
 
 

 

  
Abstract— This paper extends the sequential growing and 

pruning radial basis function (GAP-RBF) to cater for on-line 
identification of non-linear systems. Some desired modifications 
on the growing and pruning neurons criteria have been proposed 
for the original GAP-RBF to make it more suitable for on-line 
identification. The unscented kalman filter (UKF) has been 
proposed as a new learning algorithm for GAP-RBF neural 
network. Moreover, a variable forgetting factor strategy has been 
included in the UKF algorithm to keep the parameter estimation 
routine more active in time-varying dynamics. Simulation results 
show the superiority of the modified GAP-RBF (MGAP-RBF) 
neural network being learned with the UKF algorithm. 
 

Index Terms— Adaptive on-line identification, GAP-RBF, 
MRAN, EKF, UKF.  
 

I. INTRODUCTION 
  Many engineering applications need a suitable model 
structure, within which a good model is to be found, for a 
compact and accurate description of the dynamic behavior of 
the system under consideration. These models are used for 
simulations, predictions, analysis of the system’s behavior, 
design of model-based controllers, and so forth. Radial Basis 
Function (RBF) networks have been popularly used in many 
applications in recent times due to their ability to approximate 
complex nonlinear mappings directly from the input-output 
data with a simple topological structure and ease of 
implementation of dynamic and adaptive network architecture. 
In practical on-line applications, sequential learning algorithms 
are generally preferred over batch learning algorithms as they 
do not require retraining whenever a new data is received. 
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However, selection of a learning algorithm for an on-line 
application is critically dependent on its accuracy and speed. In 
recent years different methods like [1], [2] and [3] have been 
proposed in which sequential learning algorithms are used. A 
significant contribution to sequential learning was made by 
Platt [4] by proposing RAN in which hidden neurons were 
added sequentially based on the novelty of the new data.  
One important point to be noted in all of these sequential 
algorithms is that they do not link the required learning 
accuracy directly to the algorithm. Instead, they all have 
various thresholds which have to be selected using exhaustive 
trial and error studies. This issue of specifying the various 
thresholds based on the needed accuracy has been raised in 
MRAN for determining the inactive neurons, but the required 
learning accuracy was implemented in GAP-RBF [5] networks 
more clearly. The enhanced growing criterion proposed in the 
GAP-RBF algorithm will ensure that a neuron will not be 
added if it is insignificant to the overall performance of the 
network, even though it may make contribution to the single 
latest input data. GAP-RBF has much less computational 
complexity and requires less memory. Also GAP-RBF in 
comparison with RAN, RAN-EKF and MRAN has very few 
parameters for which one needs to select values for. The 
self-generating structure and low computational complexity of 
GAP-RBF make it one of the best candidates for on-line 
identification of complex systems with poor prior dynamic’s 
knowledge. 
This paper focuses on the GAP-RBF and MRAN algorithms. 
The usual EKF learning algorithm has been upgraded to the 
UKF learning algorithm. An exponential forgetting factor 
strategy has been included in the UKF learning algorithm in 
order to enable it for tracking any possible time-varying 
dynamic changes. To make the neurons growing and pruning 
procedure more adapted to the on-line identification 
applications, the corresponding criteria have been modified. 
The rest of this paper is organized as follows. Section 2 
describes GAP-RBF neural network briefly. Section 3 presents 
UKF learning algorithm. Section 4 describes the problems in 
the original GAP-RBF neural network and presents a modified 
GAP-RBF (MGAP-RBF) neural network. Section 5 presents 
performance comparison for the original GAP-RBF and its 
modified version on benchmark problems. Section 6 
summarizes the resulting conclusions. 
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II. GAP-RBF NEURAL NETWORK 
GAP-RBF uses the Gaussian RBF network (GRBF) model. 

The network output vector f(xn), which approximates the 
desired output vector yn, are described as follows: 
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where kα  is it’s connecting weight to the output neuron, and 

)( nk xφ denotes a response of the kth hidden unit to the inputs 

xn ; )( nk xφ is a Gaussian function given by: 
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where kµ  and kσ  are the center and width of the Gaussian 

function respectively, and .  denotes the Euclidean norm. 

The sequential learning algorithm for GAP-RBF networks, 
defines a notion of significance for the hidden neurons, and a 
growing and pruning criterions for on-line adjusting of the 
network size. 

A. GAP-RBF Learning Algorithm  
During the sequential learning process, a series of training 
samples ( )(, ii xyx ); (i = 1,2,...) are randomly drawn and 
presented one by one to the network. Each training sample 
would trigger the action of adding a new hidden neuron, 
pruning the nearest hidden neuron, or adjusting the parameters 
of the nearest hidden neuron, based on only the significance of 
the nearest hidden neuron to the training sample. This is in 
contrast with the MRAN learning algorithm in which all the 
neurons will be checked for adding, pruning and adjusting 
purposes. The significance of the kth hidden neuron k is 
defined as [5]: 
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Given the set of all hidden neurons in A, the center of the 
nearest hidden neuron is cr, the input is x and the nearest hidden 
neurons are defined as: 
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Like MRAN and EMRAN, the GAP-RBF network begins with 
no hidden neurons. As new observations are received during 
the training, some of them may initiate new hidden neurons 
according to the growing criterion. An enhanced growing 
criterion for new observation (xn,yn), to make the growing 
process smooth is:  
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If these conditions are satisfied, then a new K+1 neuron will be 
added and the parameters associated with the new hidden 
neuron are taken as follows: 
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(6) 
where en= yn - f(xn)  and cr is the centre of the nearest  hidden 
neuron to xn.  As the training carries on, some of the new 
observations may trigger the learning algorithm to prune some 
hidden neurons. 
The pruning criterion based on the new observation (xn ,yn) is: 
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where S(X) is the estimated size of the input range. 
If the average contribution made by the kth neuron in the whole 
range X is less than the expected accuracy emin and the kth 
neuron is insignificant; then the kth neuron can be removed. If 
no neuron adds or prunes, the nearest neuron will be adjusted 
with the EKF or UKF algorithm. 
The complete description of the GAP-RBF learning algorithm 
[5] can be summarized as follows: 
Given an approximation error emin, for each observation        
 (xn ,yn), where l

nx ℜ∈ , do  
1. compute the overall network output 
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where K is the number of hidden neurons. 
2. calculate the parameters required in the growth criterion  
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  apply the criterion for adding neurons 
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adjust the network parameters nrnrnr σµα ,,  for             the 
nearest  neuron only, using the EKF algorithm. 

Check the criterion for pruning the hidden neuron: 

If min)(/)8.1( eXSnr
l

nr <ασ  , remove the nearest (nrth) 

hidden neuron and do the necessary changes in the EKF 
algorithm. 
 

III. UNSCENTED KALMAN FILTER (UKF) 
The inherent flaws of the EKF are due to its linearization 

approach for calculating the mean and covariance of random 
variables which undergoes a non-linear transformation. As 
shown in [2], [6] and [7], the UKF addresses these flaws by 
utilizing a deterministic “sampling” approach to calculate mean 
and covariance terms. This approach results in approximations 
that are accurate to the third order (Taylor series expansion) for 
Gaussian inputs for all nonlinearities. 

For non-Gaussian inputs, approximations are accurate to at 
least the second-order [2]. Whereas, the linearization approach 
of the EKF results only in first order accuracy. 

Consider the non-linear system, described by (11). The UKF 
algorithm can be derived by the following steps: 
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1. Initialize with: 
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for },...,1{ ∞∈k , (E[.] denote the expected value). 
2. Calculate the sigma points: 
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3.  Time update: 
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where wR  is process noise covariance, and 
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4.  Measurements update equations: 
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where vR  is process noise covariance, and 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+= −−−−−

− kkkkkkk PxPxx γγχ ˆˆˆ1|      (21) 

[ ] [ ]∑
=

−
−

−
− −Υ−=

L

i

T
kkkikkki

c
iyx yxWP

kk

2

0
1|,1|,

)( ˆˆχ         (22) 

1−=Κ
kkkk yyyxk PP                                                           (23) 

)ˆ(ˆˆ −− −Κ+= kkkkk yyxx                                             (24) 
T
kyykkk kk

PPP ΚΚ−= −                                                 (25) 

 

IV. THE MODIFIED GAP-RBF NEURAL NETWORK AND THE 
MODIFIED UKF LEARNING ALGORITHM 

The proposed modifications can be described in two 
sections. First, changes in the GAP-RBF algorithm and second 
on the UKF learning method. 

A. The Modified GAP-RBF Neural Network  
In order to have smoothly output response and avoid 

oscillation, the mechanism of adding and pruning should be 
allowed to change smoothly. The rate of adding or pruning of 
neurons can be controlled with threshold values of en and nε . 
Selection of these values depends on the complexity of the 
system, input data for identification and the required accuracy 
for the model. But the most important and effective factor is the 
persistent exciting (PE) of the input data. If the input data have 
enough degree of PE, smooth and accurate output can be 
obtained with suitable adjusting of the threshold values, but if 
the inputs do not be PE, which may happen for instance in the 
case of closed-loop identification, then the threshold values can 
not help and hence modification on adding and pruning rules 
will be necessary. 

In on-line identification, it should be better to change the 
adding strategy in such a way that, the rate of adding neurons 
increased in the beginning of the identification process, and as 
the identification process continues on, the rate of adding 
neurons decreased. In the original algorithm [5], and its 
applications [1], [5] and [8], neurons are added hardly in the 
start of the modeling process. This causes large errors in the 
start of the algorithm and hence the learning EKF or UKF 
techniques can not estimate the relevant parameters. As the rate 
of neuron creation can be controlled with nε , an exponential 

function is proposed to be used in order to increase nε  as 
follows: 
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where τ is the parameter that can be used to control the rate 
of increasing nε . 
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Another problem is due to oscillation in the number of 
created neurons that can cause big errors in the identification 
results. This oscillation will be occurred in on-line 
identification, when the numbers of neurons that are created are 
small and the inputs data have small degree of PE, too. The 
effects of mentioned problem can be reduced with changing the 
pruning criteria by adding a new pruning factor ( β ) as 
follows: 

min)(/)8.1( eXSnr
l
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where 10 ≤< β . 

B. The Modified UKF Algorithm  
In on-line identification, learning algorithms should be fast. 

However, to accomplish this objective, the initial value of the 
covariance matrix can not be set at large value because this 
option will produce large error and hence the neural network 
output will oscillate and consequently can not be converged 
when other samples are received. Besides small initial value of 
the covariance matrix has another bad effect. This slows down 
the identification process, which is not acceptable in the on-line 
applications. In order to be able to track any dynamic changes 
efficiently, learning algorithms should be fast enough to be 
converged in a few number of iterations. A factor, called asη , 
is proposed to be used in the UKF algorithm which acts as the 
forgetting factor concept in the usual recursive least squares 
(RLS) algorithm. 

When the GAP-RBF toggles to adjust the parameters,η  is 
reset to the initial value, and then it changes exponentially in 
such a way that the final value is reached in a few number of 
iterations. As a consequence, the modified equation is as 
follows: 
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where t is the time duration that is spent during which the 

GAP-RBF toggles to the UKF learning algorithm. t is then reset 
to zero when the GAP-RBF algorithm is exited from the 
UKF.δ  is the parameter that controls the rate of changing in 
η . 

V. SIMULATION RESULTS 
In this section, the identification capabilities of the modified 

GAP-RBF neural network with the modified UKF learning 
algorithm are tested on a benchmark problem. The resulting 
performances are compared with the original GAP-RBF neural 
network being estimated with both the EKF and UKF learning 
algorithms. 

A. Nonisothermal Continues Stirred Tank Reactor 
(nonisothermal CSTR) 
The process is a nonisothermal CSTR with an irreversible 

reaction (A → B) which consists of two nonlinear ordinary 
differential equations, given by [9]: 
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where 
 

)(thφ    fouling coefficient 

)(tcφ    deactivation coefficient 

AC       effluent concentration, ( the controlled variable) 

cq         coolant flow rate, (the manipulated variable) 
q          feed flow rate, disturbance 

AfC
      feed concentration 

fT        feed temperature 

cfT        coolant inlet temperature 

 
The remaining model parameters together with the operating 

conditions are presented in Table 1. 
This CSTR has a time-varying characteristic given by:       

Ahhd hthth )1()( αφ −=×=  where 01.0=hα  is fouling 
constant. 

The free parameters have been fixed in all the experiments as 
follows in order to be able to compare and analyze the 
experiments results at the same conditions: 

=maxε 0.1, =minε 0.01, =κ 0.85, =γ 0.995 and 
emin=0.001. 

In order to make the picture of the performed simulation 
experiments more real, two distinct white noises with variance 
of 0.01 have been added to the original dynamics in (30) and 
(31) to simulate as the process noises. Since the effluent 
concentration (CA) has been assumed as the process output, a 
white noise with variance of 0.01 has also been added to it as 
the measurement noise. 

The identification experiments have been performed using a 
random excitation signal with mean of 0.5 and variance of 1 
superimposed on the multi-levels coolant flowrate, as the 
manipulated variable, in order to drive the CSTR process at 
different operating conditions starting with the initial nominal 
condition specified by Table І. As shown in Fig.1, the process 
is excited for a sequence of +10%, -20%, +5% and finally 
another +5% from the initial nominal condition. 
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Table І.  Nominal CSTR Operating Condition 

Nominal CSTR Operating Condition 
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Fig.1. Noisy input sequence. 

 
Fig. 2. Real (noisy) and clean CSTR output  

The obtained process output response has been illustrated in 
Fig.2 together with a non-real noise-free process output 
response for the demonstration purposes. 
The complete identification results for different performed 
experiments with GAP-RBF and MGAP-RBF algorithms have 
been shown in Fig. 3. In Fig. 3 (a-c) vertical axis is output 
concentration (CA) and in Fig. 3 (d-f) the vertical axis is the 
number of created neurons. 

       
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 3. Approximated network output and neuron updating 
progress. (a)-(c) GAP-EKF, GAP-UKF, MGAP-UKF output networks 
respectively. (d)-(f) neuron updating progress of mentioned 
networks. 
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The results demonstrate the superiority of the proposed 
MGAP-RBF-UKF algorithm with respect to other algorithms 
in terms of the following two main objectives: 

1.    Network model accuracy in terms of Integral of Squared 
Error (ISE) measure. 

2. Network model structure simplicity or compactness of 
number of neurons. 

 

Table ІІ.  Performance Comparison of Different Neural Networks 

Type of NN ISE 

GAP-EKF 0.2057 

GAP-UKF 0.1646 

MGAP-UKF 0.0276 

 

VI. CONCLUSIONS  
Two different types of adaptive neural networks, i.e. GAP-RBF 
with EKF and UKF learning algorithms and MGAP-RBF have 
been utilized for on-line identification of non-linear systems. In 
this paper, this original network structure has been modified in 
order to enable their applications for on-line identification 
purposes. The basic contributions can be summarized as 
follows: 

• Modification in neuron creation criterion. 
• Modification in neuron pruning criterion. 

Furthermore, the learning mechanisms MGAP-RBF have 
been enriched with the UKF algorithm. The proposed learning 
algorithm has also been included with a forgetting factor 
strategy in order to increase it’s alertness to track any dynamic 
changes efficiently. The proposed on-line identification 
techniques have been implemented on non-linear CSTR and 
Mackey-Glass time-series. The analysis of the resulting 
outcomes indicates the following observations: 
• The main benefit of the GAP-RBF-based identification 

algorithms is that any desired accuracy requirement can 
directly be introduced in the algorithm by defining a 
significance quality measure for the quality of each neuron. 

• The GAP-RBF-based identification algorithms have a 
lower degree of computational complexity due to the fact 
that only the nearest neuron parameters should be updated 
during each learning phase. However their tuning 
parameters are higher and more sensitive to the threshold 
initialization values.  

• The UKF learning algorithm leads to better accuracy of 
the results in comparison with the EKF one due to 
utilization of a deterministic sampling approach to calculate 
mean and covariance terms. The UKF learning algorithm 
performs better in the face of contaminating noise. 
However, its computational complexity is higher than EKF. 

As a result, the proposed MGAP-RBF neural network with 
the UKF learning algorithm using the developed forgetting 
factor strategy gives the best performance. This achievement 
can mainly be expressed in terms of the resulting accuracy and 
simplicity of the network-model structure. 
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