
 
 

 

  
Abstract— In this paper, a new soft sensor methodology is 

proposed for estimation of product concentration in a chemical 
process. The new soft sensor utilizes dynamic principle 
component analysis (DPCA) method to select the optimum 
reduced process variables as the appropriate inputs. DPCA 
eliminates the high correlations among the process variable 
measurements, leading to a lower dimensional uncorrelated 
principle components of the process measurements. The DPCA 
transformed measurements are then used to train an adaptive 
growing and pruning radial basis function (GAP-RBF) neural 
network to estimate the product concentration. The developed 
soft sensor performance is demonstrated on a distillation column 
simulation case study. 
 
Index Terms— dynamic principle component analysis, soft sensor, 
growing and pruning radial basis function neural network. 
 

I. INTRODUCTION 
  Inferential estimators or soft sensors represent an attractive 
approach to estimate important primary process variables, 
particularly when conventional hardware sensors are not 
available, or when their high cost or technical limitations 
hamper their on-line use. Inferential estimators make use of 
easily available process knowledge, including a process model 
and measurements of secondary process variables, to estimate 
primary variables of interest [1]. In the process industries 
inferential estimators are typically used to estimate product 
compositions from the secondary variables. 

It is well known that an inferential estimator can be 
developed in the form of a Luenberger observer [2] or a 
Kalman filter [3] using a first-principles dynamic model of the 
process. However, chemical processes are generally quite 
complex to model and are often characterized by significant 
inherent nonlinearities. As a consequence, inferential 
estimators are usually designed based on heuristic model of the 
process. For instance, the inferential estimator can be based on 
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available measurements and multivariate regression 
techniques. This alternative approach for process variable 
estimation is advantageous because a soft sensor can provide a 
fast and accurate response, thus overcoming the typical 
limitations of hardware sensors [4]. Moreover, soft sensors are 
easy to develop and to implement online. Artificial neural 
networks (ANNs) are widely used estimation technique, and its 
successful application to the development of soft sensors for 
product composition estimation has already been reported for 
different processes [5]-[6]. 

It is not generally possible to overcome the issue of 
measurement selection difficulty by using all available 
secondary variables as soft sensor inputs, because measurement 
redundancy generally makes the calibration of the regression 
model troublesome and hence undermine the accuracy of the 
resulting estimator. 

In this paper, a systematic measurement selection 
methodology is proposed and demonstrated in a simulated case 
study for a distillation process. 81 variables are used as 
secondary variables; the first 40 states are compositions of light 
component in different locations except the top production 
composition and the second 41 states are related to holdup 
information (state 42-82).The DPCA approach is applied for 
selecting the optimal inputs of the proposed soft sensor. 

Principal component analysis (PCA) is a reliable and simple 
statistical technique for handling high dimensional, noisy, and 
correlated measurement data by projecting the data onto a 
lower dimensional subspace which contains most of the 
variance of the original data [7]. Considering the limitation of 
the conventional PCA, dynamic PCA (DPCA) has been utilized 
in this paper to increase the accuracy of selecting optimal 
sensor inputs. DPCA does this task by extracting 
time-dependent relationship in the measurement through 
augmenting the measured data matrix by time lagged measured 
variables. The DPCA transformed data are then applied to the 
soft sensor as the optimal inputs from the uncorrelated 
statistical perspective. The growing and pruning radial basis 
function (GAP-RBF) neural network introduction in [8] is 
modified to enable the on-line estimation of the unknown 
concentration. The unscented kalman filter (UKF) has been 
developed as an efficient learning algorithm for the modified 
GAP-RBF neural network.   

The rest of this paper is organized as follows. Section II (A) 
presents the DPCA algorithm. Section II (B) introduces the 
original GAP-RBF neural network. A modified GAP-RBF 
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neural network is presented in section II (C) to improve its 
performance for on-line soft sensor application. The UKF 
learning algorithm it’s introduced in section II (D) to update the 
free parameters of the modified GAP-RBF neural network. The 
performance of the proposed soft sensor is demonstrated in 
section III to estimate the product concentration of a distillation 
column benchmark problem. Section IV and V summarizes the 
resulting observations and conclusions.  

 

II. PROPOSED METHODOLOGY  

A. DPCA algorithm 
Consider a typical process with m observations of n process 

variables. The measured data can be organized in a data matrix 
(X) with ( nm× ) dimension. Computationally, PCA 
transforms the data matrix X by combining the variables as a 
linear weighed sum as follows:  
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where it  is a score vector which contains information about 

relation between samples, and ip  is a loading vector which 
contains information about relationship between variables. 
Note that score vectors are orthogonal and loading vectors are 
orthonormal. Projection into principle component space 
reduces the original set of variables (n) to α  latent variables. 
That is, projections of the measured variables are done along 
the directions determined by the k eigenvectors 
{ ppp ,...,, 21 } (k<n) corresponding to first k largest 
eigenvalues of the covariance matrix of X. Thus, by discarding 
those principal components that do not contribute significantly 
to overall variation, the dimensionality of the problem is 
correspondingly reduced. PCA algorithm, however, is best 
suited for analysis of steady state data with uncorrelated 
measurements. The steady state PCA approach can be extended 
to dynamic process by DPCA. By augmenting the sample 
vector and including time-lagged measured variables as: 
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where M (t) is the vector of measurements, standing for the 
current time; while the DPCA determines the proper number of 
l and the principal components, which indicate the order of the 
process. The dynamic model which can be extracted from the 
measured data is an implicitly multivariate auto-regressive 
(AR) model.  

B. GAP-RBF Neural Network  
GAP-RBF neural network uses the Gaussian RBF network 

(GRBF). Its output vector f (xn), which approximates the 
desired output vector ny , are described as follows: 
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where kα is its connecting weight to the output neuron, and 

)( nk xφ denotes a response of the kth hidden unit to the inputs 

)(; nkn xx φ is a Gaussian function given by: 
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where kμ ands kσ  are the center and width of the Gaussian 

function respectively, and .  denotes the Euclidean norm. 

The original GAP-RBF neural network [8] employs a 
sequential learning algorithm for training during the sequential 
learning process, a series of training samples ( ix , y ( ix )); (i = 
1, 2...) are randomly drawn and presented one by one to the 
network. Each training data sample may trigger the action of 
adding a new hidden neuron, pruning the nearest hidden 
neuron, or adjusting the free parameters of the nearest hidden 
neuron, based on the significance of the nearest hidden neuron 
to the training data sample. The significance of the kth hidden 
neuron is defined as [8]: 
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where l is the dimension of the input space l
n Rx ∈ , and 

S(X) denotes the estimated size of the range X where the 
training samples are drawn from. 

Given the set of all hidden neuron in A, only the nearest 
neuron based on the following Euclidean distance to the current 
input data xn is checked for its significance: 
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where rc is the center of the hidden neuron which is nearest 
to xn. 

The learning process of the GAP-RBF network begins with 
no initial hidden neurons. As new observation data (xn,yn) are 
received during the training, some of them may initiate new 
hidden neurons based on the following growing criterion: 
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where emin is the desired approximation accuracy, nε is a 
threshold to be selected appropriately, and en=yn-f(xn). If the 
growing criterion is satisfied, than a new neuron (K+1) will be 
added whose tuning parameters are set as follows: 
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 However, if a new observation (xn, yn) arrivers and the 
growing criterion is not satisfied, no new neuron will be added 
and only the parameters of the nearest neuron 
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),,( nrnrnr σμα will be adjusted using the EKF learning 
algorithm. Similarly, as the training carries on, some of the new 
observations (xn,yn) may trigger the learning algorithm to prune 
some hidden neurons. The pruning criterion is based on the 
significance of the nearest neuron to the new observation, as 
follows: 
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If the above average contribution made by the nearest neuron 
in the whole range X is less than the expected accuracy emin, 
then the nearest neuron is removed. The complete description 
of the GAP-RBF learning algorithm can be summarized as 
follows [8]: 

Given an approximation error emin, for each new observation 
),( RyRx n

l
n ∈∈ the following steps are performed 

sequentially: 
1. Compute the overall network output:  
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where K is the number of hidden neurons. 
2. Calculate the required parameters for the growth criterion: 
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3. If the growth criterion, specified by (7), is satisfied, allocate a 
new hidden neuron K+1 with tuning parameters given by 
(8).  

. 

. 

. 
Else 

4. Adjust the neural network parameters for the nearest neuron 
only ),,( nrnrnr σμα using the EKF estimation algorithm. 
5. Check the pruning criterion for the nearest hidden neuron, 
described by (9). It Esig(nr)<emin, remove the nearest hidden 
neuron and do the necessary network parameter adaptation by 
the EKF algorithm. 
Endif 
Endif 

C. The modified GAP-RBF neural network 
In order to have smoothly output response and avoid 

oscillation, the mechanism of adding and pruning should be 
modified. The rate of adding or pruning of neurons can be 
controlled with threshold values of ne and nε  . Selection of 
these values depends on the complexity of the process, input 
data for identification and the required accuracy for the model. 
But the most important and effective factor is the persistent 
exciting (PE) of the input data. If the input data have enough 
degree of PE, smooth and accurate output can be obtained with 
suitable adjusting of the threshold values, but if the inputs do 
not possess PE, which may happen for instance in the case of 
closed-loop identification, then the threshold values can not 

help and hence modification on adding and pruning rules will 
be necessary.  

In on-line identification, it should be better to change the 
adding strategy in such a way that, the rate of adding neurons 
increased in the beginning of the identification process, and as 
the identification process continues on, the rate of adding 
neurons is decreased. In the original algorithm [8], and its 
applications [8]-[9]-[10], neurons are added hardly in the start 
of the modeling process. This causes large errors in the start of 
the algorithm. As the rate of neuron creation can be controlled 
with nε  , an exponential function is proposed to be used in 

order to change nε  with time evolution as follows. 
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whereτ  is the parameter that can be used to control the 

changing rate of nε . 
Another problem is due to oscillation in the number of 

created neurons that can cause big errors in the identification 
results. This oscillation will be occurred in on-line 
identification, when the number of neurons that are created are 
small and the input data have small degree of PE, too. The 
effects of mentioned problem can be reduced with changing the 
pruning criteria by adding a new pruning factor )(β as 
follows: 
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D. The UKF Learning Algorithm  
The original GAP-RBF neural network presented in [8] uses 

the EKF learning algorithm. This algorithm, however, may 
diverge if the consecutive linearization of the nonlinear process 
model around the last state estimate dose not give a good 
approximation. The inherent flows of the EKF due to its 
linearization approach for calculating the mean and covariance 
of a random variable which undergoes a nonlinear 
transformation are addressed by the UKF algorithm [12]. This 
is done by utilizing a deterministic sampling approach to 
calculate mean and covariance terms. 

Essentially, 2L+1 sigma points (L is the state dimension) are 
chosen based on a square-root decomposition of the prior 
covariance. These sigma points are propagated through the true 
nonlinearity, without approximation, and then a weighted mean 
and covariance is taken. This approach results in 
approximations that are accurate to the third order (Taylor 
series expansion) for Gaussian inputs for all nonlinearities. 

In on-line estimation the learning algorithms should be fast. 
In this paper, the following useful way of rationalizing this 
desired objective has been presented to modify the covariance 
matrix update relationship: 

k
T
kyykkk kpkpp

kk
η/)( −= −                                         (14) 

where Kk represents the kalman gain and 
kk yyP denote the 

measurement covariance matrix. 
As shown, kη  has been introduction in the usual UKF 

covariance matrix update to behave as the forgetting factor 
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which undergoes the following time-vary evolution: 
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Where t is the recursive time interval that is spent in the 

modified UKF learning algorithm to estimate the modified 
GAP-RBF neural network free parameters with fixed dynamic 
structure. Thus, t is reset to zero when any network structural 
change, i.e., neuron creation or pruning occurs. This scheme 
maintains a desired parameter adaptive capability in the 
modified UKF algorithm whenever process dynamics 
undergoes a time-varying change. kη starts with a lower initial 
value to accelerate the parameter estimation and is then 
changed exponentially with a desired time-constant (δ ) to a 
higher final value to assure the estimator convergence property. 
 

III. SIMULATION CASE STUDY  
In this section, a distillation column benchmark problem [11] 

has been used to evaluate the performance of the proposed soft 
sensor methodology to estimate the column top product 
concentration.  The distillation column, shown in Fig. (1), 
consist of four manipulated inputs (LT, VB, D and B), three 
disturbances (F, zF and qF) and 82 states. Assuming that the 
top product composition (i.e., the column state number 31) as 
the unknown variable, its behavior is intended to be estimated 
by the proposed soft sensor. All the 81 states are used as the 
input data matrix to the DPCA algorithm. Then, the first 4 
eigenvectors corresponding to the first 4 largest eigenvalues of 
the covariance data matrix are utilized as the selected principle 
components to reduce the high dimensionality of the problem. 
These states including their four time-lagged information are 
used as the input data matrix to the soft sensor.  The DPCA 
transformed data, that is the projection of the original high 
dimensional input data on the chosen four principle component 
space are used to train the modified GAP-RBF neural network 
in an online manner. 

The collected column data samples were then used for online 
estimation. Fig. (2) demonstrates the performance of the online 
soft sensor  .For more clarity , the resulting performance has 
been illustrated for a shorter time interval of 800 to1000 data 
samples. As it is shown, the soft sensor is able to estimate the 
real top product composition with high accuracy. This result 
can be verified quantitatively by the integral of squared error 
(ISE) measure which is equal to 1.9982 for the whole time 
interval. 

 

IV. SIMULATION RESULTS  
In this section, we apply DPCA to distillation column as case 

study then the identification capability of the modified 
GAP-RBF neural network is tested on non-linear benchmark 
problem [11].We use Distillation Column (Skogestad Model) 
for Implementation of our methods .  

 
Fig. 1: A schematic of simple distillation column 
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Fig. 2: Estimation of X (31) for 100<t<1000s 
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Fig. 3: Estimation of X (31) for arbitrary time 

V. CONCLUSIONS  
A new soft sensor methodology has been presented in this 

paper which incorporated the combination of the multivariate 
statistical DPCA approach and the modified GAP-RBF neural 
network. The DPCA is used for providing optimum soft sensor 
inputs in terms of statistical measures. This is done by 
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elimination of the high correlations among the process 
measured secondary variables leading to low dimensional 
uncorrelated transformed data. An adaptive modified 
GAP-RBF neural network has been trained on-line to estimate 
the unknown column top product composition based on the 
DPCA transformed data feature. A modified UKF learning 
algorithm, including a forgetting factor strategy, has been 
presented to estimate the free adoptive neural network 
parameters. The resulting soft sensor methodology has been 
evaluated on a distillation column benchmark problem. The 
obtained observations are promising and demonstrate the 
accurate performance of the proposed methodology to estimate 
the distillation column top product.    
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