
Comparative Study Between
Various Algorithms of Data Compression Techniques

Mohammed Al-laham1 & Ibrahiem M. M. El Emary2

1 Al Balqa Applied University, Amman, Jordan
2 Faculty of Engineering, Al Ahliyya Amman University, Amman, Jordan

E-mail: doctor_ebrahim@yahoo.com

Abstract
The spread of computing has led to an explosion
in the volume of data to be stored on hard disks
and sent over the Internet. This growth has led to
a need for "data compression", that is, the ability
to reduce the amount of storage or Internet
bandwidth required to handle this data. This
paper provides a survey of data compression
techniques. The focus is on the most prominent
data compression schemes, particularly popular
.DOC, .TXT, .BMP, .TIF, .GIF, and .JPG files.
By using different compression algorithms, we
get some results and regarding to these results
we suggest the efficient algorithm to be used
with a certain type of file to be compressed
taking into consideration both the compression
ratio and compressed file size.

Keywords
RLE, RLL, HUFFMAN, LZ, LZW and HLZ

1. Introduction
The essential figure of merit for data
compression is the "compression ratio", or ratio
of the size of a compressed file to the original
uncompressed file. For example, suppose a data
file takes up 50 kilobytes (KB). Using data
compression software, that file could be reduced
in size to, say, 25 KB, making it easier to store
on disk and faster to transmit over an Internet
connection. In this specific case, the data
compression software reduces the size of the
data file by a factor of two, or results in a
"compression ratio" of 2:1 [1, 2]. There are
"lossless" and "lossy" forms of data
compression. Lossless data compression is used
when the data has to be uncompressed exactly as
it was before compression. Text files are stored
using lossless techniques, since losing a single
character can be in the worst case make the text
dangerously misleading. Archival storage of
master sources for images, video data, and audio
data generally needs to be lossless as well.

However, there are strict limits to the amount of
compression that can be obtained with lossless
compression. Lossless compression ratios are
generally in the range of 2:1 to 8:1. [2, 3]. Lossy
compression, in contrast, works on the
assumption that the data doesn't have to be
stored perfectly. Much information can be
simply thrown away from images, video data,
and audio data, and the when uncompressed; the
data will still be of acceptable quality.
Compression ratios can be an order of
magnitude greater than those available from
lossless methods.

The question of which are "better", lossless or
lossy techniques is pointless. Each has its own
uses, with lossless techniques better in some
cases and lossy techniques better in others. In
fact, as this paper will show, lossless and lossy
techniques are often used together to obtain the
highest compression ratios. Even given a
specific type of file, the contents of the file,
particularly the orderliness and redundancy of
the data, can strongly influence the compression
ratio. In some cases, using a particular data
compression technique on a data file where there
isn't a good match between the two can actually
result in a bigger file [9].

2. Some Considerable Terminologies
A few little comments on terminology before we
proceed are given as the following:
• Since most data compression techniques
can work on different types of digital data such
as characters or bytes in image files or whatever,
data compression literature speaks in general
terms of compressing "symbols".
• Most of the examples talk about
compressing data in "files", just because most
readers are familiar with that idea. However, in
practice, data Compression applies just as much
to data transmitted over a modem or other data
communications link as it does to data stored in

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

a file. There's no strong distinction between the
two as far as data compression is concerned.
This paper also uses the term "message" in
examples where short data strings are
compressed [7, 10].
• Data compression literature also often
refers to data compression as data "encoding",
and of course that means data decompression is
often
called "decoding". This paper tends to use the
two sets of terms interchangeably.

3. Run Length Encoding Technique
One of the simplest forms of data compression is
known as "run length encoding" (RLE), which is
sometimes known as "run length limiting"
(RLL) [8,10]. In this encoding technique,
suppose you have a text file in which the same
characters are often repeated one after another.
This redundancy provides an opportunity for
compressing the file. Compression software can
scan through the file, find these redundant
strings of characters, and then store them using
an escape character (ASCII 27) followed by the
character and a binary count of the number of
times it is repeated. For example, the 50
character sequence:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

that's all, folks!-- can be converted to:
<ESC>X<31> . This eliminates 28 characters,
compressing the text by more than a factor of
two. Of course, the compression software must
be smart enough not to compress strings of two
or three repeated characters, since for three
characters run length encoding would have no
advantage, and for two it would actually increase
the size of the output file.

As described, this scheme has two potential
problems. First, an escape character may
actually occur in the file. The answer is to use
two escape characters to represent it, which can
actually make the output file bigger if the
uncompressed input file includes lots of escape
characters. The second problem is that a single
byte cannot specify run lengths greater than 256.
This difficulty can be dealt by using multiple
escape sequences to compress one very long
string.

Run length encoding is actually not very useful
for compressing text files since a typical text file
doesn't have a lot of long, repetitive character

strings. It is very useful, however, for
compressing bytes of a monochrome image file,
which normally consists of solid black picture
bits, or "pixels", in a sea of white pixels, or the
reverse. Run-length encoding is also often used
as a preprocessor for other compression
algorithms.

4. HUFFMAN Coding Technique
A more sophisticated and efficient lossless
compression technique is known as "Huffman
coding", in which the characters in a data file are
converted to a binary code, where the most
common characters in the file have the shortest
binary codes, and the least common have the
longest [9]. To see how Huffman coding works,
assume that a text file is to be compressed, and
that the characters in the file have the following
frequencies:

In practice, we need the frequencies for all the
characters used in the text, including all letters,
digits, and punctuation, but to keep the example
simple we'll just stick to the characters from A to
G.

The first step in building a Huffman code is to
order the characters from highest to lowest
frequency of occurrence as follows:

First, the two least-frequent characters are
selected, logically grouped together, and their
frequencies added. In this example, the D and E
characters have a combined frequency of 21:

This begins the construction of a "binary tree"
structure. We now again select the two elements
the lowest frequencies, regarding the D-E
combination as a single element. In this case, the
two elements selected are G and the D-E
combination. We group them together and add
their frequencies. This new combination has a
frequency of

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

44: We
continue in the same way to select the two
elements with the lowest frequency, group them
together, and add their frequencies, until we run
out of elements. In the third iteration, the lowest
frequencies are C and A and the final binary tree
will be as follows:

Tracing down the tree gives the "Huffman codes", with
the shortest codes assigned
to the characters with the greatest frequency:

The Huffman codes won't get confused in
decoding. The best way to see that this is so is to
envision the decoder cycling through the tree
structure, guided by the encoded bits it reads,
moving from top to bottom and then back to the
top. As long as bits constitute legitimate
Huffman codes, and a bit doesn't get scrambled
or lost, the decoder will never get lost, either.
There is an alternate algorithm for generating
these codes, known as Shannon-Fano coding. In
fact, it preceded Huffman coding and one of the
first data compression schemes to be devised,
back in the 1950s. It was the work of the well-
known Claude Shannon, working with R.M.
Fano. David Huffman published a paper in 1952
that modified it slightly to create Huffman
coding.]

5. ARITHMETIC Coding Technique
Huffman coding looks pretty slick, and it is, but
there's a way to improve on it, known as
"arithmetic coding". The idea is subtle and best
explained by example [4, 8, 10]. Suppose we
have a message that only contains the characters
A, B, and C, with the following frequencies,
expressed as fractions:

To show how arithmetic compression works, we
first set up a table, listing characters with their
probabilities along with the cumulative sum of
those probabilities. The cumulative sum defines
"intervals", ranging from the bottom value to
less than, but not equal to, the top value. The
order does not seem to be important.

Now each character can be coded by the shortest
binary fraction that falls in the character's
probability interval:

Sending one character is trivial and
uninteresting. Let's consider sending messages
consisting of all possible permutations of two of
these three characters, using the same approach:

The higher the probability of the string, in
general the shorter the binary fraction needed to
represent it. Let's build a similar table for three
characters now:

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Obviously, this same procedure can be followed for
more characters, resulting in a longer binary fractional
value. What arithmetic coding does is find the
probability value of a particular message, and arrange
it as part of a numerical order that allows its unique
identification.

6. LZ-77 Encoding Technique [4, 5, 10]
Good as they are, Huffman and arithmetic coding are
not perfect for encoding text because they don't
capture the higher-order relationships between words
and phrases. There is a simple, clever, and effective
approach to compressing text known as LZ-77,
which uses the redundant nature of text to provide
compression. This technique was invented by two
Israeli computer scientists, Abraham Lempel and
Jacob Ziv, in 1977 [7,8,9,10].

LZ-77 exploits the fact that words and phrases
within a text stream are likely to be repeated. When
they do repeat, they can be encoded as a pointer to
an earlier occurrence, with the pointer accompanied
by the number of characters to be matched.
Pointers and uncompressed characters are
distinguished by a leading flag bit, with a "0"
indicating a pointer and a "1" indicating an
uncompressed character. This means that
uncompressed characters are extended from 8 to 9
bits, working against compression a little.

Key to the operation of LZ-77 is a sliding history
buffer, also known as a "sliding window", which
stores the text most recently transmitted. When the
buffer fills up, its oldest contents are discarded. The
size of the buffer is important. If it is too small,
finding string matches will be less likely. If it is too
large, the pointers will be larger, working against
compression.

For an example, consider the phrase:

the_rain_in_Spain_falls_mainly_i
n_the_plain

-- where the underscores ("_") indicate spaces. This
uncompressed message is 43 bytes, or 344 bits, long.

At first, LZ-77 simply outputs uncompressed
characters, since there are no previous occurrences
of any strings to refer back to. In our example, these
characters will not be compressed:

 the_rain_

The next chunk of the message:

in_

-- has occurred earlier in the message, and can
be represented as a pointer back to that earlier
text, along with a length field. This gives:

the_rain_<3,3>

-- where the pointer syntax means "look back three
characters and take three characters from that
point." There are two different binary formats for
the pointer:

• An 8 bit pointer plus 4 bit length, which
assumes a maximum offset of 255 and a maximum
length of 15.
• A 12 bit pointer plus 6 bit length, which
assumes a maximum offset size of 4096, implying
a 4 kilobyte buffer, and a maximum length of 63.

As noted, a flag bit with a value of 0 indicates a
pointer. This is followed by a second flag bit
giving the size of the pointer, with a 0 indicating
an 8 bit pointer, and a 1 indicating a 12 bit pointer.
So, in binary, the pointer <3,3> would look like
this:

00 00000011 0011

The first two bits are the flag bits, indicating a
pointer that is 8 bits long. The next 8 bits are the
pointer value, while the last four bits are the length
value.

After this comes:

Sp

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

-- which has to be output uncompressed:

the_rain_<3,3>Sp

However, the characters "ain_" have been sent, so
they are encoded with a pointer:

the_rain_<3,3>Sp<9,4>

Notice here, at the risk of belaboring the obvious,
that the pointers refer to offsets in the
uncompressed message. As the decoder receives
the compressed data, it uncompresses it, so it has
access to the parts of the uncompressed message
that the pointers reference.
The characters "falls_m" are output uncompressed,
but "ain" has been used before in "rain" and
"Spain", so once again it is encoded with a pointer:

the_rain_<3,3>Sp<9,4>fa
lls_m<11,3>

Notice that this refers back to the "ain" in "Spain", and
not the earlier "rain". This ensures
a smaller pointer.

The characters "ly" are output uncompressed, but
"in_" and "the_" were output earlier, and so they are
sent as pointers:

the_rain_<3,3>Sp<9,4>fa
lls_m<11,3>ly_<16,3><34
,4>

Finally, the characters "pl" are output
uncompressed, followed by another pointer to
"ain". Our original message:

the_rain_in_Spain_falls
_mainly_in_the_plain

-- has now been compressed into
this form:

the_rain_<3,3>Sp<9,4>fa
lls_m<11,3>ly_<16,3><34
,4>pl<15,3>

This gives 23 uncompressed characters at 9 bits
apiece, plus six 14 bit pointers, for a total of 291
bits as compared to the uncompressed text of
344 bits. This is not bad compression for such a
short message, and of course compression gets
better as the buffer fills up, allowing more
matches.

LZ-77 will typically compress text to a third or
less of its original size. The hardest part to
implement is the search for matches in the
buffer. Implementations use binary trees or hash
tables to ensure a fast match. There are a several
variations on the LZ-77, the best known being
LZSS, which was published by Storer and
Symanski in 1982. The differences between the
two are unclear from the sources I have access
to.

More drastic modifications of LZ-77 include a
second level of compression on the output of the
LZ-77 coder. LZH, for example, performs the
second level of compression using Huffman
coding, and is used in the popular LHA archiver.
The ZIP algorithm, which is used in the popular
PKZIP package and the freeware ZLIB
compression library, uses Shannon-Fano coding
for the second level of compression.

7. LZW Coding Technique
LZ-77 is an example of what is known as
"substitutional coding". There are other schemes
in this class of coding algorithms. Lempel and
Ziv came up with an improved scheme in 1978,
appropriately named LZ-78, and it was refined
by a Mr. Terry Welch in 1984, making it LZW
[6,8,10]. LZ-77 uses pointers to previous words
or parts of words in a file to obtain compression.
LZW takes that scheme one step further, actually
constructing a "dictionary" of words or parts of
words in a message, and then using pointers to
the words in the dictionary. Let's go back to the
example message used in the previous section:

the_rain_in_Spain_falls_
mainly_in_the_plain

The LZW algorithm stores strings in a
"dictionary" with entries for 4,096 variable
length strings. The first 255 entries are used to
contain the values for individual bytes, so the
actual first string index is 256. As the string is
compressed, the dictionary is built up to contain
every possible string combination that can be
obtained from the message, starting with two
characters, then three characters, and so on.

For example, we scan through the message to
build up dictionary entries as follows:

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

The next two-character string in the message is
"in", but this has already been included in the
dictionary in entry 262. This means we now set
up the three-character string "in_" as the next
dictionary entry, and then go back to adding
two-character strings:

The next two-character string is "ai", but that's
already in the dictionary at entry 261, so we
now add an entry for the three-character string
"ain":

Since "n_" is already stored in dictionary entry
263, we now add an entry for "n_f":

Since "ain" is already stored in entry 269, we
add an entry for the four-character string "ainl":

Since the string "_i" is already stored in entry
264, we add an entry for the string "_in":

Since "n_" is already stored in dictionary entry
263, we add an entry for "n_t":

Since "th" is already stored in dictionary
entry 256, we add an entry for "the":

Since "e_" is already stored in dictionary entry
258, we add an entry for "e_p":

The remaining characters form a string already
contained in entry 269, so there is no need to put
it in the dictionary.

We now have a dictionary containing the
following strings:

Please remember the dictionary is a means to an
end, not an end in itself. The LZW coder simply
uses it as a tool to generate a compressed output.
It does not output the dictionary to the
compressed output file. The decoder doesn't
need it. While the coder is building up the
dictionary, it sends characters to the compressed
data output until it hits a string that's in the
dictionary. It outputs an index into the dictionary
for that string, and then continues output of
characters until it hits another string in the
dictionary, causing it to output another index,
and so on. That means that the compressed
output for our example message looks like this:

The decoder constructs the dictionary as it reads
and uncompresses the compressed data, building
up dictionary entries from the uncompressed
characters and dictionary entries it has already
established. One puzzling thing about LZW is
why the first 255 entries in the 4K buffer are
initialized to single-character strings. There
would be no point in setting pointers to single
characters, as the pointers would be longer than
the characters, and in practice that's not done
anyway. I speculate that the single characters are
put in the buffer just to simplify searching the
buffer.
As this example of compressed output shows, as
the message is compressed, the dictionary grows
more complete, and the number of "hits" against
it increases. Longer strings are also stored in the

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

dictionary, and on the average the pointers
substitute for longer strings. This means that up
to a limit, the longer the message, the better the
compression. This limit is imposed in the
original LZW implementation by the fact that
once the 4K dictionary is complete, no more
strings can be added. Defining a larger
dictionary of course results in greater string
capacity, but also longer pointers, reducing
compression for messages that don't fill up the
dictionary.

A variant of LZW known as LZC is used in the
UN*X "compress" data compression program.
LZC uses variable length pointers up to a certain
maximum size. It also monitors the compression
of the output stream, and if the compression
ratio goes down, it flushes the dictionary and
rebuilds it, on the assumption that the new
dictionary will be better "tuned" to the current
text.

Another refinement of LZW keep track of string
"hits" for each dictionary entry, and overwrites
"least recently used" entries when the dictionary
fills up. Refinements of LZW provide the core
of GIF and TIFF image compression as well.

It is also used in some modem communication
schemes, such as the V.42bis protocol. V.42bis
has an interesting flexibility. Since not all data
files compress well given any particularly
encoding algorithm, the V.42bis protocol
monitors the data to see how well it compresses.
It sends it "as is" if it compresses poorly, and
switches to LZW compress using an escape code
if it compresses well.

Both the transmitter and receiver continue to
build up an LZW dictionary even while the
transmitter is sending the file uncompressed, and
switch over transparently if the escape character
is sent. The escape character starts out as a
"null" (0) byte, but is incremented by 51 every
time it is sent, "wrapping around" when it
exceeds 256:

If a data byte that matches the the escape
character is sent, it is sent twice. The escape
character is incremented to ensure that the
protocol doesn't get bogged down if it runs into
an extended string of bytes that match the escape
character.

8. Results, Conclusions and
Recommendations
Firstly, with regards to compare between LZW
and Huffman, Under the title (Group 1 Results),
both LZW and Huffman will be used to
compress and decompress different types of
files, tries and results will be represented in a
table, then figured in a chart to compare the
efficiency of both programs in compressing and
decompressing different types of files,
conclusion and discussions are given at the end.

Figure 2.1 shows the results of using the
program in compressing different types of
files. In the chart, the dark blue curve
represents the input files sizes, the violet
curve represents the output files sizes when
compressed using LZW and the yellow
curve represents the output file size when
compressed using Huffman.

From table 2.1 and the figure 2.1, the
following conclusions and discussion can be
driven:
• LZW and Huffman give nearly results
when used for compressing document or text
files, as appears in the table and in the chart. The
difference in the compression ratio is related to
the different mechanisms of both in the
compression process; which depends in LZW on
replacing strings of characters with single codes,
where in Huffman depends on representing
individual characters with bit sequences.
• When LZW and Huffman are used to
compress a binary file (all of its contents either 1
or 0), LZW gives a better compression ratio than
Huffman. If you tried for example to compress
one line of binary (
00100101010111001101001010101110101......)
using LZW, you will arrive to a stage in which 5
or 6 consecutive binary digits are represented by
a single new code (9 bits), while in Huffman
you will represents every individual binary digit
with a bit sequence of 2 bits, so in Huffman the
5 or 6 binary digits which were represented in
LZW by 9 bits are represented now with 10 or
12 bits; this decreases the compression ratio in
the case of Huffman

-LZW and Huffman are used in compressing
bmp files; bmp files contain images, in which
each dot in the image is represented by a byte, as

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

appears in the chart for compressing bmp files,
the results are somehow different. LZW seems
to be better in compressing bmp files the
Huffman; since it replaces sets of dots (instead
of strings of characters in text files) with single
codes; resulting in new codes that are useful
when the dots that consists the image are
repeated, while in Huffman, individual dots in
the image are represented by bit sequences of a
length depending on it’s probabilities. Because
of the large different dots representing the
image, the binary tree to be built is large, so the
length of bit sequences which represents the
individual dots increases, resulting in a less
compression ratio compared to LZW
compression.

- When LZW or Huffman is used to compress a
file of type gif or type jpg, you will notice as in
the table and in the chart that the compressed file
size is larger than the original file size; this is
due to being the images of these files are already
compressed, so when compressed using LZW
the number of the new output codes will
increase, resulting in a file size larger than the
original , while in Huffman the size of the binary
tree built increases because of the less of
probabilities, resulting in longer bit sequence
that represent the individual dots of the image,
so the compressed file size will be larger than
the original . But because of being the new
output code in LZW represented by 9 bits, while
in Huffman the individual dot is represented
with bits less than 9, this makes the resulting file
size after compression in LZW larger than that
in Huffman.

- Decompression operation is the opposite
operation for compression; so the results will be
the same as in compression.
Secondly, with regard to compare between LZW
and HLZ, Under the title (Group 2 Results) both
Huffman and LZW will be used to compress the
same file, LZW compression then Huffman
compression are applied consecutively to the
same file or Huffman compression then LZW
compression are applied to the same file, then a
comparison between the two states will be done,
conclusion and discussions are also given. The
following table shows tries and results for group
2, will the chart in Fig. 2.2 represents these
results.

From table 2.2 and figure 2.2, the following
conclusions can be driven:

• Using LZH compression to compress a
file of type: txt or bmp gives an improved
compression ratio (more than Huffman
compression ratio, and LZW compression ratio
), this conclusion can be explained as follows:
In the LZH compression, the file is firstly
compressed using LZW, then compressed using
Huffman, as it appeared from group 1 results
that LZW gives good compression ratios for
these types of files (since it replaces strings of
characters with single codes represented by 9
bits or more depending on the LZW output
table), now the compressed file (.Lzw) file
which be compressed using Huffman, the (.Lzw
) file will be compressed perfectly by Huffman;
since the phrases that are represented in LZW by
9 or more bits will now be represented by binary
codes of 2, 3, 4 or more bits but still less than
8bits; this compresses the file more, and so
improved compression ratios can be achieved
using LZH compression.
• When LZH compression is used to
compress file of types: TIFF, GIF or JPEG, it
increases the output file size as it appears in the
table and from the chart, this conclusion can be
discussed as follows:
TIFF, GIF or JPEG files use LZW compression
in their formats, and so when compressed using
LZW, the output files sizes will be bigger the
original, while when they are compressed using
Huffman nearly good results can be achieved, so
when a TIFF, GIF or JPEG file is firstly
compressed with LZW resulting in a bigger file
size using Huffman; so LZH compression is not
efficient in the compression operation of these
types of files.
When HLZ compression is used to compress
files of types: Doc, Txt or Bmp, it gives a
compression ratio that is less than the
compression ratio obtained from as follows:
Huffman compression replaces each byte in the
input file with a binary code that is responded by
2, 3, 4 bits or more but still less than 8 bits, now
when the compressed file using Huffman (.Huf)
file is compressed using LZW phrases of binary
will be composed and represented with codes of
9 or more bits which were in Huffman
compressing these types of files.
When HLZ is used to compress files of types:
TIFF, GIF or JPEG, this will give good results
for compression. These really compressed
images using LZH in the first stage
(compression is performed in this stage using
Huffman), in the second stage of the
compression using LZH this will give a bigger

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

output file than the original (since LZW is now
used to compress an image that is really
compressed using LZW); and so HLZ is not an
efficient method in the compression operation of
these types of files.

LZH is used to obtain highly compression ratios
for the compression operation of files of types:
Doc, Txt, Bmp, rather than HLZ.

Under this title some suggestions are given for
increasing the performance of the compression
these are below:

In order to increase the performance of
compression, a comparison between LZW and
Huffman to determine which is best in
compressing a file is performed, and the output
compressed file will be that of the less
compression ratio, this can be used when the
files is to be attached to an e-mail. Using LZW
and Huffman for compression files of type: GIF
or of type JPG can be studied and a program for
good results can be built.

Finding a specific method for building the
binary tree of Huffman, so as to decrease the
length or determine the length of the bit
sequences that represent the individual symbols
can be studied and a program can be built for
this purpose.

Other text compression and decompression
algorithms can be studied and compared with the
results of LZW and Huffman.

References

1. Compressed Image File Formats: JPEG, PNG,

GIF, XBM, BMP, John Miano, August 1999
2. Introduction to Data Compression, Khalid

Sayood, Ed Fox (Editor), March 2000
3. Managing Gigabytes: Compressing and

Indexing Documents and Images, Ian H H.
Witten, Alistair Moffat, Timothy C. Bell ,
May 1999

4. Digital Image Processing, Rafael C. Gonzalez,
Richard E. Woods, November 2001

5. The MPEG-4 Book
6. Fernando C. Pereira (Editor), Touradj

Ebrahimi , July 2002
7. Apostolico, A. and Fraenkel, A. S. 1985.

Robust Transmission of Unbounded Strings
Using Fibonacci Representations. Tech.
Rep. CS85-14, Dept. of Appl. Math., The

Weizmann Institute of Science, Rehovot,
Sept.

8. Bentley, J. L., Sleator, D. D., Tarjan, R. E.,
and Wei, V. K. 1986. A Locally Adaptive
Data Compression Scheme. Commun. ACM
29, 4 (Apr.), 320-330.

9. Connell, J. B. 1973. A Huffman-Shannon-
Fano Code. Proc. IEEE 61,7 (July), 1046-
1047.

10. Data Compression Conference (DCC '00),
March 28-30, 2000, Snowbird, Utah

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Table 2.1 Comparison between LZW and Huffman

File Name

Input File Size

Output

File
Size/LZ

W

Output File

Size/
Huffman

Compress

Ratio/
LZW

Compress

Ratio /
Huffman

Example1. doc 68096 30580 29433 55% 57%
Example2. doc 58880 23814 23640 60% 66%
Example3. doc 83968 48984 46876 42% 45%
Example4. doc 20480 2530 4836 88% 76%
Example5. doc 27648 8222 10921 70% 60%
Example6. doc 57856 30993 27163 46% 53%
Example7. doc 87552 54229 47101 38% 46%
Example8. doc 48128 23631 20600 51% 55%
Example9. doc 79360 30363 32416 62% 59%
Example10. doc 68096 30581 29433 55% 57%

Pict3.bmp 1440054 193888 276506 87% 81%
Pict4.bmp 1440054 100338 282824 93% 80%
Pict5.bmp

1440054 461637 318178 68% 78%

Pict6.bmp 1365318 371601 366830 73% 73%
Inprise. gif 4654 6634 5073 -43% -9%
Baby. jpg 26183 35367 26487 -35% -1%
Cake. Jpg 23036 32457 23479 -41% -2%

Candles. jpg 17639 23230 17885 -32% -1%
Class. jpg 5851 6764 6035 -16% -3%
Earth. jpg 9370 12955 9811 -38% -5%

-200000
0
200000
400000
600000
800000
1000000
1200000
1400000
1600000

14710131619

Input File Size

Output File
Size/LZW
Output File Size/
Huffman
Compress Ratio/
LZW
Compress Ratio /
Huffman

Fig. 2.1 Comparison between LZW and Huffman compression ratio

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Table 2.2 Comparison between LZW, Huffman, LZH and HLZ

compression ratios

-500000

0

500000

1000000

1500000

2000000

2500000

14710131619222528

Input File Size
LZW
LZW%
HUF
HUF%
LZH
LZH%
HLZ
HLF%

Fig. 2.2 Comparison between LZH and HLZ compression ratios.

Input File Size

LZW

LZW

%

HUF

HU
F%

LZH

LZH
%

HLZ HLF
%

1.doc 1216502 570513 537542 359113 70 337749 72 487200 60
2.doc 659456 165288 75 157580 76 120529 82 137640 79
3.doc 491520 286957 42 306746 38 269146 45 361609 26
4.doc 436575 275193 37 162929 63 192012 56 168469 61
5.doc 71088 36721 48 44779 37 35468 50 53122 25
6.doc 45568 22092 52 22701 50 20452 55 25798 43
1.txt 3977 2571 35 2567 35 2865 28 3238 26
2.txt 12305 6715 45 7736 37 7028 43 9357 42
3.txt 20807 5757 72 13932 33 6177 70 10074 52
4.txt 20821 10725 48 13149 37 10990 47 14904 28
5.txt 39715 18936 52 24769 38 19183 52 27417 31
6.txt 25422 11335 55 16185 36 11703 54 17769 30

1.bmp 746082 286879 62 696526 37 273900 63 433512 42
2.bmp 83418 13402 84 27202 67 13735 84 18766 78
3.bmp 481080 606420 26 248644 48 361079 25 363798 24
4.bmp 222822 279781 26 215928 3 249947 -12 363798 63
5.bmp 2137730 416950 80 610085 71 407932 81 564156 74
6.bmp 1440054 192930 87 1378239 4 1639686 -14 1970140 37

1.tif 84530 1110672 32 785693 7 1110672 -32 1085466 29
2.tif 1162804 1567927 35 1091514 6 1308963 -13 1536259 32
3.tif 775036 366622 53 468322 40 318365 59 450462 42
4.tif 1440180 2010465 40 1378329 4 1639202 -14 1960444 36
5.tif 82308 12862 84 26113 68 13007 84 18000 78
6.tif 481722 307993 36 429330 48 228563 53 248853 48
1.gif 85084 119442 40 85457 0 102396 -20 121359 43
2.gif 18519 25425 37 18780 -1 22107 -19 26754 44

3.gif 63687 89482 41 64015 -1 76310 -20 90534 42
4.gif 62722 88180 41 63150 -1 76072 -21 89577 43
5.gif 83645 118375 42 84125 -1 101836 -22 119497 43
6.gif 304047 418116 38 303463 0 361399 -19 429013 41

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

