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Approximate Matrix Decomposition Techniques in Information Retrieval *
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Abstract— In this paper, a new class of numerical
matrix computation methods has been developed in
computing the approximate decomposition matrix
in concept decomposition technique. These methods
utilize the knowledge of matrix sparsity pattern
techniques in preconditioning field. Compared to
the straightforward implementation of the concept
these methods

putationally more efficient, fast in computing the

matrix decomposition, are com-

ranking vector and require much less memory while

maintaining retrieval accuracy.
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1 Introduction

Recently, concept decomposition based on document
clustering strategies has drawn researchers’ attention [3].
In this approach, data is modeled as a term-document
matrix, and a large document dataset is first partitioned
into tightly structured clusters. The centroid of the doc-
uments in a cluster is computed and normalized as the
concept vector of that cluster, as it represents the gen-
eral meaning of that group of tightly structured homoge-
neous documents. The term-document matrix projected
on the concept vectors is compared favorably to the trun-
cated Singular Value Decomposition (SVD) of the origi-
nal term-document matrix. However, the numerical com-
putation based on the straightforward implementation of
the concept matrix decomposition is expensive, as there
is an inverse matrix of the normal matrix formed by the
concept vector matrix is required for each query compu-
tation.
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In this paper, we develop sparse matrix approximation
techniques to compute the matrix associated with the
concept matrix decomposition. These computations are
related to weighted least squares optimization and ap-
proximate pseudo matrix inversion. Qur experimental re-
sults show that these approaches greatly reduce the time
and memory space required to compute the decomposi-
tion matrix and perform document retrieval.

This paper is organized as follows. Section 2 introduces
document clustering and concept decomposition. Sec-
tion 3 discusses the approximate least squares based ap-
proaches, the key part of the numerical computation in
this paper. Numerical experiments are given in Section 4.

We summarize this paper in Section 5.

2 Document Clustering and Concept
Vectors

Clustering is a division of data into groups of similar ob-
jects. One of the best known clustering algorithms is
the k-means, with many variants [7, 8, 9]. In our study,
we use a k-means algorithm, implemented in [4], to clus-
ter our document collection into a few tightly structured
ones. An ideal cluster contains homogeneous documents

that are relevant to each other.
2.1 Document Clustering

Let the of document vectors be A =
[a1,a2,...,05,... the jth docu-

ment in the collection. We partition the documents into

set
,an], where a; is

k sub-collections {r;}%_, such that

k
Uﬂ-j:{ala(]@)"'aan} and 7ij7i'i:¢ if ‘7¢Z
j=1

For each fixed 1 < j
cluster is defined as

< k, the centroid vector of each
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where n; = |r;| is the number of documents in 7;. We
normalize the centroid vectors such that

An intuitive definition of the clusters is that, if a; € 7;,
then

az-ch >ale for 1=1,2,...,k,

L#j,

i.e., documents in w; are closer to its centroid than to
the other centroids. If the clustering is good enough and
each cluster is compact enough, the centroid vector may
represent the abstract concept of the cluster. So they are
also called concept vectors [3]. The concept matriz can be
defined as an m X k matrix such that,

Ck = [01,02, .. .,Ck].

The concept matrix C}, is still a sparse matrix, as each
column c; is sparse. The degree of sparsity of C}, is in-
versely proportional to the number of clusters generated.
If we assume that the concept vectors are linearly inde-
pendent, the concept matrix has rank k.

For any partitioning of the document vectors, we can de-
fine the corresponding concept decomposition Ay of the
term-document matrix A as the least squares approxima-
tion of A onto the column space of the concept matrix
Cr. We write the concept decomposition as an m X n
matrix

Ay, = Cp M,

where M is a k x n matrix that is to be determined by
solving the following least squares problem

M :argmﬂ/iInHA—CkMH%‘. (1)

Here the norm ||-||¢ is the Frobenius norm of a matrix. It
is well-known that problem (1) has a closed-form solution,
i.e.,

M = (CFCy) ' CLA.

2.2 Retrieval
Strategies

Procedure and Research

For convenience, we ignore the subscript of Cj and write
the concept matrix as C.

Given a query vector g, the retrieval with the concept
projection matrix (CPM) A, can be computed as

rT=q" Ay = ¢" C(CTO)TICT 4, (2)
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where rT" is the ranking vector. After sorting the entries
of T in a descending order, we have a ranking list of
documents which are related to the query (listed from
the most relevant to the least relevant). The retrieval
accuracy based on CPM is comparable to the SVD tech-
nique [5]. However, the retrieval procedure in Eq. (2) is
not efficient in terms of numerical computation and stor-
age. It needs to compute (CTC)™!, the inverse of the
normal matrix of the concept matrix, which is likely to
be a dense matrix.

To make the numerical computation procedure and stor-
age cost more competitive, a strategy which utilizes the
knowledge of both preconditioning techniques and the
computational theorems have been studied. The strategy
is to compute a sparse matrix to approximate the projec-
tion matrix directly, i.e., we compute a matrix M to solve
the least squares problem (1) approximately. The matrix
M computed must be sparse in order for the strategy to
be competitive against the inverse of the normal matrix
of the concept projection matrix approach (CPM).

3 Approximate Least Squares Based
Strategies

Note that all we want is to find a sparse matrix M
such that the functional f(M) = ||A — C M||% is min-
imized, or more precisely, approzimately minimized. A
similar problem in the preconditioning community is to
compute a sparse approximate inverse matrix M for a
nonsingular coefficient matrix A by minimizing f(M) =
mineg ||[I—AM||%, subject to certain constraints on the
sparsity pattern of M. Here the sparsity pattern of M is
restricted to a (usually unknown a priori) subset G.

So, for a term-document matrix A, we can minimize the
functional

M) = min ||A - CM|3 3

F(M) = min | IF2 ®3)

with a constraint such that M is sparse. The most im-
portant part of this minimization procedure is to deter-
mine the sparsity pattern constraint set G, which gives
the sparsity pattern of M.

3.1 Static Sparsity Pattern (SSP)

The static sparsity pattern strategy use a priori patterns.
In preconditioning field, a particularly useful and effective
strategy is to use the sparsity pattern of the coefficient
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matrix C or CT for M.
static sparsity pattern in information retrieval lies in the

The difficulty for choosing a

fact that the dimensions of the matrices C' and M do not
match and there is no known study that has been done to
find a suitable sparsity pattern, to the best of our knowl-
edge. This research ventures into a non-traditional ap-
plication of computational numerical linear algebra with
approximate decomposition matrix computation in infor-
mation retrieval.

A strategy based on the sparsity pattern of C' and entry
values of both C' and A is described below.

e This strategy is based on the numerical computation,
vector-vector product. That is ¢;m; = a;;, where ¢;
is the ith row of C, m; is the jth column of M. The
sparsity pattern of m; is given in this way: If a;; is
the largest entry in the jth column of A, the sparsity
pattern of m; is the same as that of c¢;. Here we
use small matrices to illustrate our ideas. Suppose
the three matrices are Cyx3, M3xs and Ayxs. The
pattern of CM = A is depicted by the Eq (4).

z 0 =z o
0 = O o
z x 0 o
0 = O ix3 3x5
0 0 =z O
0 0 0 z =
"l z z 0 0 O (4)
zr 0 = 0 O ix5
Here, ”z” denotes nonzero entry, ”-” denotes unde-

fined pattern. We determine the sparsity pattern of
M column by column. First, find the largest entry
in each column of A, suppose they are as, a1z, 43,
a14, and ass in Eq (4). Then the sparsity pattern
of my, is the same as that of ¢z and the sparsity
pattern of mo is the same as that of c¢;, ms has
same sparsity pattern of ¢4 and my is the same as

that of ¢;. Finally we have the sparsity pattern of
z z 0 z O

M like this: z 0 z 0 «z

0z 0 =z O

Since there may be more than one largest entries in

each column in term-document matrix A, the fol-

lowing rules may be applied to choosing the largest

term.
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— Start the above procedure from the column of A
that has the smallest number of nonzero entries.

— Do not use the same row’s sparsity pattern of
C if possible.

Based on this strategy, the sparsity ratio of M is almost
the same as that of C.

3.2 Dynamic Sparsity Pattern (DSP)

The dynamic sparsity pattern strategy first computes an
approximate decomposition matrix by solving the least
squares problem (3) with respect to an initial sparsity
pattern guess. Then this sparsity pattern is updated ac-
cording to some rules and is used as the new sparsity
pattern guess for solving (3). The approximate decom-
position matrix computation may be repeated several
times until some stopping criteria are satisfied. Differ-
ent update rules lead to different dynamic sparsity pat-
tern strategies. One useful rule, suggested by Grote and
Huckle [6] in computing sparse approximate inverse pre-
conditioners, adds the candidate indices into the sparsity
pattern of the current approximation S that can most
effectively reduce the residual g = C(-,S)m; — a;. The
candidate indices are chosen from the set

p=1{i¢S| Cle,j)# 0},

where @ = { i | g(i) # 0}. This is a one-dimensional
minimization problem

min [|g +u;(Cej — aj)ll2;, j €5,

which e; is the jth unit vector. Denote I; = Ce; — aj;,
the above minimization problem has the solution

9"l

uj; = .
T ls
For each j, we compute the 2-norm of the new residual
(g"1)°
1125113

Then we can choose the most profitable indices j which

as

pi = llgll* =

lead to the smallest new residual norm p;. The procedure
to augment the sparsity structure S is as follows.

ALGORITHM 3.1 Construct a dynamic pattern approxi-
mate decomposition matrix.
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1. Given the maximum update steps ns, fill-ins g > 0,lead to more work, more fill-in, and usually more accurate

stopping tolerance €, and
an initial diagonal sparsity pattern S
Loop
Compute p; for all indices j € 3
Compute the mean A of {p;}

CUR W

At most p indices with p; < A
will be added into S
Until ||r||2 < € or exceed the steps ns

o

Barnard et al[l] released an MPI implementation,
SPAI 3.0, for computing the sparse approximate inverse
preconditioner of a nonsingular matrix. We modified the
code for our computation of the sparse approximate de-
composition matrix.

4 Numerical Experiments

To evaluate the performance of the proposed matrix ap-
proximation approaches SSP and DSP, we apply them to
three popular text databases: CRAN,MED and CISI and
compare them with the concept project matrix method
(CPM). The information about the three databases are
given in Table 1. A standard way to evaluate the perfor-

Table 1: The information of three databases

Database | Matrix size | Number of queries
CISI 5609 x 1460 112
CRAN | 4612 x 1398 225
MED 5831 x 1033 30

mance of an information retrieval system is to compute
precision and recall values. We average the precision of all
queries at fixed recall values as 10%, 20%, . ..,90%. We
also compare their storage costs and CPU time required
for query procedure and approximate matrix computa-
tion. The precision computation and query time are car-
ried out in UNIX system by using matlab. The sparse
matrix computation and matrix inverse are carried out
in IBM Power/Intel(Xeon) hybrid system at University
of Kentucky by using C.

The number of clusters k is chosen as follows: k = 256
and k = 500 are used for CISI and CRAN databases,
k = 200 and k = 500 are for MED database. For DSP
approach in algorithm 3.1, we choose € = 1 for all tests.
ns and g vary in different tests. Higher values of ns,u
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matrix.

CRAN matrix k = 256

—— CPM
—— SSP
—+ DSP with ns=2, p=10

03 04 05 06 07 08 09 1
Recall

o o1 02

CRAN matrix k = 500

—— CPM
—- SSP
—+ DSP varl: ns=2, p=10
04 —+ DSP var2: ns=3, u=10

03 04 05 06 07 08 09 1
Recall

o 01 02

Figure 1: Precision-recall test for CRAN database

The query precision tests for all three databases are given
in Fig. 1, Fig. 2, and Fig. 3. We are not surprised that
CPM has better query results as CPM matrix is much
more dense (we will show this in the later tests) and hence
more accurate than that of SSP and DSP.

We then compare their storage costs required in previous
tests by listing the number of nonzeros of the approxi-
mate matrix M and CPM matrix (CTC)~!CTA. The
test results presented in the left and right panel in Fig. 4
are corresponding to the upper panel and down panel in
Fig. 1, Fig. 2, and Fig. 3 respectively. From this test we
see that SSP and DSP use much less memory space than
CPM. Considering the fact with about 90% less mem-
ory costs than CPM, SSP and DSP suffer only 6% pre-
cisions lost, they may be more attractive if storage cost
is a bottle-neck. We also tried to sparsify the CPM ma-
trix by dropping small entries. By reducing 20% of the
memory storages, the precision is lost more than 40% for
CISI with k& = 500 test.
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CISI matrix k = 256

—— CPM
—— SSP
—+ DSP with ns=2,u =10

CISI matrix k = 500

—— CPM
—— SSP
-+ - DSP varl: ns=2, =20
04 —o— DSP var2: ns=3, =8

05
Recall

Figure 2: Precision-recall test for CISI database

In order to see which sparsity pattern is good, we compare
SSP and DSP by increasing the density of the DSP matrix
in the tests of all three databases with k¥ = 500. In the
down panel of the Fig. 1, Fig. 2 and Fig. 3, the precision-
recall curves corresponding to DSP var2 are better or
very close to that of SSP while still uses smaller memory
space compared to SSP. That means, given the same stor-
age constraint, dynamic sparsity pattern strategy more
accurately computes sparse approximate matrix than the
static sparsity pattern strategy.

Finally we give the query time and total CPU time re-
quired for the query procedures and matrix computation.
The query time is one of the most important aspects in
information retrieval system. It affects the retrieval per-
formance. We see from the upper panel of the Fig. 5 that
SSP and DSP greatly reduce the query time required by
CPM approach due to their very sparse matrices. If k
is large, the new approaches also reduce total CPU time
as the inverse of CTC takes much time for CPM, see the

down panel in Fig. 5.
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MED matrix k = 200

—+— CPM
09| —— SSP
—+— DSP with ns=2, y=10

Pro

0 01 02 03 04 05 06 07 08 09 1
Recall

MED matrix k = 500

—+— CPM
—— SSP
—+— DSP varl: ns=2=10
—o— DSP var2: ns=3, u=10

05
Recall

Figure 3: Precision-recall test for MED database

5 Summary

We have developed numerical matrix computation meth-
ods based on static sparsity pattern (SSP) and dynamic
sparsity pattern (DSP) to compute the approximate ma-
We tested
and compared with CPM based retrieval schema. In

trix to the concept matrix decomposition.

our numerical experiments, the sparsity pattern based
approaches SSP and DSP turn out to be more competi-
tive in terms of query precision, computational costs and

memory space.

With the comparison of SSP and DSP sparsity pattern
strategies, DSP displays some of the following advan-
tages: First is that it computes a more accurate approxi-
mate matrix than SSP given the same density constraint.
Second is that the accuracy of the approximate decompo-
sition matrix can be controlled easily. By allowing more
update steps, we can compute a more accurate approx-
imate decomposition matrix. Third, as the information
retrieval database may be updated periodically to accom-
modate new documents or to remove some out-of-dated
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documents, the computed sparsity pattern may be used
as a static sparsity pattern in some intermediate database
update. But the dynamic sparsity pattern strategy is

Storage costs, k=256, k=200 Storage costs, k = 500

o —ye more expensive in terms of computational cost. Note that
= oo =

1 psPvarl

ooy B 5P ver2 1 in information retrieval, these computations are called
s00 - 1 the pre-processing computation to prepare the database
soo- l for the purpose of retrieval. Thus, an expensive one-time

cost can be allowed if the prepared database enables more
accurate and faster retrieval. If the storage costs and

Number of nonzeros in thousands
Number of nonzeros in thousands
»
<]
<]

query time are the bottle-neck during the query proce-
dure, the dynamic sparsity pattern strategy looks more

attractive.

o =l
CRAN cisi MED CRAN cisi MED
Databases Databases
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