
 
 

 

  
 Abstract—This paper presents an intelligent visual inspection 

method that addresses the need for improved adaptability of a 
visual inspection system for parts verification on assembly lines. 
With the proposed adaptive method, the system is able to adapt to 
changing inspection tasks and environmental conditions by 
performing online learning and defect detection simultaneously 
without requiring excessive offline retraining or retuning. The 
proposed method consists of three major mechanisms: region 
localization, online learning, and defect detection. The edge-based 
geometric pattern-matching technique is used to locate the region 
of verification (ROV) that contains the subject of inspection 
within the acquired image. A principal component analysis (PCA) 
based algorithm is proposed to implement the online learning and 
defect detection mechanisms.  Case studies using field data from a 
fasteners assembly line are conducted to validate the proposed 
method. 

 
Index Terms—Adaptive visual inspection, online learning, 

defect detection, principal component analysis, parts assembly.  
 

I. INTRODUCTION 
  Various visual inspection systems have been applied for 

quality assurance on parts assembly lines in manufacturing 
industry. Instead of human inspectors, a visual inspection 
system can automatically perform parts verification tasks to 
assure that parts are properly installed and reject improper 
assemblies.  However, most of the existing visual inspection 
systems are hand-engineered to provide ad-hoc solutions to 
specific inspection tasks under specific environmental 
conditions [1]–[3].  They normally use a specific template 
matching algorithm or a feature extraction method. Thus the 
existing system lacks adaptability with respect to changes of the 
assembly line.  Such changes could be due to: 
• Changing products in response to market demands.  This 

requires changing the inspection algorithm of the existing 
system to deal with new assembly parts. 

• Changing environmental conditions, for example, lighting 
conditions, camera characteristics, and system fixation after 
a certain period of system operating time. This may render 
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the existing system obsolete, and thus requires adjusting the 
original inspection algorithm for new environmental 
conditions.    

Since the early 90’s, machine learning-based strategies have 
been proposed to improve the adaptability of visual inspection 
systems [4], [5].  Unlike the conventional approach that detects 
defects based on the a priori knowledge about the inspected 
parts, learning-based approaches identify defective cases based 
on recognition patterns that can be learned from examples 
using intelligent computing algorithms.  As such, the system is 
flexible to be trained to handle different inspection problems in 
variable environmental conditions.  

Machine learning can be conducted through offline or online 
processes. In offline learning, all training data are previously 
obtained and can be accessed repeatedly. In online learning, 
each case is presented one at a time and training data are 
collected incrementally. Popular offline learning techniques for 
visual inspection system include using neural networks and 
neuro-fuzzy classifiers to perform initial system training, in 
which recognition patterns are learned from an existing training 
data. However, a concern often raised by end users is that the 
performance of the offline learning based system relies heavily 
on the training data. In many situations it may be difficult or 
even impossible to collect all representative training samples 
over a limited period of time. 

Recently several researchers have reported their 
investigations on the application of online learning techniques 
to develop adaptive visual inspection methods. Those methods 
attempt to perform learning of inspection patterns during 
system operating time.  Hence, the system does not require an 
excessive offline training process when it faces the situations of 
changing inspection task or environmental conditions. For 
example, Abramovich et al. [6] proposed a novel online part 
inspection method based on a developmental learning 
architecture that uses the incremental hierarchical discriminant 
regression (IHDR) tree algorithm. Pena-Cabrera et al. [7] 
utilized the Adaptive Reasoning Theory Map (ARTMAP) 
neural network, an incremental learning algorithm, to develop 
an adaptive method for online recognition and classification of 
pieces in robotic assembly tasks. 

Although the aforementioned researches have shown 
promising results in utilizing online learning techniques to 
improve the adaptability of visual inspection systems, there is 
still a lack of more systematic studies with the support of 
practical experiments. This paper presents preliminary results 
of a project with an objective to improve the adaptability of a 
visual inspection system using a learning based approach. An 
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adaptive method based on online learning concept is proposed 
in this preliminary work. 

II. ADAPTIVE VISUAL INSPECTION METHOD 
An adaptive visual inspection method requires that the 

system is capable of detecting defective cases within certain 
tolerance while learning recognition patterns at the same time.  
As illustrated in Fig. 1, the adaptive visual inspection method 
consists of three major mechanisms: 
1) Region Localization Mechanism locates the region of 

interest (ROI) and the corresponding region of verification 
(ROV) containing the inspection subject within the 
acquired image.  

2) Online Learning Mechanism incorporates the freshly 
located ROV into the system knowledge base if the ROV is 
identified as a new non-defective pattern. 

3) Defect Detection Mechanism verifies whether the ROV 
appears as a defective case using the existing non-defective 
patterns from the knowledge base that is constantly updated 
by the learning mechanism. 

A. Region Localization 
Region localization is required so that the amount of data 

processing can be reduced.  In the proposed method, the region 
of interest (ROI) within a given image contains two 
sub-regions, as shown in Fig. 2: 
 Region of Verification (ROV):  It must include the 

inspection subject, that is, the assembly part being 
inspected.  Appearance verification of this region may 
indicate part missing or improper installation. 

 Region of Matching (ROM): This region contains features 
that are invariant to both non-defective and defective cases. 
Therefore, the appearance pattern of this region can be used 
as a matching reference/template to locate the ROI and the 
corresponding ROV. 

Region of verification (ROV) holds the key to the 
performance of online learning and recognition.  Efficient and 
effective identification of ROV is provided by the ROM. It can 
be defined manually during the system setting up and tuning 
stage. 

An edge-based pattern-matching technique is employed in 
the region localization mechanism. Instead of comparing pixels 
of the whole image, an edge based technique compares edge 
pixels with the template.  It offers several advantages over the 
pixel-to-pixel correlation method. For example, it offers 
reliable pattern identification when part of an object is 
obstructed, as long as about 60% of its edges remain visible.  
Because only edge information is used, this technique can 
rotate and scale edge data to find an object, regardless of its 
orientation or size. In addition, this technique can provide good 
results with a greater tolerance of lighting variations. In this 
research, the region localization mechanism is implemented 
using an edge-based geometric pattern-matching module (i.e., 
Geometric Model Finder) in Matrox® Imaging Library, a 
commercial software provided by Matrox® Imaging Inc. More 
background on this module can be obtained in [8]. 

B. Online Learning and Defect Detection   
In the proposed adaptive visual inspection method, the 

principal component analysis (PCA) technique is used to 
implement the online learning and defect detecting 
mechanisms. Principal component analysis (PCA) involves a 
mathematical procedure that allows optimal representation of 
images with a reduced order of basis functions called 
eigenpictures. The eigenpictures are generated from a set of 
training images. The projection of an image onto the subspace 
of eigenpictures is a more efficient representation of the image. 
Many works on image recognition and feature extraction have 
adopted the idea of the PCA based image 
representation/decomposition [9]. 

In PCA, for a given set of training images, each w by h pixel 
image is represented by a vector of size hw× , 

Fig. 1: Adaptive Visual Inspection Method 

Fig. 2: Defining Region of Interest (ROI) 
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[ ]hwk pppx ×= ;...;; 21 . The eigenpictures U can be obtained by 
solving the following equation:  

 
( )( ) Λ=−− UXXU TT μμ                  (1) 

 
where matrix [ ]Kk xxxxX ,...,,...,, 21= denotes the set of training 
images,  vector [ ]wxhμμμμ ;...;; 21=  is the mean of the training 
images, and Λ is a diagonal matrix of eigenvalues 

( )
K

diag λλλ ,...,, 21 . Corresponding to first l largest eigenvalues 

( )
l

λλλ ,...,, 21 , l major eigenpictures are selected to form a 

subspace of eigenpictures lU . By projecting onto the subspace 
of lU , the set of training images X and a newly acquired image 
x can be represented  by their projection coefficients 

( )μ−XU T
l  and ( )μ−xU T

l , respectively.  Those coefficients 
can be used to reconstruct their original images. 

The image reconstruction error measures the difference 
between the original and the reconstructed images. The 
reconstruction errors can be used to detect abnormality or 
novelty [10]–[12]. Assuming that all training images are 
normal cases, the reconstruction errors of the training images 
follow a normal distribution with a mean value m and a 
standard deviation σ. This hypothesis has been validated in the 
case studies of this research, as described later in Section III. 
For a newly acquired image x, the reconstruction error can be 
calculated as: 

  
yxr −=                             (2) 

 
where x is the original image and y  is the reconstructed image 
based on the projection coefficients,  i.e., μ+= aUy l , 

( )μ−= xUa T
l . By choosing a certain confidence interval α 

(e.g., 99.74% confidence interval translates to α = 3 for a 
normal distribution), the image is considered as an abnormal 
case if its reconstruction error r  is not in the range of 

}ασασ +− mm ,{ . The values of ασ−m  and ασ+m  are 
the lower and upper thresholds for determining normal cases, 
respectively. 

 Conventionally, the PCA technique is used in offline 
learning mode that requires all the training data to be available 
in beforehand. Thus, it is unsuitable to applications that 
demand online updates to the PCA model. This paper presents 
an algorithm to build and update the PCA model incrementally 
to incorporate new training patterns. As illustrated in Fig.3, a 
PCA model is constructed using non-defective data patterns 
during the model development phase and employed to detect 
defective cases in the model execution phase. During the model 
development phase, inspection results are verified by a human 
operator to identify false negative cases.  A false negative case 
refers to a false classification of defective case, which means an 
actual non-defective case is classified as a defective case by the 
existing PCA model.  Consequently, the false negative case is 
used as a new non-defective pattern to re-train the existing PCA 
model. Thus, the online learning mechanism updates the PCA 
model only when a false negative case is identified and added 
into the training set. Once the counts of false negative cases 
have reached steady state after a certain period time, the PCA 
model is considered stabilized and then the model execution 
phase begins. The PCA based online learning and defect 
detection mechanisms are described as follows: 

• Model Development Phase 
Both online learning and defect detection mechanisms 
contribute to the construction of a PCA model. In this paper, 
the PCA model is denoted by MP, which retains the 
generated eigenpictures lU and the mean of training 
images μ . It also retains the mean value m and the standard 
deviation σ of the reconstruction errors on the training set 
containing the false negative cases that represent 
non-defective patterns. In particular, the model 
development phase consists of four steps:   

1) Model Initialization 
1.a) Initialize a PCA model with ( )1x , the ROV 

Fig. 3:  The PCA Based Algorithm for Online Learning/Defect Detection Mechanisms 
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defined in the first image, which represents the 
first non-defective pattern of the inspected 
assembly part, i.e., ( )iMP at 1=i : 

 ( ) ( ) ( ) ( ){ }0,0,)(,0 )*(1 ==== iimixiiU hwxl σμ  

1.b) Add ( )1x  into the training set, in which new 
non-defective patterns will be incrementally added 
when they are identified during the model 
development phase.  

2) Defect Detection  
2.a) For i >1, compute the projection coefficients of the 

ROV from a newly acquired image ( )ix . 
Reconstruct the image of the ROV and then 
calculate the reconstruction error, based on the 
current existing PCA model ( )1−iMP , by using 
(2). 

2.b) Conclude on whether the newly acquired image 
appears as a defective case according to the 
corresponding upper and lower thresholds of 
non-defective patterns. 

3) Inspection Result Verification 
3.a) Verify the inspection result obtained from 2.b) by 

a human operator.  Update the false negative 
counts ( )iCfn . 

3.b) If ( )ix  is identified as a false negative case , add 

( )ix  into the training set, then go to step 4). 
Otherwise, return to step 2) to process the next 
acquired image/ROV. 

4) Model Update 
Build a new PCA model ( )iMP  based on the updated 
training set by using (1).  Return to step 2) to process the 

next acquired image/ROV. 

• Model Execution Phase 
The model development phase can be considered completed 
when the counts of false negative cases ( )iCfn  have 
reached plateau. Subsequently, the PCA model can be used 
to detect defective cases without requiring further updating. 
In the model execution phase, the defect detection 
mechanism inspects each newly acquired image/ROV 
based on the PCA model that has been built in the model 
development phase, by using (2). 

III. CASE STUDY 
For case studies, field data are collected from an existing 

fastener inspection system for a truck cross-car beam assembly. 
The visual inspection system examines a total of 46 metal clips 
inserted by assembly robots for their proper installation. The 
existing system works well after excessive amount of manual 
tuning.  Improving the system adaptability to changes has been 
a top priority. Fig. 4 shows examples of two types of clips on 
the cross-car beam assembly. 

In order to simulate an online operation, the proposed 
adaptive method was applied to a dataset of images that were 
acquired sequentially in 24 hours.  Experimental results are 
promising; indicating the potential of the proposed method to 
offer adaptability in a visual inspection system. Figure 5 shows 
the experimental results of inspecting Clip 1 as shown in Fig. 4. 
The dataset for this type of clips includes 1595 non-defective 
cases and 4 defective cases. The observations from the 
experiment are summarized as follows: 
 In the model development phase, the proposed adaptive 

method was able to update the PCA model each time when 
a false negative case was identified.  As shown in Fig.5 (a), 
there were 34 cases whose reconstruction errors were 

Fig. 4: Examples of Clips on Cross-Car Beam Assembly 
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beyond the thresholds for non-defective patterns.  Manual 
verification confirmed 2 defective cases and hence 32 false 
negative cases. These 32 false negative cases were 
incrementally incorporated into the PCA model for 
updates. As illustrated in Fig. 5 (b), after processing a total 
of 1200 case images, there appeared no new false negative 
case.  Therefore, the model development phase was 
considered completed at that point. 

 In the model execution phase, the trained PCA model 
efficiently identified all defective cases without generating 
false negative cases.  In this experiment, the PCA model 
retained four major eigenpictures corresponding to the four 
largest eigenvalues that contributed 70% of total of 
eigenvalues. Figure 6 shows the distribution of 

reconstruction errors for non-defective cases using the 
trained PCA model.  It validates our hypothesis of a normal 

(a) Reconstruction Errors vs. Inspection Cases

Fig.6: Distribution of Reconstruction Errors 

Fig. 5: An Experimental Result for Inspection of Clip in Case Study 
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distribution with a mean value of 61068.1 ×=m and a 
standard deviation of 51088.4 ×=σ .  The 99.74% 
confidence interval with α = 3 was used to define the 
thresholds.  

In order to show that the proposed adaptive method was able 
to achieve a similar performance for different types of clips 
under different environmental conditions, we generated results 
on two different datasets that were acquired for inspecting two 
types of clips from two different periods. In the two periods, the 
lighting conditions and camera settings were different. The 
experimental results showed that the proposed method had 
similar performances for the two different datasets. 

IV. CONCLUSION 
This paper presents an adaptive visual inspection method 

that addresses the need for improved adaptability of a visual 
inspection system for assembly line parts verification. The 
proposed adaptive method is developed based on an online 
learning concept that attempts to perform simultaneous online 
learning and defect detection during the system’s operating 
time. As such, the system is flexible to handle new inspection 
task and the changed environmental conditions without 
requiring excessive retraining and retuning.  

The proposed adaptive method consists of three major 
mechanisms, including region localization, online learning, and 
defect detection. (i) The region localization mechanism utilizes 
the edge-based pattern matching technique to locate the region 
of verification for the inspected assembly part within each 
acquired image. (ii) The online learning and defect detection 
mechanisms are implemented based on the principal 
component analysis (PCA) technique. In the model 
development phase, the online learning and defect detection 
mechanisms work together to incorporate the identified false 
negative cases as new non-defective patterns into the PCA 
based model. In the model execution phase, the defect detection 
mechanism can efficiently identify defective cases by 
employing the PCA model that is built in the model 
development phase.        

Although this research is still in its preliminary stage, the 
experimental results showed that the proposed adaptive method 
was promising in achieving the objective of this research.  
Future work of this research will focus on further  development 
which includes (a) validating the proposed method with a 
greater range of data reflecting variations in both inspection 
tasks and environmental conditions; (b) investigating 
alternative online learning approaches that can incorporate and 
identify different types of defective patterns. The expected 
outcome of this research will be beneficial to the application of 
intelligent visual inspection in the manufacturing industry. 

ACKNOWLEDGMENT 
This work is part of the Auto21 project entitled 

"Neuro-fuzzy Systems for Inspection in Manufacturing 
Processes". Van Rob Stampings Inc. provided experimental 
data for the case study. 

REFERENCES 
[1] S. Newman and A. K. Jian, “A Survey of Automated Visual Inspection,” 

Computer Vision and Image Understanding, vol. 61, no. 2, pp.231-262, 
March 1995. 

[2] A. M. Wallace, “Industrial Applications of Computer Vision Since 1982,” 
IEE Proceedings, Pt. E, vol. 135, no. 3, pp.117-136, May 1988. 

[3] H. C. Garcia, J. Rene Villalobos, and G. C. Runger, “An Automated 
Feature Selection Method for Visual Inspection Systems,” IEEE 
Transactions Automation and Engineering, vol. 3, no. 4, pp.394-406, 
October 2006. 

[4] T. Cho and R. W. Conners, “A Neural Network Approach to Machine 
Vision Systems for Automated Industrial Inspection,” Neural Networks, 
1991, IJCNN-91-Seattle International Joint Conference on Neural 
Networks, vol. I, pp. 205-208, 1991. 

[5] J. Killing, B. W. Surgenor, C., and K. Mechefske, “A Neuro-Fuzzy 
Approach to a Machine Vision Based Parts Inspection,” North American 
Fuzzy Information Processing Society Annual Conference (NAFIPS 
2006), Montreal, Quebec, 2-6 June 2006. 

[6] G. Abramovich, J. Weng, and D. Dutta, “Adaptive Part Inspection 
through Developmental Vision,” Journal of Manufacturing Science and 
Engineering, vol. 127, pp.1-11, November 2005. 

[7] M. Pena-Cabrera, I. Lopez-Juarez, R. Rios-Cabrera, and J. 
Corona-Castuera, “Machine Vision Approach for Robotic Assembly,” 
Assembly Automation, 25/3, pp.204-216, 2005. 

[8] Matrox Imaging Inc., User Guide: Matrox ActiveMIL (version 8), 2005, 
ch. 8. 

[9] M.H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting Faces in Images: A 
Survey,” IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 24, no. 1, pp.34-58, January 2002. 

[10] M. Artac, M. Jogan, and A. Leonardis, “Incremental PCA for Online 
Visual Learning and Recognition,” Proceedings of 16th International 
Conference on Pattern Recognition, 2002.  

[11] H. Vieira Neto and U. Nehmzow. “Incremental PCA: An Alternative 
Approach for Novelty Detection,” Proceedings of Conference on 
Towards Autonomous Robotic Systems (TAROS), London 2005. 

[12] H. H. Yue and S. J. Qin. “Reconstruction-Based Fault Identification 
Using a Combined Index,” Industrial & Engineering Chemistry Research, 
40, pp. 4403-4414, 2001. 

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007


