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Abstract 
The spread of computing has led to an explosion 
in the volume of data to be stored on hard disks 
and sent over the Internet. This growth has led to 
a need for "data compression", that is, the ability 
to reduce the amount of storage or Internet 
bandwidth required to handle this data. This 
paper provides a survey of data compression 
techniques. The focus is on the most prominent 
data compression schemes, particularly popular 
.DOC, .TXT, .BMP, .TIF, .GIF, and .JPG files. 
By using different compression algorithms, we 
get some results and regarding to these results 
we suggest the efficient algorithm to be used 
with a certain type of file to be compressed 
taking into consideration both the compression 
ratio and compressed file size.  
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1. Introduction  
The essential figure of merit for data 
compression is the "compression ratio", or ratio 
of the size of a compressed file to the original 
uncompressed file. For example, suppose a data 
file takes up 50 kilobytes (KB). Using data 
compression software, that file could be reduced 
in size to, say, 25 KB, making it easier to store 
on disk and faster to transmit over an Internet 
connection. In this specific case, the data 
compression software reduces the size of the 
data file by a factor of two, or results in a 
"compression ratio" of 2:1 [1, 2]. There are 
"lossless" and "lossy" forms of data 
compression. Lossless data compression is used 
when the data has to be uncompressed exactly as 
it was before compression. Text files are stored 
using lossless techniques, since losing a single 
character can be in the worst case make the text 
dangerously misleading. Archival storage of 
master sources for images, video data, and audio 
data generally needs to be lossless as well. 

However, there are strict limits to the amount of 
compression that can be obtained with lossless 
compression. Lossless compression ratios are 
generally in the range of 2:1 to 8:1. [2, 3].  Lossy 
compression, in contrast, works on the 
assumption that the data doesn't have to be 
stored perfectly. Much information can be 
simply thrown away from images, video data, 
and audio data, and the when uncompressed; the 
data will still be of acceptable quality. 
Compression ratios can be an order of 
magnitude greater than those available from 
lossless methods.  
 
The question of which are "better", lossless or 
lossy techniques is pointless. Each has its own 
uses, with lossless techniques better in some 
cases and lossy techniques better in others. In 
fact, as this paper will show, lossless and lossy 
techniques are often used together to obtain the 
highest compression ratios. Even given a 
specific type of file, the contents of the file, 
particularly the orderliness and redundancy of 
the data, can strongly influence the compression 
ratio. In some cases, using a particular data 
compression technique on a data file where there 
isn't a good match between the two can actually 
result in a bigger file [9].  
 
2. Some Considerable Terminologies 
A few little comments on terminology before we 
proceed are given as the following:  
• Since most data compression techniques 
can work on different types of digital data such 
as characters or bytes in image files or whatever, 
data compression literature speaks in general 
terms of compressing "symbols".  
• Most of the examples talk about 
compressing data in "files", just because most 
readers are familiar with that idea. However, in 
practice, data Compression applies just as much 
to data transmitted over a modem or other data 
communications link as it does to data stored in 
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a file. There's no strong distinction between the 
two as far as data compression is concerned. 
This paper also uses the term "message" in 
examples where short data strings are 
compressed [7, 10]. 
• Data compression literature also often 
refers to data compression as data "encoding", 
and of course that means data decompression is 
often  
called "decoding". This paper tends to use the 
two sets of terms interchangeably.  

 
3. Run Length Encoding Technique 
One of the simplest forms of data compression is 
known as "run length encoding" (RLE), which is 
sometimes known as "run length limiting" 
(RLL) [8,10]. In this encoding technique, 
suppose you have a text file in which the same 
characters are often repeated one after another. 
This redundancy provides an opportunity for 
compressing the file. Compression software can 
scan through the file, find these redundant 
strings of characters, and then store them using 
an escape character (ASCII 27) followed by the 
character and a binary count of the number of 
times it is repeated. For example, the 50 
character sequence: 
 
  XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX  
 
that's all, folks!-- can be converted to:  
<ESC>X<31> . This eliminates 28 characters, 
compressing the text by more than a factor of 
two. Of course, the compression software must 
be smart enough not to compress strings of two 
or three repeated characters, since for three 
characters run length encoding would have no 
advantage, and for two it would actually increase 
the size of the output file.  
 
As described, this scheme has two potential 
problems. First, an escape character may 
actually occur in the file. The answer is to use 
two escape characters to represent it, which can 
actually make the output file bigger if the 
uncompressed input file includes lots of escape 
characters. The second problem is that a single 
byte cannot specify run lengths greater than 256. 
This difficulty can be dealt by using multiple 
escape sequences to compress one very long 
string.  
 
Run length encoding is actually not very useful 
for compressing text files since a typical text file 
doesn't have a lot of long, repetitive character 

strings. It is very useful, however, for 
compressing bytes of a monochrome image file, 
which normally consists of solid black picture 
bits, or "pixels", in a sea of white pixels, or the 
reverse. Run-length encoding is also often used 
as a preprocessor for other compression 
algorithms.   

 
4.  HUFFMAN Coding Technique 
A more sophisticated and efficient lossless 
compression technique is known as "Huffman 
coding", in which the characters in a data file are 
converted to a binary code, where the most 
common characters in the file have the shortest 
binary codes, and the least common have the 
longest [9]. To see how Huffman coding works, 
assume that a text file is to be compressed, and 
that the characters in the file have the following 
frequencies:  

 
In practice, we need the frequencies for all the 
characters used in the text, including all letters, 
digits, and punctuation, but to keep the example 
simple we'll just stick to the characters from A to 
G.  
 
The first step in building a Huffman code is to 
order the characters from highest to lowest 
frequency of occurrence as follows: 
 

 
First, the two least-frequent characters are 
selected, logically grouped together, and their 
frequencies added. In this example, the D and E 
characters have a combined frequency of 21: 

 
 
This begins the construction of a "binary tree" 
structure. We now again select the two elements 
the lowest frequencies, regarding the D-E 
combination as a single element. In this case, the 
two elements selected are G and the D-E 
combination. We group them together and add 
their frequencies. This new combination has a 
frequency of 
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44:  We 
continue in the same way to select the two 
elements with the lowest frequency, group them 
together, and add their frequencies, until we run 
out of elements. In the third iteration, the lowest 
frequencies are C and A and the final binary tree 
will be as follows: 

 
 
Tracing down the tree gives the "Huffman codes", with 
the shortest codes assigned 
to the characters with the greatest frequency: 
 

 
 
The Huffman codes won't get confused in 
decoding. The best way to see that this is so is to 
envision the decoder cycling through the tree 
structure, guided by the encoded bits it reads, 
moving from top to bottom and then back to the 
top. As long as bits constitute legitimate 
Huffman codes, and a bit doesn't get scrambled 
or lost, the decoder will never get lost, either.  
There is an alternate algorithm for generating 
these codes, known as Shannon-Fano coding. In 
fact, it preceded Huffman coding and one of the 
first data compression schemes to be devised, 
back in the 1950s. It was the work of the well-
known Claude Shannon, working with R.M. 
Fano. David Huffman published a paper in 1952 
that modified it slightly to create Huffman 
coding.] 
 
 
 

5. ARITHMETIC Coding Technique 
Huffman coding looks pretty slick, and it is, but 
there's a way to improve on it, known as 
"arithmetic coding". The idea is subtle and best 
explained by example [4, 8, 10]. Suppose we 
have a message that only contains the characters 
A, B, and C, with the following frequencies, 
expressed as fractions: 
 

 
 
To show how arithmetic compression works, we 
first set up a table, listing characters with their 
probabilities along with the cumulative sum of 
those probabilities. The cumulative sum defines 
"intervals", ranging from the bottom value to 
less than, but not equal to, the top value. The 
order does not seem to be important. 

  
 

Now each character can be coded by the shortest 
binary fraction that falls in the character's 
probability interval: 

 
Sending one character is trivial and 
uninteresting. Let's consider sending messages 
consisting of all possible permutations of two of 
these three characters, using the same approach: 
 

 
 
The higher the probability of the string, in 
general the shorter the binary fraction needed to 
represent it. Let's build a similar table for three 
characters now:  
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Obviously, this same procedure can be followed for 
more characters, resulting in a longer binary fractional 
value. What arithmetic coding does is find the 
probability value of a particular message, and arrange 
it as part of a numerical order that allows its unique 
identification.  
 
6. LZ-77 Encoding Technique [4, 5, 10] 
Good as they are, Huffman and arithmetic coding are 
not perfect for encoding text because they don't 
capture the higher-order relationships between words 
and phrases. There is a simple, clever, and effective 
approach to compressing text known as LZ-77, 
which uses the redundant nature of text to provide 
compression. This technique was invented by two 
Israeli computer scientists, Abraham Lempel and 
Jacob Ziv, in 1977 [7,8,9,10]. 
 
LZ-77 exploits the fact that words and phrases 
within a text stream are likely to be repeated. When 
they do repeat, they can be encoded as a pointer to 
an earlier occurrence, with the pointer accompanied 
by the number of characters to be matched.  
Pointers and uncompressed characters are 
distinguished by a leading flag bit, with a "0" 
indicating a pointer and a "1" indicating an 
uncompressed character. This means that 
uncompressed characters are extended from 8 to 9 
bits, working against compression a little.  
 
Key to the operation of LZ-77 is a sliding history 
buffer, also known as a "sliding window", which 
stores the text most recently transmitted. When the 
buffer fills up, its oldest contents are discarded. The 
size of the buffer is important. If it is too small, 
finding string matches will be less likely. If it is too 
large, the pointers will be larger, working against 
compression.  

For an example, consider the phrase:  
 
the_rain_in_Spain_falls_mainly_i
n_the_plain  
 

-- where the underscores ("_") indicate spaces. This 
uncompressed message is 43 bytes, or 344 bits, long.  

At first, LZ-77 simply outputs uncompressed 
characters, since there are no previous occurrences 
of any strings to refer back to. In our example, these 
characters will not be compressed:  

     the_rain_ 

The next chunk of the message:  
 
in_ 

-- has occurred earlier in the message, and can 
be represented as a pointer back to that earlier 
text, along with a length field. This gives: 
 

the_rain_<3,3> 
 

-- where the pointer syntax means "look back three 
characters and take three characters from that 
point." There are two different binary formats for 
the pointer:  

• An 8 bit pointer plus 4 bit length, which 
assumes a maximum offset of 255 and a maximum 
length of 15.  
• A 12 bit pointer plus 6 bit length, which 
assumes a maximum offset size of 4096, implying 
a 4 kilobyte buffer, and a maximum length of 63.  

As noted, a flag bit with a value of 0 indicates a 
pointer. This is followed by a second flag bit 
giving the size of the pointer, with a 0 indicating 
an 8 bit pointer, and a 1 indicating a 12 bit pointer. 
So, in binary, the pointer <3,3> would look like 
this:  

00 00000011 0011 
 

The first two bits are the flag bits, indicating a 
pointer that is 8 bits long. The next 8 bits are the 
pointer value, while the last four bits are the length 
value.  

After this comes:  

Sp 
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-- which has to be output uncompressed:  
  
the_rain_<3,3>Sp 
 

However, the characters "ain_" have been sent, so 
they are encoded with a pointer:  

 
the_rain_<3,3>Sp<9,4> 
 

Notice here, at the risk of belaboring the obvious, 
that the pointers refer to offsets in the 
uncompressed message. As the decoder receives 
the compressed data, it uncompresses it, so it has 
access to the parts of the uncompressed message 
that the pointers reference.  
The characters "falls_m" are output uncompressed, 
but "ain" has been used before in "rain" and 
"Spain", so once again it is encoded with a pointer:  

 
the_rain_<3,3>Sp<9,4>fa
lls_m<11,3> 
 

Notice that this refers back to the "ain" in "Spain", and 
not the earlier "rain". This ensures  
a smaller pointer.  

The characters "ly" are output uncompressed, but 
"in_" and "the_" were output earlier, and so they are 
sent as pointers:  

the_rain_<3,3>Sp<9,4>fa
lls_m<11,3>ly_<16,3><34
,4> 
 

Finally, the characters "pl" are output 
uncompressed, followed by another pointer to 
"ain". Our original message:  

 
the_rain_in_Spain_falls
_mainly_in_the_plain  
 
-- has now been compressed into 
this form:  
 
the_rain_<3,3>Sp<9,4>fa
lls_m<11,3>ly_<16,3><34
,4>pl<15,3> 
 

This gives 23 uncompressed characters at 9 bits 
apiece, plus six 14 bit pointers, for a total of 291 
bits as compared to the uncompressed text of 
344 bits. This is not bad compression for such a 
short message, and of course compression gets 
better as the buffer fills up, allowing more 
matches.  

LZ-77 will typically compress text to a third or 
less of its original size. The hardest part to 
implement is the search for matches in the 
buffer. Implementations use binary trees or hash 
tables to ensure a fast match. There are a several 
variations on the LZ-77, the best known being 
LZSS, which was published by Storer and 
Symanski in 1982. The differences between the 
two are unclear from the sources I have access 
to.  
 
More drastic modifications of LZ-77 include a 
second level of compression on the output of the 
LZ-77 coder. LZH, for example, performs the 
second level of compression using Huffman 
coding, and is used in the popular LHA archiver. 
The ZIP algorithm, which is used in the popular 
PKZIP package and the freeware ZLIB 
compression library, uses Shannon-Fano coding 
for the second level of compression.  
 
7. LZW Coding Technique 
LZ-77 is an example of what is known as 
"substitutional coding". There are other schemes 
in this class of coding algorithms. Lempel and 
Ziv came up with an improved scheme in 1978, 
appropriately named LZ-78, and it was refined 
by a Mr. Terry Welch in 1984, making it LZW 
[6,8,10]. LZ-77 uses pointers to previous words 
or parts of words in a file to obtain compression. 
LZW takes that scheme one step further, actually 
constructing a "dictionary" of words or parts of 
words in a message, and then using pointers to 
the words in the dictionary. Let's go back to the 
example message used in the previous section:  

 
the_rain_in_Spain_falls_
mainly_in_the_plain  
 

The LZW algorithm stores strings in a 
"dictionary" with entries for 4,096 variable 
length strings. The first 255 entries are used to 
contain the values for individual bytes, so the 
actual first string index is 256. As the string is 
compressed, the dictionary is built up to contain 
every possible string combination that can be 
obtained from the message, starting with two 
characters, then three characters, and so on.  
 
For example, we scan through the message to 
build up dictionary entries as follows: 
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The next two-character string in the message is 
"in", but this has already been included in the 
dictionary in entry 262. This means we now set 
up the three-character string "in_" as the next 
dictionary entry, and then go back to adding 
two-character strings: 
 

 

The next two-character string is "ai", but that's 
already in the dictionary at entry 261, so  we 
now add an entry for the three-character string 
"ain": 

 
Since "n_" is already stored in dictionary entry 
263, we now add an entry for "n_f": 

 
 
Since "ain" is already stored in entry 269, we 
add an entry for the four-character string "ainl": 
 

 
Since the string "_i" is already stored in entry 
264, we add an entry for the string "_in": 
 

 
 
Since "n_" is already stored in dictionary entry 
263, we add an entry for "n_t": 
 

 
 
Since "th" is already stored in dictionary 
entry 256, we add an entry for "the":  
 

  
Since "e_" is already stored in dictionary entry 
258, we add an entry for "e_p": 
 

 

 
The remaining characters form a string already 
contained in entry 269, so there is no need to put 
it in the dictionary. 
 
We now have a dictionary containing the 
following strings: 
 
 

 
 
Please remember the dictionary is a means to an 
end, not an end in itself. The LZW coder simply 
uses it as a tool to generate a compressed output. 
It does not output the dictionary to the 
compressed output file. The decoder doesn't 
need it. While the coder is building up the 
dictionary, it sends characters to the compressed 
data output until it hits a string that's in the 
dictionary. It outputs an index into the dictionary 
for that string, and then continues output of 
characters until it hits another string in the 
dictionary, causing it to output another index, 
and so on. That means that the compressed 
output for our example message looks like this: 
 

 
 
    

The decoder constructs the dictionary as it reads 
and uncompresses the compressed data, building 
up dictionary entries from the uncompressed 
characters and dictionary entries it has already 
established. One puzzling thing about LZW is 
why the first 255 entries in the 4K buffer are 
initialized to single-character strings. There 
would be no point in setting pointers to single 
characters, as the pointers would be longer than 
the characters, and in practice that's not done 
anyway. I speculate that the single characters are 
put in the buffer just to simplify searching the 
buffer.  
As this example of compressed output shows, as 
the message is compressed, the dictionary grows 
more complete, and the number of "hits" against 
it increases. Longer strings are also stored in the 
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dictionary, and on the average the pointers 
substitute for longer strings. This means that up 
to a limit, the longer the message, the better the 
compression. This limit is imposed in the 
original LZW implementation by the fact that 
once the 4K dictionary is complete, no more 
strings can be added. Defining a larger 
dictionary of course results in greater string 
capacity, but also longer pointers, reducing 
compression for messages that don't fill up the 
dictionary.  
 
A variant of LZW known as LZC is used in the 
UN*X "compress" data compression program. 
LZC uses variable length pointers up to a certain 
maximum size. It also monitors the compression 
of the output stream, and if the compression 
ratio goes down, it flushes the dictionary and 
rebuilds it, on the assumption that the new 
dictionary will be better "tuned" to the current 
text.  
 
Another refinement of LZW keep track of string 
"hits" for each dictionary entry, and overwrites 
"least recently used" entries when the dictionary 
fills up. Refinements of LZW provide the core 
of GIF and TIFF image compression as well.  
 
It is also used in some modem communication 
schemes, such as the V.42bis protocol. V.42bis 
has an interesting flexibility. Since not all data 
files compress well given any particularly 
encoding algorithm, the V.42bis protocol 
monitors the data to see how well it compresses. 
It sends it "as is" if it compresses poorly, and 
switches to LZW compress using an escape code 
if it compresses well.  
 
Both the transmitter and receiver continue to 
build up an LZW dictionary even while the 
transmitter is sending the file uncompressed, and 
switch over transparently if the escape character 
is sent. The escape character starts out as a 
"null" (0) byte, but is incremented by 51 every 
time it is sent, "wrapping around" when it 
exceeds 256: 
 

 

If a data byte that matches the the escape 
character is sent, it is sent twice. The escape 
character is incremented to ensure that the 
protocol doesn't get bogged down if it runs into 
an extended string of bytes that match the escape 
character. 

 
8. Results, Conclusions and 
Recommendations 
Firstly, with regards to compare between LZW 
and Huffman, Under the title (Group 1 Results), 
both LZW and Huffman will be used to 
compress and decompress different types of 
files, tries and results will be represented in a 
table, then figured in a chart to compare the 
efficiency of both programs in compressing and 
decompressing different types of files, 
conclusion and discussions are given at the end. 
 
Figure 2.1 shows the results of using the 
program in compressing different types of 
files. In the chart, the dark blue curve 
represents the input files sizes, the violet 
curve represents the output files sizes when 
compressed using LZW and the yellow 
curve represents the output file size when 
compressed using Huffman. 
 
From table 2.1 and the figure 2.1, the 
following conclusions and discussion can be 
driven:  
•  LZW and Huffman give nearly results 
when used for compressing document or text 
files, as appears in the table and in the chart. The 
difference in the compression ratio is related to 
the different mechanisms of both in the 
compression process; which depends in LZW on 
replacing strings of characters with single codes, 
where in Huffman depends on representing 
individual characters with bit sequences. 
• When LZW and Huffman are used to 
compress a binary file (all of its contents either 1 
or 0), LZW gives a better compression ratio than 
Huffman. If you tried for example to compress 
one line of binary ( 
00100101010111001101001010101110101......) 
using LZW, you will arrive to a stage in which 5 
or 6 consecutive binary digits are represented by 
a single new code ( 9 bits ), while in Huffman 
you will represents every individual binary digit 
with a bit sequence of 2 bits, so in Huffman the 
5 or 6 binary digits which were represented in 
LZW by 9 bits are represented now with 10 or 
12 bits; this decreases the compression ratio in 
the case of Huffman 
 
-LZW and Huffman are used in compressing 
bmp files; bmp files contain images, in which 
each dot in the image is represented by a byte, as 
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appears in the chart for compressing bmp files, 
the results are somehow different. LZW seems 
to be better in compressing bmp files the 
Huffman; since it replaces sets of dots ( instead 
of strings of characters in text files ) with single 
codes; resulting in new codes that are useful 
when the dots that consists the image are 
repeated, while in Huffman, individual dots in 
the image are represented by bit sequences of a 
length depending on it’s probabilities. Because 
of the large different dots representing the 
image, the binary tree to be built is large, so the 
length of bit sequences which represents the 
individual dots increases, resulting in a less 
compression ratio compared to LZW 
compression. 
 
- When LZW or Huffman is used to compress a 
file of type gif or type jpg, you  will notice as in 
the table and in the chart that the compressed file 
size is larger than the original file size; this is 
due to being the images of these files are already 
compressed, so when compressed using LZW 
the number of the new output codes will 
increase, resulting in a file size larger than the 
original , while in Huffman the size of the binary 
tree built increases because of the less of 
probabilities, resulting in longer bit sequence 
that represent the   individual dots of the image, 
so the compressed file size will be larger than 
the original . But because of being the new 
output code in LZW represented by 9 bits, while 
in Huffman the individual dot is represented 
with bits less than 9, this makes the resulting file 
size after compression in LZW larger than that 
in Huffman. 
 
- Decompression operation is the opposite 
operation for compression; so the results will be 
the same as in compression. 
Secondly, with regard to compare between LZW 
and HLZ, Under the title (Group 2 Results) both 
Huffman and LZW will be used to compress the 
same file, LZW compression then Huffman 
compression are applied consecutively to the 
same file or Huffman compression then LZW 
compression are applied to the same file, then a 
comparison between the two states will be done, 
conclusion and discussions are also given. The 
following table shows tries and results for group 
2, will the chart in Fig. 2.2 represents these 
results. 
 
From table 2.2 and figure 2.2, the following 
conclusions can be driven: 

• Using LZH compression to compress a 
file of type: txt or bmp gives an improved 
compression ratio ( more than Huffman 
compression ratio, and LZW compression ratio 
), this conclusion can be explained as follows: 
In the LZH compression, the file is firstly 
compressed using LZW, then compressed using 
Huffman, as it appeared from group 1 results 
that LZW gives good compression ratios for 
these types of files ( since it replaces strings of 
characters with single codes represented by 9 
bits or more depending on the LZW output 
table), now the compressed file (.Lzw ) file 
which be compressed using Huffman, the (.Lzw 
) file will be compressed perfectly by Huffman; 
since the phrases that are represented in LZW by 
9 or more bits will now be represented by binary 
codes of 2, 3, 4 or more bits but still less than 
8bits; this compresses the file more, and so 
improved compression ratios can be achieved 
using LZH compression. 
• When LZH compression is used to 
compress file of types: TIFF, GIF or JPEG, it 
increases the output file size as it appears in the 
table and from the chart, this conclusion can be 
discussed as follows: 
TIFF, GIF or JPEG files use LZW compression 
in their formats, and so when compressed using 
LZW, the output files sizes will be bigger the 
original, while when they are compressed using 
Huffman nearly good results can be achieved, so 
when a TIFF, GIF or JPEG file is firstly 
compressed with LZW resulting in a bigger file 
size using Huffman; so LZH compression is not 
efficient in the compression operation of these 
types of files. 
When HLZ compression is used to compress 
files of types: Doc, Txt or Bmp, it gives a 
compression ratio that is less than the 
compression ratio obtained from as follows: 
Huffman compression replaces each byte in the 
input file with a binary code that is responded by 
2, 3, 4 bits or more but still less than 8 bits, now 
when the compressed file using Huffman (.Huf) 
file is compressed using LZW phrases of binary 
will be composed and represented with codes of 
9 or more bits which were in Huffman 
compressing these types of files. 
When HLZ is used to compress files of types: 
TIFF, GIF or JPEG, this will give good results 
for compression. These really compressed 
images using LZH in the first stage 
(compression is performed in this stage using 
Huffman), in the second stage of the 
compression using LZH this will give a bigger 
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output file than the original (since LZW is now 
used to compress an image that is really 
compressed using LZW); and so HLZ is not an 
efficient method in the compression operation of 
these types of files. 
 
LZH is used to obtain highly compression ratios 
for the compression operation of files of types: 
Doc, Txt, Bmp, rather than HLZ. 
 
Under this title some suggestions are given for 
increasing the performance of the compression 
these are below: 
 
In order to increase the performance of 
compression, a comparison between LZW and 
Huffman to determine which is best in 
compressing a file is performed, and the output 
compressed file will be that of the less 
compression ratio, this can be used when the 
files is to be attached to an e-mail. Using LZW 
and Huffman for compression files of type: GIF 
or of type JPG can be studied and a program for 
good results can be built. 
 
Finding a specific method for building the 
binary tree of Huffman, so as to decrease the 
length or determine the length of the bit 
sequences that represent the individual symbols 
can be studied and a program can be built for 
this purpose. 
 
Other text compression and decompression 
algorithms can be studied and compared with the 
results of LZW and Huffman. 
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Table 2.1 Comparison between LZW and Huffman 

 
 

File Name 
 

 
Input File Size 

 

 
Output 

File 
Size/LZ

W 

 
Output File 

Size/ 
Huffman 

 
Compress 

Ratio/ 
LZW 

 
Compress 

Ratio / 
Huffman 

Example1. doc 68096 30580 29433 55% 57% 
Example2. doc 58880 23814 23640 60% 66% 
Example3. doc 83968 48984 46876 42% 45% 
Example4. doc 20480 2530 4836 88% 76% 
Example5. doc 27648 8222 10921 70% 60% 
Example6. doc 57856 30993 27163 46% 53% 
Example7. doc 87552 54229 47101 38% 46% 
Example8. doc 48128 23631 20600 51% 55% 
Example9. doc 79360 30363  32416 62% 59% 
Example10. doc 68096 30581 29433 55% 57% 

Pict3.bmp 1440054  193888 276506 87% 81% 
Pict4.bmp 1440054 100338 282824 93% 80% 
Pict5.bmp  

  
1440054 461637 318178 68% 78% 

Pict6.bmp 1365318 371601 366830 73% 73% 
Inprise. gif 4654 6634 5073 -43% -9% 
Baby. jpg 26183 35367 26487 -35% -1% 
Cake. Jpg 23036 32457 23479 -41% -2% 

Candles. jpg 17639 23230 17885 -32% -1% 
Class. jpg 5851 6764 6035 -16% -3% 
Earth. jpg 9370 12955 9811 -38% -5% 
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Fig. 2.1 Comparison between LZW and Huffman compression ratio 
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Table 2.2 Comparison between LZW, Huffman, LZH and HLZ 

compression ratios 
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Fig. 2.2 Comparison between LZH and HLZ compression ratios. 

 
Input File Size 

 

 
LZW 

 
LZW

% 

 
HUF 

 
HU
F% 

LZH 
 

LZH
% 

HLZ HLF
% 

1.doc  1216502 570513 537542 359113 70 337749 72 487200 60 
2.doc 659456 165288 75 157580 76 120529 82 137640 79 
3.doc 491520 286957 42 306746 38 269146 45 361609 26 
4.doc 436575 275193 37 162929 63 192012 56 168469 61 
5.doc 71088 36721 48 44779 37 35468 50 53122 25 
6.doc 45568 22092 52 22701 50 20452 55 25798 43 
1.txt 3977 2571 35 2567 35 2865 28 3238 26 
2.txt 12305 6715 45 7736 37 7028 43 9357 42 
3.txt 20807 5757 72 13932 33 6177 70 10074 52 
4.txt 20821 10725 48 13149 37 10990 47 14904 28 
5.txt 39715 18936 52 24769 38 19183 52 27417 31 
6.txt 25422 11335 55 16185 36 11703 54 17769 30 

1.bmp 746082 286879 62 696526 37 273900 63 433512 42 
2.bmp 83418 13402 84 27202 67 13735 84 18766 78 
3.bmp 481080 606420 26 248644 48 361079 25 363798 24 
4.bmp 222822 279781 26 215928 3 249947 -12 363798 63 
5.bmp 2137730 416950 80 610085 71 407932 81 564156 74 
6.bmp 1440054 192930 87 1378239 4 1639686 -14 1970140 37 

1.tif 84530 1110672 32 785693 7 1110672 -32 1085466 29 
2.tif 1162804 1567927 35 1091514 6 1308963 -13 1536259 32 
3.tif 775036 366622 53 468322 40 318365 59 450462 42 
4.tif 1440180 2010465 40 1378329 4 1639202 -14 1960444 36 
5.tif 82308 12862 84 26113 68 13007 84 18000 78 
6.tif 481722 307993 36 429330 48 228563 53 248853 48 
1.gif 85084 119442 40 85457 0 102396 -20 121359 43 
2.gif 18519 25425 37 18780 -1 22107 -19 26754 44 

3.gif 63687 89482 41 64015 -1 76310 -20 90534 42 
4.gif 62722 88180 41 63150 -1 76072 -21 89577 43 
5.gif 83645 118375 42 84125 -1 101836 -22 119497 43 
6.gif 304047 418116 38 303463 0 361399 -19 429013 41 
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