cell = the particle’s resided cell;
2. Cell.epoch++;
3. particle’s real computation; //Figure 3
4. if (boundary crossing event) {
5. remove this particle from Cell.LinkedList;
6. Cell.epoch++;
7. Cell = the new cell for this particle;
8. Cell.epoch++;
9. add particle to Cell.LinkedList;
10. Cell.epoch++;
11. }

12. else Cell.epoch ++;

Figure 6: Algorithm to update a particle in a cell.

1. localCellEpoch = Cell.epoch;
2. if (localCellEpoch is an odd number)
3. return -1; //inconsistent data could occur
4. for (ptr=Cell.LinkedList.firstParticle; ptr != NULL;

ptr = ptr->nextParticle) {
5. access data pointed by ptr; //Figure 5
6. if (pointed particle by ptr is in other cell)
7. go to Line 1; // redo it
8. }
9. if (localCellEpoch == Cell.epoch)
10. return 0; // has obtained consistent data

11. else return -1; // inconsistent data

Figure 7: Algorithm to read particles in a cell.

solution to this problem is to set up a limit number of
redoing accesses, because the master thread will redo it
anyway.

This scheme relaxes all the locks at the Steps 2 and 3,
so a thread will not be blocked by others when accessing
the information of an object. To guarantee the data con-
sistency, a speculative thread might possibly (but rarely)
redo accessing objects, which is a small price to pay for
the new synchronization scheme. However, the benefit of
this scheme is much greater than the cost.

5 Empirical Results and Analysis

In this section, the experiment results are summarized
and compared between two schemes of synchronization
(the simple solution in Section 4.2.3 and our newly pro-
posed scheme in Section 4.3). For the purpose of eval-
uating the performances of these two schemes, a variety
of experiments have been conducted on the three specu-
lative parallelization models (pure speculative, dynamic
master, hybrid speculative models) with a simplified ho-
mogeneous system under fixed system space (10 units),
fixed number of cells (14 × 14 × 14), fixed cut-off sized
particles (0.5 unit), and fixed momentum magnitude of
particles. All the experiments in this study have been
performed on a Sun Server E440 with four CPUs (1.28
GHz each) and 16GB-main-memory for 100 seconds in
the simulated systems.

Since there are only four CPUs in this machine, addi-
tional threads will not acquire any performance gain, be-

������ ��
	
������

	��� �����
���� �����
������������ ���� ����

� !
�� �
���� �����
������������ ���� ����

" ���� �����
���� �����
������������ ���� ����

#$%& #$%&'(% #$%& #$%&'(% #$%& #$%&'(%
)*+++ 7.54 5.85 6.07 4.93 6.12 5.08
,*+++ 27.68 22.72 21.58 18.06 21.70 18.47
-*+++ 67.12 56.72 50.08 43.00 50.35 43.57
.*+++ 123.02 107.26 93.90 82.65 94.02 82.77
/*+++ 214.18 190.63 156.58 140.17 157.02 139.70
0*+++ 332.43 301.57 240.06 218.54 240.95 215.78
1*+++ 475.40 438.03 345.75 319.65 347.25 312.61
2*+++ 639.01 596.98 476.26 445.01 477.50 432.57
3*+++ 870.72 821.99 634.32 598.65 636.22 579.27

Figure 8: Performance comparisons when using 2 threads

456789 :;
<=9>?@A8B

<598 CD8@5A=>?E8 F:G8A
HIJKLHIJKMNJ O8AA P:@QB

RST=6?@ F=B>89 F:G8A
HIJKLHIJKMNJ O8AA P:@QB

US79?G CD8@5A=>?E8 F:G8A
HIJKLHIJKMNJ O8AA P:@QB

VWXY VWXYZ[X VWXY VWXYZ[X VWXY VWXYZ[X
\]^^^ 4.63 3.95 4.45 3.95 4.59 4.23
_]^^^ 18.01 14.46 15.50 12.80 15.93 13.30

]̀^^^ 40.77 34.07 35.30 29.93 36.25 30.96
a]^^^ 77.15 66.52 65.74 57.08 67.04 58.36
b]^^^ 130.51 115.39 108.59 96.38 110.68 97.68
c]^^^ 201.95 182.04 165.65 149.47 168.24 150.07
d]^^^ 291.28 267.03 237.78 217.81 241.52 216.93
e]^^^ 399.55 371.65 326.70 303.08 330.93 299.57
f]^^^ 536.80 504.95 433.79 406.65 439.63 399.92

Figure 9: Performance comparisons when using 3 threads

cause the machine can serve up to four threads at one
time, and all other unserved threads have to be idle. On
the contrary, the additional threads will slow down the
simulation because of the high overhead of context switch.

To compare the performances between these two schemes
on the three speculative parallelization models, we run
programs for two, three and four threads, respectively.
The simple solution scheme in these figures are denoted
by “with cell locks” to indicate its using only cell locks to
access neighboring particles, our newly proposed scheme
is denoted by “without cell locks” to indicate no lock is
used to access neighboring particles. Figures 8, 9 and
10 illustrate the simulation performances of these two
schemes for all three models. All the experiments on these
three speculative parallelization models suggest that our
proposed scheme substantially outperforms the simple so-
lution. In short, it is very beneficial to relax the require-
ments for locks when updating a particle’s state by a
master thread and when accessing neighboring particles
by any threads in a simulation system.

ghijkl mn
oplqrstku

ohlk vwkshtpqrxk ymzkt
{|}~�{|}~��} �ktt �ms�u

���pirs ypuqkl ymzkt
{|}~�{|}~��} �ktt �ms�u

��jlrz vwkshtpqrxk ymzkt
{|}~�{|}~��} �ktt �ms�u

���� ������� ���� ������� ���� �������
����� 4.77 4.66 4.79 4.62 4.97 4.83
����� 12.85 13.05 12.89 12.96 13.3 13.98
����� 30.10 25.35 28.69 24.38 29.72 25.33
����� 56.89 49.44 53.02 46.37 54.69 47.74
����� 95.44 84.79 87.15 77.58 89.65 79.42
����� 147.35 133.27 131.82 119.74 135.83 121.20
����� 212.71 195.38 189.58 174.19 193.63 174.37
����� 292.85 273.30 258.37 239.10 264.10 239.38
����� 391.24 369.33 343.65 323.05 350.16 318.96

Figure 10: Performance comparisons when using 4
threads

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

6 Conclusions

As more and more computers switch from the traditional
uniprocessor architectures to multi-core and multipro-
cessor parallel architectures, many computer simulations
will be migrated to parallel environments to shorten the
execution time of simulation. Recently developed spec-
ulative parallelization for many-particle collision simu-
lation shows remarkable performance gain. However,
as multiple execution threads exist, overheads of com-
mon shared resources and data are unavoidable. To im-
prove the simulation efficiency, this paper proposes a new
synchronization scheme by relaxing the requirements for
locks when executing events by multiple threads.

For evaluating the performances of these two schemes, a
variety of experiments have been conducted on the three
speculative parallelization models (pure speculative, dy-
namic master, hybrid speculative models). From the ex-
periment results, the performances of our proposed syn-
chronization scheme substantially outperforms the simple
solution (in Section 4.2.3). In short, it is very benefi-
cial to relax the requirements for locks when updating a
particle’s state by a master thread and when accessing
neighboring particles by any threads in a simulation.

The future work includes further optimization of master
thread and speculative computation: the focus will be on
time-consuming operations including collision calculation
and the scanning neighboring cells, as well as distributing
the computation over cluster machines with or without
multi-core CPUs.

References

[1] B. Zhang, “ZPC 1.0.1: a parton cascade for ultra-
relativistic heavy ion collisions,” Computer Physics

Communications, vol. 109, pp. 193–206, 1998.

[2] M. Feix, A. K. Hartmann, R. Kree, J. Muñoz-García,
and R. Cuerno, “Influence of collision cascade statis-
tics on pattern formation of ion-sputtered surfaces,”
Physical Review B, vol. 71, no. 12, p. 125407, 2005.

[3] B. J. Alder and T. E. Wainwright, “Studies in molec-
ular dynamics. I. general method,” Journal of Chem-

ical Physics, vol. 31, no. 2, pp. 459–466, 1959.

[4] M. Allen, D. Frenkel, and J. Talbot, “Molecular dy-
namics simulation using hard particles,” Comput.

Phys. Rep, vol. 9, pp. 301–353, 1989.

[5] B. D. Lubachevsky, “How to simulate billiards and
similar systems,” Journal of Computational Physics,
vol. 94, no. 2, pp. 255–283, 1991.

[6] R. Szeliski and D. Tonnesen, “Surface modeling with
oriented particle systems,” in SIGGRAPH ’92: Pro-

ceedings of the 19th annual conference on Computer

graphics and interactive techniques, pp. 185–194,
1992.

[7] D.-J. Kim, L. J. Guibas, and S. Y. Shin, “Fast col-
lision detection among multiple moving spheres,”
IEEE Transactions on Visualization and Computer

Graphics, vol. 4, no. 3, pp. 230–242, 1998.

[8] R. Li, H. Jiang, H. C. Su, J. Jenness, and B. Zhang,
“Speculative parallelization of many-particle colli-
sion simulations,” in Proceedings of the 2007 Inter-

national Conference on Parallel and Distributed Pro-

cessing Techniques and Applications, pp. 128–136,
2007.

[9] H. C. Su, H. Jiang, and B. Zhang, “Flexible specu-
lative parallelization of many-particle collision sim-
ulations.” Submitted for publication, 2007.

[10] H. Sigurgeirsson, A. Stuart, and W.-L. Wan, “Algo-
rithms for particle-field simulations with collisions,”
Journal of Computational Physics, vol. 172, no. 2,
pp. 766–807, 2002.

[11] H. C. Su, H. Jiang, and B. Zhang, “An empirical
study on many-particle collision algorithms,” in Pro-

ceedings of the 22nd International Conference on

Computers and Their Applications, pp. 12–17, 2007.

[12] H. Jiang, H. C. Su, and B. Zhang, “Toward opti-
mizing particle-simulation systems,” in Proceedings

of International Conference on Computational Sci-

ence, pp. 286–293, 2007.

[13] M. Isobe, “Simple and efficient algorithm for large
scale modecular dynamics simulation in hard disk
system,” International Journal of Modern Physics,
vol. C, no. 10, pp. 1281–1293, 1999.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

