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Abstract—This paper presents a parameter modeling to Power 

System Stabilizers (PSS) using MLP and RBF neural networks. 
The application of neural networks in PSS aims to improve the 
dynamic stability of electric power systems by reducing the 
machine eletromechanic damping oscillation when a disturbance 
occurs. According to the current plant operating conditions, the 
PSS parameters are automatically adjusted by the neural network 
in sense to give a satisfactory control. The observed performance 
for the proposed approach is tested in simulations, using a 
nonlinear dynamic model of infinite bus machine-type. The 
results show that it is possible to improve the power system 
dynamic performance with the new modeling. 
 

Index Terms—Combined Cycle Plants, Dynamic Stability, 
Power System Stabilizer, PSS, RBF, MLP. 
 

I. INTRODUCTION 
The electromechanical oscillations of low frequency, when 

badly damped, they are harmful to the electrical system, 
because that they can cause the loss of synchronism of the 
generators. The use of Power System Stabilizers (PSS) for the 
improvement of the dynamic stability of the power systems has 
received bigger attention in the last years [1].  

The adjustments of the parameters used in these controllers 
are determined through a linear model of the system around a 
nominal operation point. However, the performance of the 
conventional PSS degrades when a change in its operation 
point occurs [2]. 

Some techniques such as adapted control have been 
proposals as solution of the problem [5], [6]. However, the 
most of adapted controls is based on parameters identification 
on the system model in real time, but it consumes much time. 
Robust control techniques, fuzzy logic and PSS design based 
on Lyapunov also are other alternatives to treat the problem [7], 
[8], [9]. However, their responses are slow and real time 
applications are limited.  
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In this paper two modeling forms for PSS’s parameters using 

neural networks are proposals: MLP - Multi Layer Perceptron 
and RBF - Radial Basis Function. The use of a neural network 
for parameters adjustment becomes possible the practical 
implementation of the method and the parameters adequacy for 
different operation points.  The neural network advantage it is 
in the diverse of operations points since it operates with inexact 
data and not total defined situations. 

 

II. SYSTEM’S DESCRIPTION 
The demand for energy generation next to the consumption 

place comes growing stimulated by the public and 
governmental pressure for the energy matrix diversification, 
currently centered in the hydraulic generation. The incentive 
for new electric energy generation sources contributed to 
increase the use of the natural gas. The thermoelectric plants 
are benefit by the combined cycle technology that better use the 
natural gas advantage and consequently to increase the income 
of them. 

A combined cycle thermoelectric plant has associates to the 
same plant gas turbines and steam turbine generating electric 
energy. The thermoelectric in study possess an installed power 
of  310,7MW, being composed for: (i) two gas turbines, each 
one with nominal power of 112,8MW, (ii) one steam turbine 
with nominal  power of 113,1MW, (iii) two boilers of heat 
recovery, (IV) two generators of 133,8MVA and (v) a 
generator with nominal power of 147MVA. 

The process is initiated with atmospheric air being sucked 
for the combustion turbines compressors. Air is tablet, mixed 
with the natural gas, and after that this mixture is burnt. This 
process originates gases with high temperatures and pressures 
that are sent for the responsible turbine for converting the 
thermal energy into mechanics. The connected electric 
generator to the turbine’s axle converts the energy mechanics 
into electric. The process, until this stage, is characterized as 
simple cycle energy generation.  

After the expansion of the gases, they are sent for the 
recovery boilers, where it will take advantage the heat of the 
hot gases proceeding from the gas turbines to generate the 
vapor that will put into motion the steam turbine. When leaving 
the turbine, the steam is condensed and returns for the recovery 
boilers, closing the cycle. This turbine converts the stored 
energy into the steam in high pressure and temperature in 
rotation energy, which is transformed into electric energy for 
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the generator. Fig. 1 represents the machine of simplified form. 
The voltage regulator controls the generator’s excitation 
system so that the generated voltage and the reactive power 
vary the desired one in accordance with. The purpose of the 
Stabilizer is to use the generator’s excitation system better to 
regulate the power oscillations, increasing the generator’s 
stability and improving the transmission system as a whole [2]. 
The PSS operates by generator´s regulator of voltage, 
influencing its adjustment point.  

  
 
 
 
 
 
 
 

Fig. 1. Machine’s representation in block diagrams. 

III. CONVENTIONAL MODELING OF PARAMETERS 
The stabilizer’s parameters are adjusted making use of the 

linear model of 3rd order found in literature and shown in Fig. 2. 
The model is based on a machine connected on an infinite bus 
through equivalent impedance around a fixed point of 
operation [1]. Through this conventional model the parameters 
for diverse operation points are gotten, that will form a 
nonlinear set to be used as base for training of the neural 
networks in the boarding proposal in this work.  

The model’s equations are express in function of the 
constants K1 to K6. The Equation (1) represents the electric 
torque variation, ∆TE, for a variation ∆δ in the rotor’s angle, 
with flow concatenated in the direct constant axle, e’q. 
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The Equation (2) express the electric torque variation ∆TE 

for a variation of the flow concatenated in the direct axle ∆e’q, 
with angle of the constant rotor δ. 
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The following term, in (3), represents the impedance factor. 
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The constants K4, K5 and K6 represent respectively: the 
demagnetized effect of a rotor angle variation ∆δ, with constant 
voltage field EFD; the terminal voltage variation ∆VT for a rotor 
angle variation, with flow concatenated in the direct constant 
axle eq´ and the terminal voltage variation with the variation of 
eq´, for constant rotor angle. 
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Being: 

∞V  = infinite bus voltage. 

0xV = voltage that defines the axle position and that it supplies 

the torque angle initial value. 

0δ  = initial torque angle.  

dx = direct axle reactance. 
'
dx  = direct axle transitory reactance.  

qx = quadrature axle reactance.  
'
qx = quadrature axle transitory reactance.  

ex = circuit’s proper reactance of the rotor’s iron.  
γ = admittance angle series equivalent less the torque angle.  

0qI = current component in the quadrature axle.  

0qV = terminal voltage’s component of the generator in the 

quadrature axle in the machine’s reference.  

0dV = terminal voltage’s component of the generator in the 

direct axle at machine’s reference.  
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0tV = generator’s terminal voltage in permanent regimen 

(absolute value).  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Machine infinite bus blocks diagram. 

IV. POWER SYSTEM STABILIZER  

 A Power Systems Stabilizer (PSS) is an element, or group of 
elements, that supplies an additional input to the regulator to 
improve the power systems dynamic performance. The main 
function of the conditional signal to the PSS’s net is to 
compensate the system’s delay to be controlled [9].  
 The phase compensation is realized through by the use of 
functions lead-lag that supplies phase advance on the scale of 
interest frequency. The diagram of Fig. 3 represents the 
stabilizer. The first block represents gain K, the second block is 
a filter washout to eliminate errors in the input signal, and the 
third block is a circuit lead-lag with time constants T1 and T2. 
 
 
 
 
 
 
 
 

 
Fig. 3. PSS’s blocks Diagram.  

 Table 1 represents the data that will be used as base for 
neural network’s training. The inputs mention the active power 

(P) and reactive power (Q) and the outputs are the PSS’s 
parameters. The attainment of these data was gave through the 
stabilizer’s conventional model, as shown in Fig. 3. 

Table 1. Data of entrance of the neural nets. 
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P Q T1 T2

10 -17.5 1.2290 0.0132 

20 -18.2 1.1354 0.0139 

30 -18.8 1.0980 0.0148 

40 -19.2 0.6139 0.0264 

50 -19.6 0.4691 0.0346 

60 -19.8 0.3834 0.0425 

70 -20 0.3398 0.0478 

80 -20 0.3063 0.0530 

90 -19.9 0.2861 0.0567 

100 -19.7 0.2686 0.0604 

 

V. MODELING BY NEURAL NETWORKS 

  Two algorithms had been implemented, Neural Network 
RBF, that is composed for an hidden layer and a output layer, 
and the Neural Net MLP, that possess two hidden layers.  
 The disadvantage of use a stabilizer’s conventional model 
are in the fact of the parameters adjustment to be limited to only 
one operation point, with just established frequency, what it can 
become an inefficient damping out of this point. 
 The RBF implementation is composed for a hidden and 
output layer. Differently of the MLP, where each neuron 
defines a separation plan [3], the RBF defines one circle in the 
input space through a Gaussian function. 
 Another difference between these nets is the fact of the MLP 
to use internal products, while the RBF uses distances. In the 
developed net, with each input data has been associated a 
specific center. In hidden neuron activation it is determined by 
a nonlinear function of the distance between the input vector 
and a reference vector. 
 The RBF has a simple architecture, consisting two layers of 
weights (WE and WS), where the first one contains the radial 
bases functions parameters and the second form linear 
combinations of the function’s radial base activations to 
generate the output [4]. 
  It is trained in two periods, with the functions of radial base 
being determined first for not-supervised techniques, using for 
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input data and the second layer (weights), being later 
determined for supervised linear methods (linear function), of 
fast convergence.  
The analyzed neural networks are composed for the inputs and 
outputs in accordance with Table 1. The neural network 
parameter adjustment is shown in Fig. 4. 
 

Fig. 4.  System’s blocks diagram with the neural network’s inclusion. 
 

 The of neural network’s interpolation capacity is a useful 
characteristic to the treated problem, once that the table use to 
store the parameters values T1 and T2 in different points 
operation would be extensive due to infinity of points situated 
between two points. 
 This neural networks ability has become them useful for the 
modeling of nonlinear systems. Since the set of operations 
points found in Table 1 is nonlinear.  
 The neural networks most significant characteristic is the 
ability to approach any continues nonlinear function of a 
desired correction degree. 
  

VI. RESULTS AND DISCUSSION 

 The machine’s mathematical model and the controllers was 
incorporated to the program Transitory Analysis 
Electromechanical (ANATEM), in which simulations had been 
carried through that had served for the database composition 
used in the training and neural networks validation .  
 Neural networks MLP and RBF had been projected for 
convergence with maximum error of 0.00001. The MLP 
presented convergence in 10 iterations and the RBF in 8 
iterations. The data gotten for the nets are in Table 2. 
 It was applied a step of 2% in the load and simulated the 
system in three situations was applied Fig. 5: (i) without the 
stabilizer, (ii) using the stabilizer adjusted in field and (iii) 
using the stabilizer with projected parameters.  
 As it can be verified by the curves, the system without the 
stabilizer is very oscillatory, what it can take the loss of 
machine’s synchronism. With the PSS it can be observed the 

advantage in to use the parameters adjustment using neural 
networks for the biggest damping, in detriment of the 
parameters gotten through the conventional model. 
 

Table 2. Neural network’s validation data. 

INPUT OUTPUT MLP OUTPUT RBF 

P Q T1 T2 T1 T2

55 -19.7 0.4250 0.0377 0.4142 0.0400 

95 -19.8 0.2790 0.0579 0.2761 0.0588 

110 -19.4 0.2515 0.0584 0.2671 0.0607 
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Fig. 5. Comparison between field values and calculated for 100% of load. 
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Fig. 6. Comparison between neural network tuning and calculated fixed 
parameters for 100% of load applied in 90%. 
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Fig. 7. Comparison between neural network tuning and calculated fixed 
parameters for 100% of load applied in 50%. 

 
 Figures 6 and 7 show the tuning influence for two operation 
points. As the calculated fixed parameter for nominal power it 
moves away from the same one, the parameters tuning for the 
neural networks becomes more important. 
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Fig. 8. Comparison between MLP and RBF tuning and calculated fixed 

parameters for 100% of load applied in 55%. 

 
 Figures 8, 9 and 10 use the tuning of Table 2 in the MLP and 
RBF validation propose, because the points are out of the set of 
training and show the capacity of the nets in interpolating and 
surpassing given. 
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Fig. 9 Comparison between neural networks tuning MLP and RBF and 

calculated fixed parameters for 100% of load applied in 95%. 
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Fig. 10 Comparison between MLP and RBF tuning and system without ESP 
applied in 110%. 

 

VII. CONCLUSION 

 The solutions had presented satisfactory resulted. However, 
the carried through tests had shown that the RBF application 
converged more quickly than the carried through with the 
MLP.   
 The Gaussians tuning centers to each input of the set training 
became the system convergence fastest. With only 8 iterations 
for the adjustments the attainment of a sufficiently necessary 
approach was possible.  
 The main advantage observed with the use of neural 
networks in the parameters’ modeling of the PSS was the 

capable controllers’ attainment of automatically adapt the 
different operation points, what it developed the oscillations’ 
damping. 
 The simulations had proven that the damping of the adjusted 
machine for fixed parameters it spoils as soon as operation 
condition moves away from the established operation point.  
 In comparison, the neural networks had presented good data 
extrapolation, therefore excellent values for the parameters had 
been found when a load of 110% to the system was applied. 
 

ACKNOWLEDGMENT 
The authors thank the Fortaleza Thermoelectric Power plant 

- CGTF, company of the ENDESA group, to the National 
Advice Scientific and Technological Development – CNPq, the 
Superior Level Perfection Coordination Staff - CAPES and the 
Research Support Foundation – FUNCAP for the support 
technician and financing the research. 

REFERENCES 
[1] P. M. Anderson e A. A. Fouad, (1994) Power System Control and 

Stability, IEEE, New York. 
[2] P. Kundur, (1994) Power System Stability and Control, McGraw-Hill, 

New York.   
[3] A. M. Sharaf, T. T. Lie e H. B. Gooi, (1993) Neural Network Based Power 

System Stabilizers, IEEE Trans. PWRS, pp. 8186-4260. 
[4] M. A. Abido e Y. L. Abdel-Magid, (1997) Radial Basis Function Network 

Based Power System Stabilizers for Multimachine Power Systems, IEEE 
Trans PWRS, pp. 7803-4122. 

[5] A. Ghandra, O. P. Malik e G.S. Hope, (1988) A self-tuning controller for 
the control of multi-machine power systems, IEEE Trans. PWRS, vol. 3, 
no. 3, pp. 1065-1071. 

[6] D. Xia e G. T. Heydt, (1983) Self-tuning controller for generator 
excitation control, IEEE Trans. PAS, vol. 102, pp. 1877-1885. 

[7] A. Swarcewicz e K. Wróblewska-Swarcewicz, (2001) Robust Power 
System Stabilizer, IEEE Porto Power Tech Conference, pp. 7803-7139, 
Porto. 

[8] N. S. D. Arrifano, V. A. Oliveira e R. A. Ramos, (2004) Design and 
Application of Fuzzy PSS for Power Systems Subject to Random Abrupt 
Variations of the Load, American Control Conference, Vol II, pp. 
1085-1090, Boston. 

[9] S. Robak, J. W. Bialek e J. Machowski, (2001) Comparison of different 
control structures for lyapunov-based power system stabilizer, IEEE 
Power Industry Computer Applications, pp. 229-234, Baltimore. 

 

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007


	I. INTRODUCTION
	II. System’s Description
	III. Conventional Modeling Of Parameters
	IV. power system stabilizer 
	V. Modeling by Neural Networks
	VI. Results And Discussion
	VII. Conclusion

