
 
 

 

  
Abstract—This paper investigates the application of 

multi-sensor data fusion (MSDF) technique to enhance the 
process fault detection and diagnosis. The Extended Kalman 
Filter (EKF) is used to fuse the process measurement sensor data. 
The usual approach in the classical EKF implementation, 
however, is based on the constant diagonal matrices for the 
process and measurement covariance. This inflexible constant 
covariance set-up which employs the ideal white noise model 
assumption for describing the process and measurement noises 
causes the EKF algorithm to diverge or at best converge to a large 
bound even it the EKF model is perfectly tuned. This paper 
presents an adaptive modified extended kalman filter (AMEKF) 
algorithm based on the fuzzy logic idea to prevent the filter 
divergence leading to an improved EKF estimation. The 
performances of the resulting fault detection and diagnosis system 
are demonstrated an a simulated continuous stirred tank reactor( 
CSTR) benchmark case study for single, double, triple and 
quadruple faults. 
 

Index Terms— Faults Detection and Diagnosis, Multi-sensor 
data fusion, Adaptive Modified Extended Kalman Filter, Fuzzy 
Logic 
 

I. INTRODUCTION 
  Associated with an increasing demand for high performance 
as well as for more safety and reliability of dynamic systems, 
and a natural trend toward system automation, fault detection 
and diagnosis has received more and more attention. The 
existing techniques for fault detection and diagnosis can be 
broadly divided into process history based and process 
model-based methods. Each of these can further be classified 
into qualitative and quantitative approaches. The qualitative 
approaches involve fault trees [1], signed directed graph [2], 
fuzzy logic [3], neural networks [4], and expert systems [5], 
The quantitative approaches are basically modeling, filtering 
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and estimation methods, where a wide variety of them have 
already been reviewed by [6]-[7]-[8]. Among the existing 
quantitative model-based methods, the Kalman filter variants 
have found widespread applications. 

In this paper, multi-sensor data fusion (MSDF) technique is 
used to improve the accuracy of the process fault detection and 
diagnosis. The field of multi-sensor data fusion is fairly young 
which has mainly been considered and developed in military 
target tracking and autonomous robotics. This technique seeks 
to combine data from multiple sensors and related information 
to achieve improved accuracies and more specific inferences 
than could be achieved by using a single and independent 
sensor. Thus, the main problem is focused on the methodology 
by which the multi-sensor measurements can be combined and 
processed to obtain a joint state-vector estimation which is 
better than the individual sensor-based estimates. There are 
various multi-sensor data fusion approaches to resolve this 
problem, of which the Kalman filtering is the most significant 
one. Methods for Kalman-filter-based data fusion, including 
state-vector fusion and measurement fusion, have been widely 
studied over the last decade. Also, we are using of extended 
kalman filter technique for fault detection and diagnosis. In the 
actual implementation of the kalman filter, the measurement 
noise covariance is usually measured prior to operation of the 
filter. Measuring the measurement error covariance is generally 
practical (possible) because we need to be able to measure the 
process anyway (while operating the filter) so we should 
generally be able to take some off-line sample measurements in 
order to determine the variance of the measurement noise. The 
determination of the process noise covariance Q is generally 
more difficult as we typically do not have the ability to directly 
observe the process we are estimating. Sometimes a relatively 
simple (poor) process model can produce acceptable results if 
one “injects” enough uncertainty into the process via the 
selection of Q. Certainly, in this case one would hope that the 
process measurements are reliable. In either case, whether or 
not we have a rational basis for choosing the parameters, often 
superior filter performance (statistically speaking) can be 
obtained by tuning the filter parameters Q and R. The tuning is 
usually performed off-line, frequently with the help of another 
(distinct) Kalman filter in a process generally referred to as 
system identification. Under conditions where Q and R are in 
fact constant, both the estimation error covariance Pk and the 
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Kalman gain Kk will stabilize quickly and then remain constant. 
If this is the case, these parameters can be pre-computed by 
either running the filter off-line, or for example by determining 
the steady-state value of Pk as described in [9]. It is frequently 
the case however that the measurement error (in particular) 
does not remain constant. Also, the process noise is sometimes 
changed dynamically during filter operation (becoming Qk) in 
order to adjust to different dynamics. In such cases 
time-varying covariance might be chosen to account for both 
uncertainties about the user’s intentions and uncertainty in the 
model. 

 Therefore, in real application, the exact values of Qk and Rk 

are not known. If the actual process and measurement noises 
are not zero-mean white noises, the residual in the extended 
Kalman filter will also not be a white noise. If this is happened, 
the Kalman filter would diverge or at best converge to a large 
bound. This paper investigates the usefulness of the fuzzy logic 
method to improve the accuracy of the state estimation 
procedure done by the MEKF algorithm for the process fault 
detection and diagnosis purposes. 

The remainder of this paper is organized as follows. In 
section II, the proposed methodology is presented. Section III 
describes the CSTR case study plant. The effectiveness of the 
proposed approach is demonstrated in section IV. Finally, the 
conclusions are given in section V. 

 

II. PROPOSED METHODOLOGY  

A. Extended kalman filtering algorithm 
The Kalman filter [10] provides an efficient recursive 
procedure to estimate the hidden states x∈Rnx of a discrete-time 
process that is governed by the linear stochastic process and 
measurement model equations: 

11 −− ++= kkkk wBuAxx                             (1) 

kkk vHxz +=                                             (2) 

where xk denotes the hidden states, uk∈Rnu is the vector of 
external manipulated input variables, and zk∈Rnz represents the 
vector of noisy measured output variables at the kth discrete 
time. The random variables wk-1 and vk represent the process 
and measurement noises, respectively. A is the state transition 
matrix, B is the control matrix and H is the output observation 
matrix. However, in most practical applications of interest, the 
process dynamics and the measurement equations obey the 
following non-linear relationships: 

11 ),,( −− += kkkk wkuxfx                        (3) 

kkk vkxhz += ),(                                     (4) 
where f and h are known nonlinear functions. As a result, 

nonlinearity can come in either through process model and/or 
through the measurement model. Applying the standard 
Kalman filter on the linearized process and measurement 
equations about the nominal state values can introduce large 
errors leading to sub-optimal filter performance. 

EKF gives a simple and effective remedy to overcome such 

problem. Its basic idea is to locally linearize the non-linear 
system described by (3) and (4) at each time instant around the 
most recent state estimate and then the Kalman filter is applied 
to the resulting time-varying linearized model. This can 
provide a more accurate implementation of the optimal 
recursive estimation procedure.  

B. Discrete-time modified extended Kalman filter 
In practice, the process model in (3) is of continuous-time 

nature. While, the measurements in (4) are available through 
the common digital data-acquisition systems at discrete 
measurement time instants. Moreover, the EKF algorithm is 
implemented digitally to process all available measurements 
regardless of their precision in order to provide a quick and 
accurate estimate of the variables of interest. Therefore, an 
efficient formulation of the algorithm needs to be made for a 
real-time practical application to minimize the filter cycle time, 
while obtaining a reasonable accuracy in the filter 
implementation. The method used in this paper for numerical 
integration of the process model from one sample time to the 
next is the first-order Euler integration technique. The time 
propagation equation for the state covariance matrix P can be 
solved using the transition matrix technique [11]. This method 
preserves both the symmetry and the positive definiteness of P, 
and yields adequate performance: 

d
T

kk QPP +ΦΦ= −
−

1                     (5) 
Where Ts is the sampling period and 

∫ −
ΦΦ= s

s

kT

Tk s
T

sd dkTQkTQ
)1(

),()(),( ττττ            (6) 

whereΦdenotes the state transition matrix associated with Ak 

for all the time duration τ∈[(k-1)Ts, kTs] which can be 
evaluated by: 

ks ATI +=Φ                        (7) 
As a result, Qd can be obtained using the following 

trapezoidal integration scheme: 

2
)( sT

d
T

QQQ +ΦΦ=                    (8) 

In below Summarizes the different steps needed for the 
efficient implementation of the discrete-time EKF filter. 

Initial estimates for 
1ˆ −kx and 

1−kP  
Time Update (“Predict”) 
(I) Project the state ahead 

)ˆ(ˆˆ 11 −−
− += kskk xfTxx                                                      (9) 
(II) create the Jacobean matrix 

x
fAk ∂

∂
=                                                                       (10) 

(III) Update the process covariance matrix 

ks ATI +=Φ                                                               (11) 

2
)( sT

d
T

QQQ +ΦΦ=                                                 (12) 

(IV) Project the error covariance ahead 
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d
T

kk QPP +ΦΦ= −
−

1                                                    (13) 
 
Measurement Update (“Correct”) 
 (I) Compute the Kalman gain 

1)( −−− += RHHPHPK T
k

T
kk                                           (14) 

(II) Update estimate with measurement Yk 
)ˆ(ˆˆ −− −+= kkkkk xHYKxx                                                      (15) 

 (III) Update the error covariance 
−− −= kkkk HPKPP                                                                      (16) 

The covariance matrix can be initialized with a large value. 
This option, however, causes rapid fluctuations in the initial 
EKF parameters estimates and hence endangers the estimator 
convergence. Besides, choosing small initial covariance matrix 
will make the estimator adaption very slow. On the other hand, 
when the process dynamic changes, some of the previous 
estimation information will lose its accuracy as far as the new 
process dynamic is concerned. Thus, there should be a means 
of draining off old information at a controlled rate. One useful 
way of rationalizing the desired approach is to modify the 
covariance matrix update relationship (16) as follows: 

 λ/)( −− −= kkkk HPKPP                                 (17) 

where 10 ≤< λ  behaves as the forgetting factor concept in 
the usual recursive least squares (RLS) algorithm. 

C. AEKF based on fuzzy logic for measurement noise 
covariance  
The extended Kalman filter formulation assumes complete a 

priori knowledge of the profess and measurement noise 
covariance matrices Qk and Rk. However, in most practical 
applications these matrices are initially estimated or, in fact, are 
unknown. The problem here is that the optimality of the 
estimation algorithm in the extended Kalman filter setting is 
closely connected to the quality of the a priori noise statistics 
[12]. It has been shown how poor estimates of the input noise 
statistics may seriously degrade the Kalman filter performance, 
and even provokes the divergence of the filter [13]-[14]. From 
this paint of view it can be expected that an adaptive 
formulation of the extended Kalman filter will result in a better 
performance or will prevent filter divergence. 

In this case, an on-line fuzzy logic-based adaptive Kalman 
filter (FL-AKF) is presented [15]-[16] that we proposed and 
using the fuzzy logic-based adaptive modified extended 
Kalman filter (FL-AMEKF). The adaptation is in the sense of 
using a Fuzzy Inference System (FIS) to dynamically adjust the 
measurement noise covariance matrix Rk from data as they are 
obtained. This relaxes the a priori measurement noise statistical 
assumptions and significantly benefits the extended Kalman 
filter states estimates if the measurement noise under it operates 
change or evolves with time. The main advantages derived 
from the use of a fuzzy technique, with respect to traditional 
adaptation schemes, are the simplicity of the approach and the 
possibility of including heuristic knowledge about the 
phenomenon under consideration. The measurement noise 

covariance matrix Rk represents the accuracy of the 
measurement instrument, meaning a larger Rk for measured 
data implies that we trust this data less and take more account of 
the prediction. Assuming that the noise covariance matrix Qk is 
known, here a FIS based on the technique known as covariance 
matching [17] has been derived to dynamically adjust the 
covariance matrix Rk. The basic idea behind the 
covariance-matching technique is to make the residuals 
consistent with their theoretical covariance [12]-[18]. In the 
FL-AMEKF this is done in three steps: first, having available 
the innovation sequence or residual rk its theoretical covariance 
is calculated as, 

k
T
kkkk RHPHS += −                                        (18) 

in the Kalman filter algorithm. Second, the actual covariance 

kr
Ĉ of rk is approximated through averaging inside a moving 

estimation window [18] of size M, 

∑
=

=
k

ii

T
iir rr

M
C

k

0

1ˆ                                            (19) 

where io = k - M + 1 is the first sample inside the estimation 
window. This means that only the last M samples of rk are used 
to estimate its covariance. The window size is chosen 
empirically to give some statistical smoothing. Third, if it is 
found that the actual value of the covariance of rk has a 
discrepancy with its theoretical value, then a FIS derives 
adjustments for Rk based on the knowledge of the size of this 
discrepancy. The objective of these adjustments is to correct 
this mismatch as well as possible. In order to detect the size of 
the discrepancy between Sk and 

kr
Ĉ  a new variable called the 

Degree of Matching (DoM) is defined as,  

krkk CSDoM ˆ−=                                      (20) 

The main idea of adaptation used by a FIS to dynamically 
tuning Rk is as follows. It can be noted from (18) that an 
increment in Rk will increment Sk and vice versa. This means 
that Rk can be used to vary Sk in accordance with the value of 
DoMk in order to reduce the discrepancies between Sk and

kr
Ĉ . 

From here three general rules of adaptation are defined as:  
1. If 0≅kDoM (this means Sk, and 

kr
Ĉ  match almost 

perfectly) then maintain Rk unchanged. 
2. If DoMk > 0 (this means Sk, is greater than its actual 

value
kr

Ĉ ) then decrease Rk. 

3. If DoMk < 0 (this means Sk is smaller than its actual 
value

kr
Ĉ ) then increase Rk. 

Note that the matrices 
kr

Ĉ , Sk, Rk and DOMk are all of the 

same size, thus the adaptation of the (i,i) element of Rk can be 
made in accordance with the (i,i) element of DoMk; i=1,2, ..., 
m; m=size of zk. Thus, a single-input-single- output (SISO) FIS 
is used to sequentially generate the tuning or correction factors 
for the elements in the main diagonal of Rk and this correction is 
made in this way 
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kkk RiiRiiR Δ+= − ),(),( 1                        (21) 

where kRΔ is the tuning factor that is added or subtracted 

from the element (i,i) of Rk at each instant of time, kRΔ  is the 
FIS output and DoMk(i,i) is the FIS input. A graphical 
representation of this adjusting process is shown in Fig. 1. 

 
Fig. 1. Graphical Representation of the adjusting process of Rk 

 
Following the general rules of adaptation, the FIS can be 

implemented considering three fuzzy sets for DoMk: N = 
Negative, ZE = Zero, and P = Positive; and three fuzzy sets 
for kRΔ : I = Increase, & M = Maintain, and D = Decrease. 
These membership functions are shown in Fig. 2. There, the 
parameters that define the fuzzy sets can be changed in 
accordance with the system under consideration. Hence, only 
three fuzzy rules are included in the FIS rule base: 

1. If DoMk = N, then kRΔ  = I 

2. If DoMk = ZE, then kRΔ  = M 

3. If DoMk = P, then kRΔ  = D. 
Thus, using the compositional rule of inference sum-prod 

and the center of area (COA) defuzzification method, Rk is 
adjusted in each FL-AMEKF as given in (21). From 
experimentation it was found that a good size for the moving 
window in (19) is M = 30. 
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Fig. 2. Membership function for a) DoMk b) kRΔ  

 

III. CSTR PLANT DESCRIPTION  

An irreversible and exothermic reaction BA →  takes 
place inside the jacket CSTR that is shown in Fig. 3 [19]. The 
reaction is operated by two PI controllers that are used to 
regulate the outlet temperature and the tank level. A cooling 
jacket surrounds the reactor and the coolant is water in this 
case. Negligible heat losses, constant densities, perfect mixing 
inside the tank and uniform temperature in the jacket are 
assumed. 

 

 
Fig. 3. Continuous stirred tank reactor 

 
The equations describing the system are [20]: 

oi FF
dt
dV

−=                                                    (22) 

Ca
RT
E

kVCaFCaF
dt
VCad a

oii ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛−−= exp)(
0

        (23) 

)()( TFTFc
dt
VTdc oiipp −= ρρ

)(exp 0 j
a

o TTUaCa
RT
E

kHV −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛Δ−              (24) 

)()( 0 jjcjjj
j

jjj TTUaTTFc
dt

dT
cV −+−= ρρ           (25) 

Process faults listed in (Table I) are considered in this 
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research study. 
 

Table I: List of Fault Studied 
Fault Fault Name  
#1p High inlet feed of reactant ii FF Δ+ 
#1n Low inlet feed of reactant ii FF Δ− 
#2p High inlet concentration of reactant ii CaCa Δ+ 
#2n Low inlet concentration of reactant ii CaCa Δ− 
#3p High inlet temperature of reactant ii TT Δ+ 
#3n Low inlet temperature of reactant ii TT Δ− 
#4p High inlet temperature of coolant cc TT Δ+ 
#4n Low inlet temperature of coolant cc TT Δ− 
 

IV. SIMULATION STUDY  
In classical control, non-manipulated variables dk are treated 

as known inputs with distinct entry in the system state-space 
model. This distinction between state and non-manipulated 
variables, however, is not justified from the monitoring 
perspective using the Kalman filter estimation procedure. 
Therefore, a new augmented state variable vector 

],[*
kkk xdx =  is developed by considering the 

non-manipulated variables as state variables. To implement this 
view, the non-manipulated inputs are assumed to be states 
without dynamics but governed by the following stochastic 
auto-regressive model equation [21]: 

11 −− +≈ kkk wdd                                     (26) 
This assumption changes the linearized model formulation, 

described by Ak, Bk and Hk matrices, to the following 
augmented state-space model: 

*
11

**
1

**
−−− += kkkk wuBxAx                        (27) 

*
1

***
−+= kkk vxHy                                       (28) 

Where matrix Bk has been dropped and the new transition 
state matrix is defined as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
=

××

××

xxux

xuuu

nnnn

nnnn

AB
I

A
0*                               (29) 

Where nx and nu denote the dimensions of the state (xk) and 
manipulated variables (uk), respectively. 

Fig. 4 shows the schematic block diagram of the proposed 
fault detection system used in this simulation study.  

 
Fig. 4.  Block diagram for detection and diagnosis with using 
Fig. 1 and MSDF 

 
Fig. 5 (a,b,c,d) illustrate the performance results of the 

process fault detection system for both the MEKF and the 

FL-AMEKF algorithms. These figures show the overall result 
for simultaneous occurrences of fault #1p (ΔFi=5%) at t=5, 
fault #2n (ΔCai=10%) at t=10, fault #3n (ΔTi=10%) at t=15, 
fault #4p (ΔTc=5%) at t=20, in the CSTR plant.  

We for see performance this methods to process faults 
diagnosis, selection of faults occurring at different times with 
different magnitudes. In the other hand, we selected faults in 
way of that at t=5 we have one fault (fault #1p) and t=10 two 
faults including fault #1p and fault #2n and t=15 there faults 
including fault #1p , fault #2n and fault #3n and t=20 each four 
faults. 

  

0 5 10 15 20 25
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

D is c ret e Tim e

dF
i

 

 

MEKF
FL-AMEKF

     
          (a) 

0 5 10 15 20 25
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

D is c ret e Tim e

d
C

A
i

 

 

MEKF
FL-AMEKF

 
               (b) 

 
Fig. 5(a) shows estimation of fault#1p (high inlet feed of 

reactant) using MEKF and FL-AMEKF methods. It can be seen 
from the figure that the estimation using FL-AMEKF method 
has better performance as the other faults have much less effect 
on the estimation of fault#1p. The MEKF method has some 
drawbacks such as: 
• When each fault happens (any of the four faults) the effect of 

the fault can be seen in the estimation with deviation from the 
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steady state value. 
• The convergence of the estimation is with a greater time 

constant leading to transient errors. 
Fig. 5(b,c,d) showing the same results for faults #2n, #3n, 

#4p. 
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Fig. 5. Estimation of faults occurring at different times with 
different magnitudes. (a) dFi fault estimation (b) dCAi fault 
estimation (c) dTi fault estimation (d) dTc fault estimation. 

 

V. CONCLUSIONS 
This research work investigates the usefulness of the MSDF 

technique to enhance the process fault detection and diagnosis 
based on the EKF estimation approach. Also, investigates the 
usefulness of the fuzzy logic to enhance the process fault 
detection based on the MEKF estimation approach. In real 
application, however, the exact values of estimation 
covariances Q and R are not known a priori and hence their 
time evolutions are usually neglected. This leads to unaccuracy 
in estimation which can diverge the Kalman filter operation. 

An efficient discrete-time MEKF implementation has been 
presented in this paper to enhance the robustness of the 
algorithm by preserving both the symmetry and positive 
definiteness of the state covariance matrix p. 

The proposed approach has been tested on a simulation 
CSTR plant for multiple possible faults occurring at different 
times. The simulation results demonstrate the superiority of the 
proposed FL-AMEKF technique in abrupt detection of the 
occurred faults compared with the classical MEKF approach.  
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