Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

Behavior Emergence in Autonomous Robot
Control by Means of Feedforward and Recurrent
Neural Networks

Stanislav Slusny, Petra Vidnerova, Roman Neruda*

Abstract—We study the emergence of intelligent
behavior within a simple intelligent agent. Cognitive
agent functions are realized by mechanisms based on
neural networks and evolutionary algorithms. The
evolutionary algorithm is responsible for the adap-
tation of a neural network parameters based on the
performance of the embodied agent endowed by dif-
ferent neural network architectures. In experiments,
we demonstrate the performance of evolutionary al-
gorithm in the problem of agent learning where it
is not possible to use traditional supervised learning
techniques. A comparison of different networks archi-
tectures is presented and discussed.

Keywords: Robot control, FEvolutionary algorithms,

Neural networks, Behavior emergence.

1 Introduction

One of the main approaches of Artificial Intelligence is to
gain insight into natural intelligence through a synthetic
approach, by generating and analyzing artificial intelli-
gent behavior. In order to glean an understanding of a
phenomenon as complex as natural intelligence, we need
to study complex behavior in complex environments.

In contrast to traditional systems, reactive and behav-
ior based systems have placed agents with low levels of
cognitive complexity into complex, noisy and uncertain
environments. One of the many characteristics of intelli-
gence is that it arises as a result of an agent’s interaction
with complex environments. Thus, one approach to de-
velop autonomous intelligent agents, called evolutionary
robotics, is through a self-organization process based on
artificial evolution. Its main advantage is that it is an
ideal framework for synthesizing agents whose behavior
emerge from a large number of interactions among their
constituent parts [10].

*Institute of Computer Science, Academy of Science of the Czech

Republic, Pod vodéarenskou vézi 2, Prague 8, Czech Republic, email:
slusny@cs.cas.cz.
This work has been supported by the the project no. 1ET100300419
of the Program Information Society (of the Thematic Program II
of the National Research Program of the Czech Republic) “Intelli-
gent Models, Algorithms, Methods and Tools for the Semantic Web
Realization”.

ISBN:978-988-98671-6-4

In the following sections we introduce multilayer percep-
tron networks (MLP), Elman’s networks (ELM) and ra-
dial basis function networks (RBF). Then we take a look
at Khepera robots and related simulation software. In the
following section we present two experiments with Khep-
era robots. In both of them, the artificial evolution is
guiding the self-organization process. In the first experi-
ment we expect an emergence of behavior that guarantees
full maze exploration. The second experiment shows the
ability to train the robot to discriminate between walls
and cylinders. In the last section we draw some conclu-
sions and present directions for our future work.

2 Neural Networks

Neural networks are widely used in robotics for various
reasons. They provide straightforward mapping from in-
put signals to output signals, several levels of adaptation
and they are robust to noise.

2.1 Multilayer Perceptron Networks

A multilayer feedforward neural network is an intercon-
nected network of simple computing units called neurons
which are ordered in layers, starting from the input layer
and ending with the output layer [5]. Between these two
layers there can be a number of hidden layers. Connec-
tions in this kind of networks only go forward from one
layer to the next. The output y(z) of a neuron is defined
in equation (1):

y(r) =g (Z wl'rl)) (1)

where z is the neuron with n input dendrites (zg ...),
one output axon y(x), wy ... wy, are weights and g : ® —
R is the activation function. We have used one of the
most common activation functions, the logistic sigmoid
function (2):

o(€) =1/(1+e™%, (2)

where t determines its steepness.

WCECS 2007

output y(t)

hidden h(t)

1

hidden h{t-1)

input x(t)

Figure 1: Scheme of layers in the Elman network archi-
tecture.

In our approach, the evolutionary algorithm is responsi-
ble for weights modification, the architecture of the net-
work is determined in advance and does not undergo the
evolutionary process.

2.2 Recurrent Neural Networks

In recurrent neural networks, besides the feedforward
connections, there are additional recurrent connections
that go in the opposite direction. These networks are of-
ten used for time series processing because the recurrent
connection can work as a memory for previous time steps.
In the Elman [3] architecture, the recurrent connections
explicitly hold a copy (memory) of the hidden units ac-
tivations at the previous time step. Since hidden units
encode their own previous states, this network can detect
and reproduce long sequences in time. The scheme how
the Elman network works is like this (also cf. Fig. 1):

e Compute hidden unit activations using net input
from input units and from the copy layer.

e Compute output unit activations as usual based on
the hidden layer.

e Copy new hidden unit activations to the copy layer.

2.3 Radial Basis Function Networks

An RBF neural network represents a relatively new neu-
ral network architecture. In contrast with the multilayer
perceptrons the RBF network contains local units, which
was motivated by the presence of many local response
units in human brain. Other motivation came from nu-
merical mathematics, radial basis functions were first in-
troduced as a solution of real multivariate interpolation
problems [13].

The RBF network is a feed-forward neural network with
one hidden layer of RBF units and a linear output layer

ISBN:978-988-98671-6-4

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

Figure 2: RBF network architecture

(see Fig. 2). By the RBF unit we mean a neuron with
n real inputs and one real output y, realizing a radial
basis function ¢, such as Gaussian:

[Z—¢

) = (550, ®

The network realizes the function:

ﬂ@=iwwof;N» (@)

where f, is the output of the s-th output unit.

There is a variety of algorithms for RBF network learn-
ing, in our previous work we studied their behavior and
possibilities of their combinations [8, 9].

The learning algorithm that we use for RBF networks
was motivated by the commonly used three-step learn-
ing [9]. Parameters of RBF network are divided into
three groups: centers, widths of the hidden units, and
output weights. Each group is then trained separately.
The centers of hidden units are found by clustering (k-
means algorithm) and the widths are fixed so as the ar-
eas of importance belonging to individual units cover the
whole input space. Finally, the output weights are found
by EA. The advantage of such approach is the lower num-
ber of parameters to be optimized by EA | i.e. smaller
length of individual.

3 Evolutionary Learning Algorithms for
Robotics

3.1 The Khepera Robot

Khepera [7] is a miniature mobile robot with a diameter
of 70 mm and a weight of 80 g. The robot is supported
by two lateral wheels that can rotate in both directions
and two rigid pivots in the front and in the back. The
sensory system employs eight “active infrared light” sen-
sors distributed around the body, six on one side and

WCECS 2007

two on other side. In “active mode” these sensors emit a
ray of infrared light and measure the amount of reflected
light. The closer they are to a surface, the higher is the
amount of infrared light measured. The Khepera sen-
sors can detect a white paper at a maximum distance of
approximately 5 cm.

In a typical setup, the controller mechanism of the robot
is connected to the eight infrared sensors as input and
its two outputs represent information about the left and
right wheel power. For a neural network we typically con-
sider architectures with eight input neurons, two output
neurons and a single layer of neurons, mostly five or ten
hidden neurons is considered in this paper. It is difficult
to train such a network by traditional supervised learn-
ing algorithms since they require instant feedback in each
step, which is not the case for evolution of behavior. Here
we typically can evaluate each run of a robot as a good or
bad one, but it is impossible to assess each one move as
good or bad. Thus, the evolutionary algorithm represent
one of the few possibilities how to train the network.

3.2 Evolutionary Algorithm

The evolutionary algorithms (EA) [6, 4] represent a
stochastic search technique used to find approximate so-
lutions to optimization and search problems. They use
techniques inspired by evolutionary biology such as mu-
tation, selection, and crossover. The EA typically works
with a population of individuals representing abstract
representations of feasible solutions. Each individual is
assigned a fitness that is a measure of how good solu-
tion it represents. The better the solution is, the higher
the fitness value it gets. The population evolves towards
better solutions. The evolution starts from a population
of completely random individuals and iterates in genera-
tions. In each generation, the fitness of each individual
is evaluated. Individuals are stochastically selected from
the current population (based on their fitness), and mod-
ified by means of operators mutation and crossover to
form a new population. The new population is then used
in the next iteration of the algorithm.

3.3 Evolutionary Network Learning

Various architectures of neural networks used as robot
controllers are encoded in order to use them the evolu-
tionary algorithm. The encoded vector is represented as
a floating-point encoded vector of real parameters deter-
mining the network weights.

Typical evolutionary operators for this case have been
used, namely the uniform crossover and the mutation
which performs a slight additive change in the parameter
value. The rate of these operators is quite big, ensuring
the exploration capabilities of the evolutionary learning.
A standard roulette-wheel selection is used together with
a small elitist rate parameter. Detailed discussions about

ISBN:978-988-98671-6-4

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

S

Figure 3: In the maze exploration task, agent is rewarded
for passing through the zone, which can not be sensed.
The zone is drawn as the bigger circle, the smaller circle
represents the Khepera robot. The training environment
is of 60x30 cm.

the fitness function are presented in the next section.

4 Experiments
4.1 Setup

Although evolution on real robots is feasible, serial eval-
uation of individuals on a single physical robot might
require quite a long time. One of the widely used sim-
ulation software (for Khepera robots) is the Yaks sim-
ulator [2], which is freely available. Simulation consists
of predefined number of discrete steps, each single step
corresponds to 100 ms.

To evaluate the individual, simulation is launched several
times. Individual runs are called “trials”. In each trial,
neural network is constructed from the chromosome, envi-
ronment is initialized and the robot is put into randomly
chosen starting location. The inputs of neural networks
are interconnected with robot’s sensors and outputs with
robot’s motors. The robot is then left to “live” in the
simulated environment for some (fixed) time period, fully
controlled by neural network. As soon as the robot hits
the wall or obstacle, simulation is stopped. Depending on
how well the robot is performing, the individual is eval-
uated by value, which we call “trial score”. The higher
the trial score, the more successful robot in executing
the task in a particular trial. The fitness value is then
obtained by summing up all trial scores.

4.2 Maze Exploration

In this experiment, the agent is put in the maze of 60x30
cm. The agent’s task is to fully explore the maze. Fitness
evaluation consists of four trials, individual trials differ
by agent’s starting location. Agent is left to live in the
environment for 250 simulation steps.

The three-component T} ; motivates agent to learn to
move and to avoid obstacles:

Trj = Vij(1 = /AVy j)(1 — ik 5). (5)

WCECS 2007

L AN .

=

R ‘

E

W

Figure 4: The agent is put in the bigger maze of 100x100
cm. Agent’s strategy is to follow wall on it’s left side.

First component V}, ; is computed by summing absolute
values of motor speed in the k-th simulation step and j-
th trial, generating value between 0 and 1. The second
component (1 — /AVj ;) encourages the two wheels to
rotate in the same direction. The last component (1 —
i,j) encourage obstacle avoidance. The value i, ; of the
most active sensor in k-th simulation step and j-th trial
provides a conservative measure of how close the robot
is to an object. The closer it is to an object, the higher
the measured value in range from 0 to 1. Thus, T} ; is in
range from 0 to 1, too.

In the j-th trial, score S} is computed by summing nor-
malized trial gains T} ; in each simulation step.

250 Tk)
_ 5]
k=1

To stimulate maze exploration, agent is rewarded, when
it passes through the zone. The zone is randomly located
area, which can not be sensed by an agent. Therefore, A;
is 1, if agent passed through the zone in j-th trial and 0
otherwise. The fitness value is then computed as follows:

4
Fitness = Z(Sj +4Aj) (7)

=1

Successful individuals, which pass through the zone in
each trial, will have fitness value in range from 4 to 5.
The fractional part of the fitness value reflects the speed
of the agent and it’s ability to avoid obstacles.

4.3 Results

All the networks included in the tests were able to learn
the task of finding a random zone from all four positions.
The resulting best fitness values (cf. Tab. 1) are all in

ISBN:978-988-98671-6-4

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

RBF network with 5 units

fitness

L L L
0 50 100 150 200
generations

Figure 5: Plot of fitness curves in consecutive populations
(maximal, minimal, and average individual) for a typical
EA run (one of ten) training the RBF network with 5
units.

the range of 4.3-4.4 and they differ only in the order of
few per cent. It can be seen that the MLP networks per-
form slightly better, RBF networks are in the middle,
while recurrent networks are a bit worse in terms of the
best fitness achieved. According to their general perfor-
mance, which takes into account ten different EA runs,
the situation changes slightly. In general, the networks
can be divided into two categories. The first one repre-
sents networks that performed well in each experiment
in a consistent manner, i.e. every run of the evolution-
ary algorithm out of the ten random populations ended
in finding a successful network that was able to find the
zone from each trial. MLP networks and recurrent net-
works with 5 units fall into this group. The second group
has in fact a smaller trial rate because, typically, one out
of ten runs of EA did not produced the optimal solution.
The observance of average and standard deviation values
in Tab. 1 shows this clearly. This might still be caused
by the less-efficient EA performance for RBF and Elman
networks.

The important thing is to test the quality of the obtained
solution is tested in a different arena, where a bigger maze
is utilized (Fig. 4). Each of the architectures is capable
of efficient space exploration behavior that has emerged
during the learning to find random zone positions. The
above mentioned figure shows that the robot trained in a
quite simple arena and endowed by relatively small net-
work of 5-10 units is capable to navigate in a very com-
plex environment.

4.4 Walls and Cylinders Experiment

Following experiment is based on the experiment carried
out by Nolfi [11, 12]. The task is to discriminate be-
tween the sensory patterns produced by the walls and
small cylinders. As noted in [10], passive networks (i.e.

WCECS 2007

Network type Maze exploration

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

Wall and cylinder

mean std min max mean std min max
MLP 5 units 429 0.08 420 4.44 2326.1 57.8 2185.5 2390.0
MLP 10 units 432 0.07 424 4.46 2331.4 86.6 2089.0 2391.5
ELM 5 units 424 0.06 4.14 4.33 2250.8 1477 1954.5 2382.5
ELM 10 units 3.97 0.70 224 4.34 2027.8 204.3 1609.5 2301.5
RBF 5 units 3.98 090 142 4.36 1986.6 230.2 1604.0 2343.0
RBF 10 units 4.00 097 1.23 4.38 2079.4 94.5 2077.5 2359.5

Table 1: Comparison of the fitness values achieved by different types of network in the experiments.

MLP network with 5 units

fitness

0 ; L L L
0 50 100 150 200
generations

Figure 6: Plot of fitness curves in consecutive populations
(maximal, minimal, and average individual) for a typical
EA run (one of ten) training the MLP network with 5
units.

e

Figure 7: Trajectory of an agent doing the Walls and
cylinders task. The small circle represents the searched
target cylinder. The agent is rewarded in the zone rep-
resented by a bigger circle. It is able to discriminate be-
tween wall and cylinder, and after discovering the cylin-
der it stays in it’s vicinity.

ISBN:978-988-98671-6-4

networks which are passively exposed to a set of sensory
patterns without being able to interact with the external
environment through motor action), are mostly unable
to discriminate between different objects. However, this
problem can easily be solved by agents that are left free
to move in the environment.

The agent is allowed to sense the world by only six frontal
infrared sensors, which provide it with only limited infor-
mation about environment. Fitness evaluation consists
of five trials, individual trials differ by agent’s starting
location. Agent is left to live in the environment for 500
simulation steps. In each simulation step, trial score is
increased by 1, if robot is near the cylinder, or 0.5, if
robot is near the wall. The fitness value is then obtained
by summing up all trial scores. Environment is the arena
of 40x40 cm surrounded by walls.

4.5 Results

It may seem surprising that even this more complicated
task was solved quite easily by relatively simple network
architectures. The images of walls and cylinders are over-
lapping a lot in the input space determined by the sensors.

The results in terms of best individuals are again quite
comparable for different architectures with reasonable
network sizes. The differences are more pronounced than
in the case of the previous task though. Again, the MLP
is the overall winner mainly when considering the overall
performance averaged over ten runs of EA. The behavior
of EA for Elman and RBF networks was less consistent,
there were again several runs that obviously got stuck in
local extrema (cf. Tab. 1).

We should emphasize the difference between fitness func-
tions in both experiment. The fitness function used in the
first experiment rewards robot for single actions, whereas
in the second experiment, we describe only desired behav-
ior.

All network architectures produced similar behavior.
Robot was exploring the environment by doing arc move-
ments and after discovering target, it started to move
there and back and remained in it’s vicinity.

WCECS 2007

5 Conclusions

The main goal of this paper was to demonstrate the abil-
ity of neural networks trained by evolutionary algorithm
to achieve non-trivial robotic tasks. There have been two
experiments carried out with three types of neural net-
works and different number of units.

For the maze exploration experiment the results are en-
couraging, a neural network of any of the three types is
able to develop the exploration behavior. The trained
network is able to control the robot in the previously
unseen environment. Typical behavioral patterns, like
following the right wall have been developed, which in
turn resulted in the very efficient exploration of an un-
known maze. The best results achieved by any of the
network architectures are quite comparable, with sim-
pler perceptron networks (such as the 5-hidden unit per-
ceptron) marginally outperforming Elman and RBF net-
works.

In the second experiment it has been demonstrated that
the above mentioned approach is able to take advantage
of the embodied nature of agents in order to tell walls
from cylindrical targets. Due to the sensor limitations of
the agent, this task requires a synchronized use of a suit-
able position change and simple pattern recognition. This
problem is obviously more difficult than the maze explo-
ration, nevertheless, most of the neural architectures were
able to locate and identify the round target regardless of
its position.

The results reported above represent just a few steps
in the journey toward more autonomous and adaptive
robotic agents. The robots are able to learn simple be-
havior by evolutionary algorithm only by rewarding the
good ones, and without explicitly specifying particular
actions. The next step is to extend this approach for
more complicated actions and compound behaviors. This
can be probably realized by incremental learning one net-
work a sequence of several tasks. Another—maybe a
more promising approach—is to try to build a higher level
architecture (like a type of the Brooks subsumption ar-
chitecture [1]) which would have a control over switching
simpler tasks realized by specialized networks. Ideally,
this higher control structure is also evolved adaptively
without the need to explicitly hardwire it in advance.
The last direction of our future work is the extension of
this methodology to the field of collective behavior.

References

[1] Brooks, R. A.: A robust layered control system for
a mobile robot. IEEFE Journal of Robotics and Au-
tomation (1986), RA-2 14-23.

[2] J. Carlsson, T. Ziemke, YAKS - yet another Khep-
era simulator, in: S. Ruckert, Witkowski (Eds.)

ISBN:978-988-98671-6-4

[10]

[11]

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

Autonomous Minirobots for Research and Entertain-
ment Proceedings of the Fifth International Heinz
Nizdorf Symposium, HNI-Verlagsschriftenreihe,
Paderborn, Germany, 2001.

J. Elman, Finding structure in time, Cognitive Sci-

ence 14 (1990) 179-214.

D. B. Fogel. Fvolutionary Computation: The Fossil
Record. MIT-IEEE Press. 1998.

S. Haykin. Neural Networks: A Comprehensive
Foundation (2nd ed). Prentice Hall, 1998.

J. Holland. Adaptation In Natural and Artificial Sys-
tems (reprint ed). MIT Press. 1992.

Khepera IT web page documentation. http://www.k-
team.com

Neruda, R., Kudova, P.: Hybrid learning of RBF
networks. Neural Networks World, 12 (2002) 573~
585

Neruda, R., Kudov4, P.: Learning methods for RBF
neural networks. Future Generations of Computer
Systems, 21, (2005), 1131-1142.

S. Nolfi, D. Floreano. FEwvolutionary Robotics —
The Biology, Intelligence and Technology of Self-
Organizing Machines. The MIT Press, 2000.

S. Nolfi. Adaptation as a more powerful tool than
decomposition and integration. In T.Fogarty and
G.Venturini (Eds.), Proceedings of the Workshop
on Evolutionary Computing and Machine Learning,
13th International Conference on Machine Learning,
Bari, 1996.

S. Nolfi. The power and limits of reactive agents.
Technical Report. Rome, Institute of Psychology,
National Research Council, 1999.

Powel, M.: Radial basis functions for multivariable
interpolation: A review. In: IMA Conference on
Algorithms for the Approzimation of Functions and
Data, RMCS, Shrivenham, England (1985) 143-167

WCECS 2007

