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Abstract— This paper describes the application of a

swarm engineering methodology known as the Hamil-

tonian method of swarm design to the artificial physics

problem. We demonstrate how to use this methodol-

ogy to create swarms of predefined global properties

by applying it to the basic artificial physics problem

which creates locally hexagonal grids of agents, but

fails to generate global hexagons. A condition for

global hexagonal structure is derived, and two meth-

ods are described which accomplish this goal. Neither

method requires global information.
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1 Introduction

Since the mid 1980’s, scientists have been investigating
swarms of agents [1, 3, 5, 6]. Swarms, or bidirectionally
communicating groups of agents, have been of interest for
a number of reasons . People have studied emergence, or
the ability of the agents to affect a property of their sys-
tem despite being unaware of that property, extensively.
This is thought to be one of the most intriguing qualities
of swarms, since the effect tends to occur without care-
ful planning or analysis, but can be fascinating and quite
useful. Some swarms have other advantageous properties
including fault tolerance, the ability to concentrate re-
sources dynamically, and the ability to change the group
behavior despite being unaware of that behavior.

One of the approaches to generating these emergent be-
haviors is artificial physics [1, 7, 8, 9]. Artificial physics
(AP) is a control mechanism for a group of agents intro-
duced by Spears [8]. The basic idea behind the method-
ology is that simple force laws “borrowed” from physics
can be used to control the movement of simple agents
in a decentralized group. Since physical force laws are
simple vector equations of distances and “charge”, the
implementation of such laws is remarkably simple, as is
the gathering of the information required to implement
these laws on real, physical platforms. Agents need only
be able to determine the distance and direction from any
of the other agents, and the appropriate behavior can be
calculated as though the agent itself were a “particle” re-
acting according to these physical force laws. Self-repair,
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self-organization, fault-tolerance are expected to result
from the application of this framework. Moreover, small
changes to a basic AP system can result in complex global
behavior using only simple controls and primitive sensors.
Since the method is not built with a specific group size
in mind, it can be applied to groups of any size without
change to any control algorithms.

The main problem with this control mechanism is that
there is an apparent disconnect between the global vari-
ables governing the desired global outcome and the local
behaviors of the agents. In any complex system, the goal
of the system is to generate a predetermined global out-
come; this requirement forms the starting point for any
complex system engineering. However, it has been shown
elsewhere that systems built from very simple subsystems
can generate unpredictable global outcomes with wild
changes in global variable as a result of small changes to
the interactions between the individual pieces [12]. The
difficulties in generating pre-specified global properties in
swarms of agents governed by the machinery of artificial
physics derives from just this property of complex sys-
tems: it is relatively simple to design the local structures,
but difficult to generate global structures from these lo-
cal structures. Without some machinery built in which
ensures the global properties are designed properly, it is
unlikely that any local design will correctly generate the
desired global properties the first time it is created.

Some researchers have tackled the problem of generating
global structures[11, 8, 4, 10]. Winfield et al. seem to
focus on generating an understanding of what some of
the emergent properties of a constructed system will be.
However, it is not clear that this generalizes to generat-
ing behaviors once the desired global behavior has been
decided on. While Spears’ intent was to use completely
autonomous agents, it was necessary for him to use an
ordering to generate the global structure. This ordering,
however, might be viewed as global information.

In this paper, we apply a methodology termed a middle-

meeting methodology[5] to an artificial physics system
consisting of simple agents that locally arrange them-
selves into a hexagonal lattice. The middle meeting
methodology has aspects of top-down design as well as
aspects of bottom-up design and requires both to be ap-
plied in order to generate a global design. While this
method is not optimal in the sense that there is a readily
applicable algorithm for generating local behaviors once
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the global goal has been decided upon, it is an important
first step in generating provable global properties. Our
theoretical results are applied to a swarm of simulated
agents. We observe that the simulated agents perform the
desired task of arranging themselves in a large hexagon,
a result previously unattainable using the basic artificial
physics system.

The remainder of the paper is organized as follows. The
middle meeting methodology will be applied to an AP
problem in section 2. This application will generate lo-
cal behaviors of the individual agents. In section 3, we
employ these behaviors on a simulated swarm of two-
dimensional autonomous agents. Section 4 concludes the
paper with a discussion of the relevant issues.

2 Swarm engineering artificial physics

systems

In this section, we use the swarm engineering approach to
explore the hexagonal configuration problem. This prob-
lem centers around the correct placement of agents in a
hexagonal grid. In order to create a hexagonal grid, each
agent must take its place in a larger hexagonally shaped
structure. The task has been accomplished previously [7]
by Spears and colleagues. However, to date, no method
has yet emerged that allows the global task to be accom-
plised without explicit global information.

This section begins with an investigation of the way in
which microscopic hexagonal lattices may be built up
from an originally randomly organized group of agents.
These microscopic hexagonal lattices must then be com-
bined in such a way as to produce a macroscopic hexago-
nal lattice. We assume that the agents are capable of lo-
cal sensing and carrying out moderate computation. The
theory behind the system demonstrates that the final so-
lution is the desired macro-hexagonal state.

Application of this theory in real, physical systems should
be direct. In order to make that happen, the agents
should be restricted to actions, computations, etc. that
could realistically occur on a mobile platform and with
real local sensors. We restrict ourselves to sensors and
actions that are realistic in terms of the actuators and
sensors commonly available or likely to be available in
the near future. Where reasonable, if precedents exist
in the literature, we will omit the details of some group
behaviors that we can reasonably assume can be done in
tandem with the actions we are developing here.

In accordance with the middle-meeting methodology de-
scribed in [5], we begin by first creating a global property
using local agent-level properties. Once this has been
built so that the desired global structure occurs when a
specific unique value of the global property occurs, we
continue by generating local behaviors that will yield the
desired global property.

2.1 Micro-theory

The first step is to list the various sensory capabilities
of the agents. We assume that each agent is capable of
measuring the distance from itself to any of its neighbors.
That is, each agent i has access to a measurement we label
as dij which indicates the distance between agents i and
j. Note that each dij can be calculated as

dij = |−→xij | =

√
(xi − xj)

2
+ (yi − yj)

2
. (1)

It is interesting to note that in the following derivations,
no other individual measurement is required to generate
the micro and macro behaviors of the swarm. As a re-
sult, the agents need have no other sensory capabilities.
We also note that the distances are two-dimensional dis-
tances, indicating the tacit assumption that our agents
are constrained to a two-dimensional surface. Such a lim-
itation might be reasonable for a swarm constrained to
act on the ground, or airborne swarms limited to a par-
ticular altitude by design or behavior.

In order to generate the hexagon, agents that are too
close to one another must move away from each other,
and those that are far away from one another must move
closer to one another. As with the original artificial
physics studies, we adopt the convention that the actions
of the agents will be calculated and then implemented
as though external forces are at work on the agents. I.e.,
we assume that each agent senses the distances to each
of the other agents within sensory range. Then, using
this data, the agent calculates what the next move will
be. The implementation is carried out by activating the
agent’s actuators, which simulate the effect one might
expect if the motion came from a real physical system.

Using this micro-measurement, we now proceed to con-
struct a global property. The global property is a prop-
erty which has a well-defined and unique value when the
desired global structure is achieved. Moreover, that value
is not capable of being achieved in any other configura-
tion. Generating that value, then, is a matter of under-
taking behaviors that produce this value. The need for
local properties derives from the requirement that the
value be attainable using behaviors that are achievable
by the individual agents.

We begin by defining a function known as the force func-

tion, G. This function determines the virtual force cased
by the proximity of two agents. Too close, and the
force will be strongly repulsive; too far, and it will be
attractive[9]. G is defined as

G (t) =

{
−G1 t > D0

G2 t < D0

}
. (2)

When many agents are involved, the effEct of all the
agents is cumulative. A single agent behaves as though
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it is reacting to the net force

−→
Fj =

N∑
i�=j

( −→xi −−→xj

|−→xi −−→xj |

)
(G (|−→xi −−→xj |)) . (3)

The force equation defines the way in which the individ-
ual agent will behave at the microscopic level. However,
we don’t yet know whether or not this will lead to the
desired global state – that of a single macroscopic hexag-
onal structure. We use force to derive the global property
energy, as

E =
∑N

i�=j

∫ (D0−Dij)

0

−→
Fij (−→x ) · d−→x

=
∑N

i�=j (G (|−→xi −−→xj |)) (D0 − Dij)
. (4)

Energy measures the total energy required to move all in-
dividuals from their current positions to their equilibrium
positions. It decreases as the system gets more perfect
(stable) and increases as the system gets less perfect (un-
stable). Our goal is to achieve the smallest value of E
possible, because E at its lowest value produces the most
stable hexagonal lattice possible. We defer the proof of
this fact for a later section of the paper.

In the following discussions, we approximate the force
function as

G (t) =

lim
k→∞

{
G1 + (G2 − G1)

(
arctan [k (t − D0)] +

π

2

)}
. (5)

Note that when k → ∞, the function has the same be-
havior as that given above in (2).

In order for the system, which is likely to be in a ran-
dom initial state, to continually evolve to a minimal en-
ergy, the time-derivative of the energy must be negative.
Therefore, we begin by computing the time derivative
and work backward to the condition that each member
of the swarm must adhere to to make the global task
occur. Accordingly,

dE

dt
=

N∑
i�=j

(
−G (|−→xi −−→xj |)

(
�xd�x

dt
+ �y d�y

dt

Dij

))

+
N∑

i�=j

(

⎛
⎝ lim

k → ∞

⎛
⎝ 2k (D0 − Dij) (G2 − G1)

π
(
1 + k2 (|−→xi −−→xj | − D0)

2
)
⎞
⎠
⎞
⎠ < 0.

(6)
We can ignore the second term, as it is always zero except
when |−→xi −−→xj | = D0. This corresponds to a physical sit-
uation that will not generally occur and cannot be stable.
As a result, we focus exclusively on the first term.

We have noted that the energy is positive definite and
that the minimal energy is the desired state. Thus, we
are searching for all cases in which the first term of (6)
is negative. This indicates that the system energy is de-
creasing which is what we want it to do.

There are two cases leading to a negative value for the
first term. First, if Dij < D0, G will be negative if

ΔxΔx
dt

+ Δy Δy
dt

> 0. This will happen if the two agents
are moving further away from one another. As a result,
two agents that are too close to one another must move
away from one another. On the other hand, if Dij > D0

then ΔxΔx
dt

+ Δy Δy
dt

< 0. This means that agents that
are too far apart must start coming closer to one an-
other. Combining these two behaviors necessarily pro-
duces a behavior that makes the energy in the system
non-increasing.

Despite the fact that the energy is non-decreasing, it is
still possible for the agents to be in a stable, low energy
lattice that is not a perfect hexagon. This is because the
energy of the local hexagon is very low and the agents are
very stable in their current positions. Although the global
energy is smallest when perfect hexagon is achieved, the
stable lattices do not change because the energy required
to move the misplaced agents out of their equilibrium
positions is greater than the immediate difference in the
global energy. In order to achieve the perfect hexagon,
the lattice needs to be shaken to give the lattice the edge
to move the misplaced agents out of their equilibrium.
Once those misplaced agents are out of their equilibrium
positions, they have to go back to a stable position. They
can either go back to the original equilibrium position or
they can find a new equilibrium position that is more
stable than the original equilibrium position.

This analysis has begun with the creation of a property
called energy. This property has the requirement that
the specific numerical value we are trying to achieve may
only be attained with a unique system configuration. The
fact that the system is non-degenerate in this sense means
that once the specific value is achieved, the desired system
configuration will be achieved.

The first step in generating behaviors has also been
achieved in this subsection. In order to generate a hexag-
onal lattice, we must first generate hexagonal sublat-
tices. This can be accomplished by placing each individ-
ual agent at a specific distance from any of its neighbors.
We’ve generated a method of achieving this utilizing an
analysis of our energy property. This has generated a
very general method which may be applied in a variety
of ways to individual agents.

The next two subsections will deal with the question of
the minimal energy configuration of the larger lattice and
with the methods of moving the entire lattice into an
energy configuration which is closer to this global energy
configuration.

2.2 Lowest Energy Configuration

In previous sections, we have assumed that the lowest
energy configuration of the lattice was a perfect hexagon.
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We prove this fact using a simple geometrical argument.

In the lattice, the minimum distances between each pair
will always be greater than the equilibrium distance due
to the high repulsion coefficient:

G (t) =

{
−G t > D0

300G t < D0

}
. (7)

Such high repulsion coefficient of G makes it energetically
impossible for any agent to get closer than the equilibrium
distance other than transiently. Distance error, defined
as |(D0 − Dij)|, is zero only when the pair are at their
equilibrium distance. As a result, the only instances that
the distance error from a pair of agents is nonzero are
when the pair are further away from one another than
the equilibrium distance. Energy of a pair is given by

E = (G (xi − xj)) (D0 − Dij) , (8)

Accordingly, the energy is always equal to the sum of
all the energy that comes from two agents that are more
than the equilibrium distance apart:

Eexcess =
N∑

i�=j

GAttraction (D0 − Dij) (9)

The main factors in calculating energy then, are the num-
ber of pairs that are more than the equilibrium distance
apart and the magnitude of the distance. In hexago-
nal lattices, all six sides are completely symmetric. This
symmetry minimizes the number of pairs of agents whose
distances apart are greater than the equilibrium distance.
Moreover, any agent moved out of this configuration will
increase the sum of the distances between it and all other
agents, thereby increasing the overall energy. Therefore,
the lowest energy configuration will be the completely
symmetric, perfect hexagonal lattice, as any other con-
figuration will have a larger total distance error.

We have proved the following theorem.

Theorem 2.1 The macroscopic state of the lattice of

agents which minimizes the energy is the large hexago-

nal state.

2.3 Transitioning between minima

What we’ve demonstrated in the preceding subsections
is that we can create a property and use this property
to motivate a class of behaviors, all of which are guar-
anteed to cause the desired global property. Moreover,
we’ve demonstrated that this system has a unique mini-
mal value to this property, and that minimal value occurs
at the system configuration we’re after in this system. As
a result, minimizing the property generates a system with
the desired configuration.

Figure 2.1: This figure illustrates a single
translation of the agents in our system dur-
ing which an outlier inserts itself between two
agents, forcing two other agents to move left,
and reducing the overall system energy. At the
same time, four of the agents at the bottom right
of the group translate down in an energy-neutral
shift.

Now, we turn to the difficult task of correcting the initial
configuration. As depicted in Figure 2.1, the actual con-
figuration of the lattice of agents can be different from
the desired configuration when the energy is minimized.

We implemented this theory to move the misplaced
agents out of their temporary equilibrium positions and
into their true equilibrium positions. The lattice as a
whole moves in a hexagonal course, providing shocks at
each turn. This gives the agents enough difference in en-
ergy to move out and possibly find a equilibrium position
with even lower energy. This idea finds its roots in simu-
lated annealing, which finds the incorrect element of the
set and changes it, instead of replacing the whole set.
With decreasing energy function and implemented move-
ments, the lattice will always achieve a perfect hexagon.

3 Simulation

In this section, we apply two swarm control methods de-
rived from our understanding of the problem outlined in
section 2 to a virtual swarm using a two dimensional sim-
ulation. We begin by describing the simulation, focusing
on the elements of the simulation which should make the
control approaches easily useful to real robot platforms.
Next we describe, in turn, two different solutions to the
control problem given in section 2.

3.1 Description of the simulation

Our simulation is based on the artificial physics simula-
tions of Spears et al. [8]. Briefly, that simulation focused
on generating agent control using analogs of radial physi-
cal laws such as the law of gravity or electrostatics. Indi-
vidual agents are represented as points and are capable of
moving within the two-dimensional plane that makes up
their environment. Each agent is assumed to have sen-
sors capable of determining the distances and directions
to its nearest neighbors. These distances and directions
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are then used to generate motion vectors. By utilizing a
force function similar to that given in section 2, Spears
and his collegues were able to have the individual agents
arrange themselves in a locally hexagonal lattice.

Our simulation is essentially identical to theirs. All
agents are represented as points and are capable of move-
ment within a two-dimensional plane, which is their envi-
ronment. Agents are assumed to be equipped with direc-
tional sensors which provide them with range and bearing
to other agents. Each agent is assumed to have actuators
which allow them to move, stop on a dime, and turn in
place; inertia is not considered to be much of a consider-
ation.

Sensors Processors

Actuators

Figure 3.1: This figure illustrates the data
pathway of the agents in our system. All agents
are reactive, and so data enters through the sen-
sors, is processed directly in the processors, and
is translated to actuator commands. No mem-
ory is utilized in the control of these agents.

Figure 3.1 illustrates the data pathway of the agents. In
our system, all agents are reactive; memory is not re-
quired or utilized in control algorithms. Thus, all sensory
data is directly processed and translated to actuator com-
mands in the same way that the original artificial physics
simulations were. As a result, reaction times can be ex-
ceedingly high. However, no special hardware is assumed
here, and so moderate timescales easily implemented on
real agents may be used for real robotic implementations.

As indicated in section 2, the basic behavior is nearly
identical to the original behavior. This quickly changes
a randomly organized group of agents to a relatively well
ordered group of agents whose energy value is signifi-
cantly lower than the original energy level. However, it
alone is incapable of generating a perfect hexagonal lat-
tice, and so the perturbations described in section 2 must
be applied. The basic behavior and energy minimization
is illustrated in Figure 3.2.
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Figure 3.2: Basic artificial physics behavior
produces a semi-ordered lattice from a random
lattice quickly. As expected, the energy de-
creases quickly. However, when the energy lev-
els off, the system is caught in a higher energy
state than the absolute minimum state.

We already noted that the basic behavior could be aug-
mented by adding behaviors that encouraged energy-
requiring transitions between minimal energy states. We
shall see two different methods of achieving this in the
next two subsections. Note, that in both cases, the re-
quirement of energy increase is a guiding factor.

3.2 Behavioral addendum 1

It is clear from the form of the G function that increas-
ing the energy of the system entails utilizing a behavior
that either moves the agents toward one another or moves
them away from one another. As a result, we now look at
methods of moving agents in such a way that they will in-
crease the system’s energy, but also somehow accomplish
the translations discussed in section 2.

An important assumption is that the agents have the ca-
pability to synchronize their actions. Others have shown
[2] that relatively simple behaviors may be utilized to
obtain decentralized synchronization of agents. We as-
sume that our agents have this added ability for the first
solution.
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Figure 3.3: Moving a group of agents left, as
shown, creates a ”drag” on the outer agents who
have no surrounding agents to ”push” them for-
ward if they are left behind during an imper-
fectly synchronized turn. As a result, the outer
agents’ energy levels may be increased enough
to shift.

We also note, as depicted in Figure 3.3, that when agents
move in tandem and nearly perfect synchrony, the ini-
tial movement tends to create temporary movements of
outer agents. This increases the outer agents’ energies
sufficiently to create a shift in agents as the entire group
moves in a single direction.

As we’ve noted, it is possible to generate a hexagon
through energy reducing shifts occurring in the group
of agents, bringing agents to more perfect positions and
lowering the overall energy. However, in order to do this,
one must move the group in such a way that the shifts
happen along the outer edges of the large hexagon that
is to be formed. Thus, the group movements must be
aligned with the edges of the large hexagon. As a re-
sult, the group of agents must execute movements that
are hexagonal, and this will both maintain the interior
of the group’s organization and effect movements of the
outlying agents, since these shifts require a small amount
of energy.

Figure 3.4: This set of images illustrates the
”drifting” behavior which accomplishes the en-
ergy increase of the group of agents and the
shifting of the outermost agents. As can be seen,
this results, after several cycles, if necessary, in
the completion of the hexagonal structure.

We implement this behavior, as illustrated in Figure 3.4.
As can be seen, the motions of the group move the group
over a rather wide area. During these motions, the out-
ermost agents shift, while the innermost agents stay in
formation. At the completion of sometimes several cy-
cles, the agents take on a very stable formation which
does not support further shifts. This formation is the
hexagonal formation, and is the only one which does not
allow shifts.

It is interesting to examine the graph of energy versus
time as the system settles into its lowest energy state.
As the system shifts into a new state, though momentary
variation continues, the base energy tends to step down
until it reaches a minimal value. This is illustrated in
Figure 3.5.
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Figure 3.5: The energy of a configuration steps
down as the configuration becomes more per-
fect. The energy configuration completes this
step-down pattern when the desired state is
reached.

The main drawback to this method is that the entire
group must have an added layer of complexity as it ex-
ecutes the drifting behavior in tandem. Moreover, this
behavior requires space, and the group may not be de-
ployed until the behavior is complete. We have not ex-
plicitly built a behavior into the system which allows the
agents to detect when they are in a large hexagon, as this
added ability is beyond the scope of this study.

The next subsection examines a behavior that does not
require the space of this method.

3.3 Behavioral addendum 2

As we saw in the section 2.2, it is possible to create group
behaviors which accomplish the shifting of the agents
using behaviors that increase the energy of the system.
However, the first method had a few drawbacks that are
difficult to envision allowing for deployable groups. In
this section, we examine a more direct method of increas-
ing the energy of a system in such a way that it goes into
a shifting action but which does not require synchrony
among the agents or motions of the agents.

As a result, we now look at a second method of accom-
plishing the same thing which requires neither the coor-
dination nor the space required by the first method. We
start once again by considering what we can do to in-
crease the energy of the system. As before, we realize
that the energy can be increased by an individual agent
by moving the agent out of equilibrium. A movement
away from another agent will increase the energy much
less than a movement towards the group. We therefore
consider movements of agents towards one another, care-
fully attenuated so as to produce small jumps required
for the sliding action, but not for the rearrangement of
the entire array.

The agents to which this behavior will be added must also
be carefully controlled, as agents in the interior will gen-
erate larger energy changes with small movements than

those on the exterior. Therefore the behavior requires
the agents to consider their surroundings to qualify them
for the random triggering. Thus, the behavior’s trigger
is limited to those agents whose neighbors fall below 3,
which happens only to agents in external positions in the
lattice, or to those at corners as a result of the agents’
jostling around.

Figure 3.6: The approach of a single agent can
cause a set of other agents to slide into another
position, with little change in the overall energy
of the group.

Figure 3.6 illustrates this behavior of an agent outside of
a group of other agents. The exterior agent momentarily
approaches the group. The approach increases the energy
of the lattice, and the energy reduction behavior moves
the exterior agents in a translation motion. These actions
can be initiated by single agents even though the entire
group is in motion or static.
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Figure 3.7: This set of images illustrates the
”closing” behavior. The behavior initiates a
number of different sliding behaviors that even-
tually causes the generation of a hexagonal
structure. As before, the energy inches down
to a minimum under the action of the individ-
ual agent perturbations.

Figure 3.7 illustrates the behavior of a group of agents
working under this behavior. The group begins with a
state very far from the desired hexagonal state. How-
ever, as the translation movements continue, the system
falls into a lower energy state, which eventually is that of
the hexagonal organization. In all simulated runs1, the
system will settle into the hexagonal state eventually.

4 Summary and Conclusion

In this paper, we examined the swarm control problem
in the context of the hexagonal lattice construction as a
result of the basic artificial physics system. The original
artificial physics system was capable of producing imper-
fect hexagonal lattices with little or no symmetry. Our
purpose, then, was to enhance this basic behavior so as
to produce perfect symmetric hexagonal lattices.

Our method consisted of generating a property which is
a measurable constructed from other properties (or mea-
surables) that the agents could realistically be expected
to be able to measure. In our case, the only thing we
needed was the distance and bearing to construct a prop-
erty that had the proper requirements:

1The simulation was run more than 10000 times.

1. The property was constructed from existing proper-
ties that the individual agents could measure.

2. The property has a single well-defined value at the
desired system configuration that cannot be obtained
in any other way.

Using these requirements, we were able to generate simple
behaviors that moved the system from any initial state
to a state more like the desired state. Not only were we
able to generate one method, but we were able to generate
two methods, which were modified from the basic method
that itself was identical to Spears’ original algorithm.

The power of this method lies in the ability of the en-
gineer to create one or more properties whose numerical
values are unique to the state that the system is in. The
engineer, then, needs only chart a path through the al-
lowed phase space of the system to the final desired value,
hopefully utilizing behaviors which individual agents can
accomplish on their own, with or without guidance from
a central controller. The method can be applied to sin-
gle properties or to vectors of properties, provided that
the desired vector is well-defined in the same way a single
property might be. We believe that the method is so pow-
erful, in fact, that we now coin a term for this method:
The Hamiltonian Method of Swarm Design.

In the future, we intend to apply this method to swarms
of greater complexity than this one. We expect that
this method of not only swarm design, but complex sys-
tem design, may be applied to a large number of dif-
ferent systems including, but not limited to, systems of
autonomous mechanical agents, computing systems, eco-
nomic systems, and social systems. While some of this
research is currently under way, we expect that the ex-
ploration of all fields to which this methodology might be
applied will reveal an extraordinarily vast scope. More-
over, we expect that an extension to this work will be
able to solve the problem originally posed ten years ago
which led us to these results: ”Is it possible that the
global specification of a problem is enough to yield the
basic requirements of the solution including all actuators,
sensors, processing, and other capabilities of agents in the
solution?” We believe the answer is yes.

References

[1] Hettiarachchi S., and W. Spears. DAEDALUS for

Agents with Obstructed Perception. Proceedings of
the 2006 IEEE Mountain Workshop on Adap-
tive and Learning Systems.

[2] Holland, O, Melhuish, C., Hoddell, S. Chorusing

and controlled clustering for minimal mobile agents.
ECAL97, Brighton, 1997.

[3] Jones, C., Mataric, M. Adaptive division of labor in

large-scale multi-robot systems. In Proceedings of

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



the IEEE International Conference on Intelli-
gent Robots and Systems (IROS’03), Las Vegas,
NV, pages 1969-1974, Oct 2003.

[4] Jones, C., Mataric, M.From local to global behavior

in intelligent self-assembly. In Proceedings of the
IEEE International Conference on Robotics and
Automation (ICRA’03), Taipei, Taiwan, Sep
2003, pages 721-726, 2003.

[5] Kazadi, S. On the Development of a Swarm Engineer-

ing Methodology. Proceedings of IEEE Conference
on Systems, Man, and Cybernetics, Waikoloa,
Hawaii, USA, pp.1423-1428, October 2005.

[6] Reynolds, Craig. Boids Flocks, Herds, and

Schools: a Distributed Behavioral Model,
¡http://www.red3d.com/cwr/boids/¿ Dec.
2006. (Accessed 08 Jan. 2007).

[7] Diana F., William M. Spears, Oleg Sokolsky, and
Insup Lee (1999). Distributed Spatial Control, Global

Monitoring and Steering of Mobile Physical Agents.
IEEE International Conference on Informa-
tion,Intelligence, and Systems, November, 1999.

[8] Spears, William M. and Diana F. Gordon (1999).
Using Artificial Physics to Control Agents.IEEE In-
ternational Conference on Information, Intelli-
gence, and Systems, November, 1999.

[9] Spears, W., D. Spears, J. Hamann, and R. Heil. Dis-

tributed, Physics-Based Control of Swarms of Vehicles.
Autonomous Robots, Volume 17(2-3), August 2004.

[10] Wiegand, P., M. Potter, D. Sofge, and W. Spears.
A Generalized Graph-Based Method for Engineering

Swarm Solutions to Multiagent Problems. To appear
in PPSN 2006.

[11] Winfield, A., Sa, J., Gago, M.C., Dixon, C., Fisher,
M. On Formal Specification of Emergent Behaviours in

Swarm Robotics Systems. Int. J. Advanced Robotic
Systems, 2(4),363-370, 2005

[12] Wolfram, S. A New Kind of Science. Champagne,
Il: Wolfram Media, Inc., May 2002.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007


