

Abstract—Increasing the performance and flexibility of
automated manufacturing systems is a key success factor for
today’s production companies. Flexible manufacturing
systems (FMS) have proven to be particularly suitable in this
regard since they support small lot sizes and high numbers of
variants at the same time. Among the most important problems
of FMS are the huge expenditure of time and the high costs for
engineering its control software. Engineering in this context
refers to all aspects from planning the specific production
process, assigning control programs to machines,
implementing software modules, to testing the whole
configuration. In this paper, we describe a new approach to
verify a distributed agent-oriented shop floor control system
systematically on the basis of a virtual process qualification.

Index Terms— Distributed control systems, intelligent fault
detection and identification, software agents for intelligent control
systems, flexible manufacturing systems

I. INTRODUCTION
The international competitive environment results in an

essential change in production engineering. Small lot sizes and
high numbers of variants in combination with shorter product
life cycles demand - particularly in the area of discrete
manufacturing - flexible automation solutions [1]. Thereby
flexible manufacturing systems (FMS) or flexible
manufacturing cells (FMC) are being applied preferentially.
FMS are fully- or semi-automated production systems,
consisting of one or more machine tools, an automated
material- and storage system and one or more loading- and
unloading stations. The typical configuration of such a system
conforms to a by-pass or network structure.

At the center of a FMS a storage system is located and single
machine tools are connected to its longitudinal sides where they
can be fed automatically, see Fig. 1. This kind of flexible
production system makes an economic manufacturing process

Manuscript received July 21, 2007. The work has been supported by the
German Federal Ministry of Education and Research (BMBF) within the
research project “Ramp-Up/2”.

 Prof. Dr.-Ing. Christian Brecher, is with the Laboratory for Machine Tools
and Production Engineering (WZL), RWTH Aachen University, 52074
Aachen, Germany, (e-mail: c.brecher@wzl.rwth-aachen.de).

Dipl.-Ing. Tilman Buchner, is with the Laboratory for Machine Tools and
Production Engineering (WZL), RWTH Aachen University, 52074 Aachen,
Germany, (e-mail: t.buchner@wzl.rwth-aachen.de).

Dipl.-Ing. Andreas Karlberger, is with the Laboratory for Machine Tools
and Production Engineering (WZL), RWTH Aachen University, 52074
Aachen, Germany, (e-mail: a.karlberger@wzl.rwth-aachen.de).

Storage system
with rack feeder

Handling over
stations

Stacker crane

Turning cells

Manual
clamping station

with operation terminal

Washing machine

Machining center

Storage system
with stacker crane

Handling over
stations

Gantry robot

Turning cells

Manual
clamping station

with operation terminal

Washing machine

Machining center

Storage system
with rack feeder

Handling over
stations

Stacker crane

Turning cells

Manual
clamping station

with operation terminal

Washing machine

Machining center

Storage system
with stacker crane

Handling over
stations

Gantry robot

Turning cells

Manual
clamping station

with operation terminal

Washing machine

Machining center
Fig. 1. Flexible manufacturing system for chipping [source: FASTEMS]

under dynamic market conditions possible [4]. Basically FMS
can be classified into different application domains such as
milling and turning, sheet metal processing, and sawing of slug
material [2].

The more production has to respond to varying batch sizes or
product variants, requirements on the sequence control of the
system increases. The sequence control comprises control
operations following a mandatory, iterative progression
whereby the routing from one operation to the next results in
dependence on a precondition (IF-THEN) [3]. As a running
example, we consider the production of a “Connect 4 Game”.
The production process includes sawing, milling and assembly
operations. For that, the sawing machine KASTO and the
milling machine MAHO need to cooperate. In addition, the
robotic palletizer ROB_GANTRY and the transportation
system AGV are responsible for the material flow. Fig. 2
describes the process planning for the sawing machine KASTO
in detail. As the figures outlines, the KASTO will request the
transportation system AGV to deliver a pallet to store sawed
raw material as well as the robot palletizer to be prepared for
picking the sawed workpieces. Since these are two independent
operations, they can be executed simultaneously.

Fig. 2. Sequence control exemplified by a sawing cell

Systematic Verification of
Flexible Manufacturing Control Software

Christian Brecher, Tilman Buchner, Andreas Karlberger

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

SCADA-
System,
User
Interface

Control-Agent
JMS: Java Messaging Service
JNDI: Java Naming and

Directory Service

Queue Queue Queue
JMS Server

ERP- /
MES-
System

Data
base

Driver

cosmos 4 Control-
interface
Manufacturer specific
Control Interface

Driver

RC

Driver

NC

Driver

PLC

Java

C++

JN
D

I S
er

ve
r

object base

Driver

PLC

Maximum stage of extension
with ERP-Connection, Database-Server, SCADA-System, Messaging Platform

Minimum
solution

CORBA

Fig. 3. System architecture of the cosmos 4 platform

As soon as the KASTO receives the commitments from the
AGV and the robotic palletizer, it will start the sawing process.
 This example clarifies that to manufacture a complex
workpiece consisting of several successive process operations,
which are coupled by clamping, handling and transportation
operations, the control- and coordination effort increases
continuously.
 The function of the FMS control software is to guide this
semi- or full automated production process. To realize FMS
control software there exists central as well as locally control
architectures. The limited availability of productions system in
the 80s using central control architectures leaded to the
development of modular, locally architectures. Next to this
evolution, there is an obvious trend to vertical integration of
different information systems in production industry by the
keyword MES (manufacturing execution system). In a nutshell
state-of-the-art FMS control software requires locally, generic,
component-based architectures consisting of single software
elements operating autonomously.

II. FMS CONTROL SOFTWARE
To overcome this challenge, a new automation solution, the

cosmos 4 platform, has been developed at RWTH Aachen
University’s Laboratory for Machine Tools and Production
Engineering (WZL) [4]. It is a PC-based, distributed,
agent-oriented approach to universal and open control
components for different types of FMS. The cosmos 4 platform
addresses the heterogeneity of FMS by two major features.

Firstly, it includes an independent reference model that
holistically fits the static structure of FMS and its components
as well as the dynamic behavior of FMS operations. Secondly,
it provides a new advanced concept for increased “program-
mability” of control components (agents) reflecting that the
control logic is at the core of the FMS control system’s
software. This multi-agent system comprises agents with
programmable control logic which will be run through cyclic as
well as event-driven and with open interfaces for the
integration of functional units. Furthermore, a flexible
message-oriented communication platform is provided, as well
as a service-oriented interface to connect different device

controllers, see Fig. 3. Thereby, agents are able to coordinate
processes in FMS stand-alone. An agent can be applied to
control a single machine tool up to a complete FMS cell.
During the job processing the agents can communicate with
each other for the purpose of e.g. material or handling supply.
These features ease the adaptation to changing requirements.
But due to its vast applicability and scalability, the profitability
of cosmos 4 depends predominantly on its engineering costs.

III. VIRTUAL ENGINEERING
Today, the adaptation and reconfiguration of FMS control

software to a specific production system or customer
requirements is associated with programming work. The
interventions and changes in the existing software modules as
well as in the data model of the control software lead to huge
expenditures of time. In addition, a largely manual
implementation results in high error quota. Depending on the
scope of modifications the effort of testing and placing the
FMS control software into operation increases.

The consequence is that costs in the double-digit percentage
range of the investment costs of an automated manufacturing
system arise [4]. This problem traces back to the lack of
concept and proper tool support for engineering PC-based FMS
control software. Engineering here includes all aspects from
planning the concrete production process, to assigning
machines to control programs, to implementing new software
modules, and to testing the operability and capability of the
whole configuration.

Therefore, a new concept called “Systematic Engineering for
Flexible Manufacturing Control Software” has been developed
[8]. The motivation to develop a comprehensive engineering
concept is based, besides the obvious target to reduce the
engineering cost, on the general ambition to shorten the
ramp-up time of production systems and their control software
significantly. Systematic engineering can be understood as a
process, which enables the adaptation (reconfiguration) as well
as the optimization of an automated production system over its
entire life cycle. The general process follows the well-known
waterfall software development model and is subdivided into
eight levels, see Fig. 4. Each single step will be run through
partly concurrently and partly iteratively and not necessarily in
a linear sequence.

Iterative proceeding

documentation

architecture planning

process planning

data modeling and
data collection

definition of machine interfaces

definition of control logic

definition and implementation
of functional modules

virtual process
qualification

time [t] to start -up

detailing

verificationplanning & realization

create test case

execute test

identify error

automatic retry

system test
=

(module-test)

integration test

+
plant test

…

Iterative proceeding

documentation

architecture planning

process planning

data modeling and
data collection

definition of machine interfaces

definition of control logic

definition and implementation
of functional modules

virtual process
qualification

time [t] to start -up

detailing

verificationplanning & realization

create test case

execute test

identify error

automatic retry

system test
=

(module-test)

integration test

+
plant test

…

Fig. 4. Approach to systematic engineering

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

and operationMode =
STANDARD

and connectionStatus =
CONNECTED

and jobStatus =
JOB_LOADED

and sawStatus =
IDLE

and palStatus=
NO_PALLET

} then {
request pallet;

}

request pick and place

request robotic palletizer

start sawing

wait for feedback

prepare material

load job

choose job

request pallet

and operationMode =
STANDARD

and connectionStatus =
CONNECTED

and jobStatus =
JOB_LOADED

and sawStatus =
IDLE

and palStatus=
NO_PALLET

} then {
request pallet;

}

request pick and place

request robotic palletizer

start sawing

wait for feedback

prepare material

load job

choose job

request pallet

time

choose job
load job
request pallet
request robotic palletiser
prepare material
start sawing
wait for feedback
request pick and place

KASTO

current state at t
1
:

- agentStatus = ON
- operationMode = STANDARD
- connectionStatus = CONNECTED
- inboxStatus = NO_MSG
- jobStatus = JOB_LOADED
- sawStatus = IDLE
- transferStationStatus = EMPTY
- robStatus = NO_ROB
- palStatus = PALLET_REQUESTED

(a) Gantt chart for KASTO (b) activity diagram for KASTO

request pick and place

request robotic palletiser

time

choose job
load job
request pallet
request robotic palletiser
prepare material
start sawing
wait for feedback
request pick and place

KASTO

current state at t
1
:

- agentStatus = ON
- operationMode = STANDARD
- connectionStatus = CONNECTED
- inboxStatus = NO_MSG
- jobStatus = JOB_LOADED
- sawStatus = IDLE
- transferStationStatus = EMPTY
- robStatus = NO_ROB
- palStatus = PALLET_REQUESTED

(a) Gantt chart for KASTO (b) activity diagram for KASTO

request pick and place

request robotic palletiser=
IDLE

and palStatus=
NO_PALLET

} then {
request pallet;

}

time

choose job
load job
request pallet
request robotic palletiser
prepare material
start sawing
wait for feedback
request pick and place

KASTO

current state at t
1
:

- agentStatus = ON
- operationMode = STANDARD
- connectionStatus = CONNECTED
- inboxStatus = NO_MSG
- jobStatus = JOB_LOADED
- sawStatus = IDLE
- transferStationStatus = EMPTY
- robStatus = NO_ROB
- palStatus = PALLET_REQUESTED

(a) Gantt chart for KASTO (b) activity diagram for KASTO

=
IDLE

and palStatus=
NO_PALLET

} then {
request pallet;

}

time

choose job
load job
request pallet
request robotic palletiser
prepare material
start sawing
wait for feedback
request pick and place

KASTO

current state at t
1
:

- agentStatus = ON
- operationMode = STANDARD
- connectionStatus = CONNECTED
- inboxStatus = NO_MSG
- jobStatus = JOB_LOADED
- sawStatus = IDLE
- transferStationStatus = EMPTY
- robStatus = NO_ROB
- palStatus = PALLET_REQUESTED

(a) Gantt chart for KASTO (b) activity diagram for KASTO

request pick and place

request robotic palletiser

start sawing

wait for feedback

prepare material

load job

choose job

request pallet

if (agentStatus =
ON

if (agentStatus =
ON

and operationMode =
STANDARD

and connectionStatus =
CONNECTED

and jobStatus =
JOB_LOADED

and sawStatus =
IDLE

and palStatus=
NO_PALLET

} then {
request pallet;

}

if (agentStatus =
ON

if (agentStatus =
ON

and operationMode =
STANDARD

and connectionStatus =
CONNECTED

and jobStatus =
JOB_LOADED

and sawStatus =
IDLE

and palStatus=
NO_PALLET

} then {
request pallet;

}

Fig. 5. Gantt chart and activity diagram example for KASTO

 In principle, the engineering concept can be structured into
two phases, the planning and realization and the verification
phase. Firstly the planning and realization phase will be
outlined shortly; subsequently to this the verification phase will
be presented in detail.

IV. PLANNING AND REALIZATION PHASE
 The output of the planning and realization phase can be
divided into two categories: the engineered object- and the
engineered behavior model. The static object model comprises
machine-, workpiece holder-, workpiece-, tool-, manu-
facturing-, material- flow- as well as personal-related objects
and is used to describe the structure of a FMS [6]. On the other
hand, the behavior model defines the sequence (control) of the
FMS. Basic principle of the engineered “objects” and
“behavior” is a model driven engineering approach (MDA).
 Fundamental idea of this approach is to subdivide FMS
control software into three parts: a generic part, keeping
identical, a schematic part being different for each realization
but of the same systematic, and one specific part being
individual and not generalizable. The generic part represents
the cosmos 4 platform itself, the object-oriented reference
model as well as the programmable control components. The
schematic part comprises repeating code segments e.g. the
control logic of an agent which always has the same
fundamental design. In contrast to this, individual code
segments like capability modules or machine drivers

FunctionModuleParameter
<<enumeration>>

BooleanLogicalOperator

AND
OR

<<enumeration>>
ActionExecState

JUST_FINISHED
RUNNING

FINISHED

READY

<<enumeration>>
TimeUnit

UNIT_100MS

UNIT_10S
UNIT_1M

UNIT_1S

CompoundCondition

ActivityInstanceEdge

FunctionModule

AsynchronousEdge

FunctionModuleCall

ValueSpecification

PseudoCondition

SimpleCondition

SequenceEdge

ParameterValue

ActivityInstance

ActionInstance

StateCondition

FlowFinalNode

DecisionNode

StateVariable

NotCondition

Condition

ControlNode

InitialNode

ActivityEdge

MergeNode ForkNode

ActivityNode

Element

Element1

FinalNode

Activity

Action

Diagram

Parameter

1

1

1

1

1

1

1

1

*1

1

1

1

1

*

1

*

1

*

1

*

1

*

1

*

1

1

1

1*

1**

1

*

1

*

1

1

1

*

1

*

1

1

**

1

*

1

1

1

*

1

*

1

*1

*1

Fig. 6. Metamodel for Gantt charts and activity diagrams

Fig. 7. cosmos 4e: overview of Gantt chart and condition editor

have to be implemented individually concerning a
custom-designed production system.
 The idea of the MDA approach is to derive a model out of the
schematic part of the software. Instead of manual implementing
the source code, the user is able to refine and substantiate e.g.
the behavior of a control component in a model. Through out
the model information the specific control logic can be
automatically generated and processed by the corresponding
agent [5].
 In the following the MDA approach will be illustrated on the
example of a behavioral model. The key idea of the concept is
as well applicable to the object model but out of scope of this
paper. The behavior model is used to describe the sequence
control of a certain control component according to a state
machine. For this purpose, two different views, a Gantt chart,
representing the sequence planning, and an activity diagram, to
specify the transition conditions, has been chosen, see Fig. 5.
Precondition to mapping both views in one model is a common
metamodel. Therefore, a metamodel which is based on an
extended UML activity diagram to fit the special requirements
of the cosmos 4 control software has been developed and
realized on the basis of the Eclipse Modelling Framework
(EMF), see Fig. 6.
 Integrated into a prototype, called cosmos 4e (e for
Engineering), which is created as an Eclipse plug-in, the user is
able to create an agent, to specify its behavior control as well as
to parameterize its functional modules [5]. Fig. 7 illustrates the
general procedure how to model the dynamic behavior of a
control component on the example of the sawing machine
KASTO in detail. Firstly, the user has to arrange the function
blocks e.g. “SELECT_JOB”, “REQUEST _PALLET” etc. in a
chronological sequence over time, to specify their input
parameters as well as their execution type ((a-) synchronous),
see Fig. 5 (a). Secondly, he has to bind a corresponding
capability module to the function block and to define a
transition condition which ensures that the execution is limited
to a specific system state of the agent, see Fig. 5 (b). Hereto, a
library consisting of predefined capability modules is available.
The spectrum of capability modules reaches from interacting
with device controllers, to accessing the control software’s data

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

model as well as to communicating with other agents in order to
interact for the purpose of e.g. material or handling supply.
 Having completed the model, the user can start the
automated code generation and creates the control logic source
code which can be processed by the corresponding agent. The
generation is preceded by a simple model verification that
ensures that the model is syntactically valid.

V. SYSTEMATIC VERIFICATION
After the planning and realization phase an engineered shop

floor control software is available to place into operation. All
schematic components of the control system are generated from
the object or behavior model fully automated. These comprises
the components of the FMS as well as the control logic of the
agents. The program parts being generated automatically by
means of the model-transformation can be considered as
formally correct code. In addition, the cosmos 4 platform
including its communication and data-storage mechanism can
be treated as fully functional.

Modelling failures in the object model that can emerge e.g.
throughout a wrong assignment of a gripper type to handle a
specific workpiece or logically inconsistent transition
conditions in the behavior model, which results in failures in
the control logic of an agent, cannot be identified by a
syntactical check of a model. Nowadays, such failures are only
being identified at the real plant and thus lead to high
downtimes and costs. Cause for this, is the lack of adequate
concepts to assure the quality in the area of control technology.

Thereby the manufacturing equipment vendor has to cope
with the dilemma of ensuring the operability and capability on
the one hand and the need for a fast ramp-up on the other hand.

This paper introduces a method that combines a test
systematic and a virtual kinematical shop floor model to enable
a “virtual process qualification” and hence merge the two goals.
The objective target of the test systematic is to identify
modeling errors in the object-model and within the behavior
models of the FMS control software.

A. Testing principle
The verification of distributed control software is

predominantly characterized by its concurrent processes. Due
to its pro-active behavior patterns, narrowing down the error
search-space is being significantly complicated by agent-based
control software. The interaction of agents as a crucial element
of a control system has to be taken into account for the design
of a test method. Hereto the principle of interaction in an
agent-based control system will be illustrated on the cosmos 4
control platform under consideration of a sawing process on the
sawing machine KASTO (cp. Fig. 5 (a)).
 The agent KASTO responsible for the sequence control of a
manufacturing process to saw slug material is booted and starts
to process its control logic cyclically. Next the agent’s function
block load_job loads a sawing process (SAW_4WG) from the
object model as soon as the ERP system releases a
corresponding job. Then the agent updates its state by changing
the state variable job_status to JOB_LOADED. Now the next

transition condition is satisfied and the function block request
pallet checks if a proper pallet for storing sawed workpieces is
located at the corresponding transfer station at KASTO. In case
of an empty station a request message to the agent AGV is
being sent. The AGV receives the request, then generates
autonomously a corresponding transport job TRANSP_PAL
After finishing the transport job the agent AGV informs the
agent KASTO. Consequently, the agent KASTO switches its
current status palStatus to AVAILABLE. Here the pallet
transportation job has been taken place asynchronously while
concurrently calling the function block request_
robot_palletizer. The influence of the machine behavior on the
agent is rather obvious within the start_sawing and
wait_for_feedback functions. Depending on the process
outcome of the KASTO’s Programming Logic Control (PLC) a
standardized return code is returned through a service-based
driver interface that again updates the agent’s status.
 The example illustrates the dependency of control
components among each other as well as the associated
tight-knit crosslinking of job processes, object model, state
variables and function modules. To verify the interplay of these
elements the control logic of each single control component has
to be considered. Therefore the agent represents the smallest
unit to be tested.
 Because the entire control logic of an agent is auto generated
out of model information, the verification process can be
started on a more abstract level. Herewith the verification
focuses on the identification of modeling failures in the
previous planning phases and assumes individually
implemented capability modules as pretested.

On this level of abstraction, function-oriented testing
strategies are suitable to ensure the operability and capability of
control components. A function-oriented test regards an agent
as a black box. The black-box-testing is characterized by the
fact that the test case is derived from the test specification
(desired effect). Knowledge about the test object's internal
structure is excluded from consideration.

In order to design test cases the specifications as well as the
influencing variables of an agent need to be determined. Hereto
information out of the planning phase of an agent will be
reused.

The influencing variables can be derived from capability
modules which cause changes in the agent’s state variables in
dependency of the control component’s environment. For this
purpose capabilities have to contain interfaces which can be
categorized as following:

 interface to superior ERP systems in order to
exchange job process information concerning manu-
facturing, handling or material processes

 interface to the object model in order to read and write
certain object information on shop floor level

 interface to the actuator and sensor level in order to
exchange information with device controllers.

With the usage of these three interfaces any desired system
state of an agent can be created by setting a certain combination
of job processes, object positions/relations and return values of

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

device controllers. These parameters represent the influencing
variables. Messages will be considered as system internal
values that can be affected by the three parameters.

The testing strategy comprises the following two goals:
1. only tested agents are allowed to be

called by other agents
2. the interaction between control components

should be in a scaleable manner
Thus, theses two goals guarantee that the localization of the

error cause can always be limited to a single agent and the error
search-space does not stretch unnecessarily across several
control components. Herewith, a high efficiency of the testing
procedure can be achieved.

Based on these requirements an according testing systematic
has to be developed which prevents from calling not yet
completely verified control components during a test run.

B. Design Structure Matrix
 To handle this problem the Design Structure Matrix (DSM)
also known as Dependency Structure Matrix is being applied.
The DSM provides a compact and clear representation of a
complex system and a capture method for the interactions/
interdependencies/interfaces between system elements.
 This method is used to visualize complex relations in
systems engineering or systems analysis, as well as in product-
development and -planning. The matrix evaluates all elements
of a system with respect to their dependency and particularly
with regard to their dependency type. The outcome is used to
derive all activities that are necessary to execute an activity as
well as all the information that should be generated by an
activity. By reading the columns of the matrix all elements that
are being affected by an activity can be identified. Whereas
reading the rows indicates which other elements the activity is
depending on. Based on the DSM configuration the DSM
algorithm generates an optimized execution sequence by
selectively permuting columns and rows. This optimum is
reached if all items of the matrix are arranged underneath the
main diagonal, see Fig. 8 [7].
 To apply this method for verifying a distributed, agent-based
control system, the DSM is being used to analyse dependencies
between control components. Hereto the agents as well as their
process classes will be registered. The process classes represent
the elementary functions within a FMS and can be classified in
manufacturing, handling and transportation processes. Each

TRANSP_PALAGV

MOVE_ROBROB_GANTRY

PICK_PLACEROB_GANTRY

EEIMILL_4WGMAHO

EEISAW_4WGKASTO

EUNLOAD_4WGMAN_LOAD

TR
AN

SP
_PA

L

M
O

V
E_R

O
B

P
IC

K_P
LAC

E

M
ILL_4W

G

S
AW

_4W
G

U
N

LO
AD

_4W
G

AG
V

R
O

B_G
AN

TR
Y

R
O

B_G
AN

TR
Y

M
AH

O

KA
STO

M
A

N
_LO

A
D

TRANSP_PALAGV

MOVE_ROBROB_GANTRY

PICK_PLACEROB_GANTRY

EEIMILL_4WGMAHO

EEISAW_4WGKASTO

EUNLOAD_4WGMAN_LOAD

TR
AN

SP
_PA

L

M
O

V
E_R

O
B

P
IC

K_P
LAC

E

M
ILL_4W

G

S
AW

_4W
G

U
N

LO
AD

_4W
G

AG
V

R
O

B_G
AN

TR
Y

R
O

B_G
AN

TR
Y

M
AH

O

KA
STO

M
A

N
_LO

A
D

PROCESS
CLA

SS

AGENT

I : inevitable interaction
E: evitable interaction

EUNLOAD_4WGMAN_LOAD

EIEMILL_4WGMAHO

EIESAW_4WGKASTO

MOVE_ROBROB_GANTRY

PICK_PLACEROB_GANTRY

TRANSP_PALAGV

M
A

N
_LO

A
D

M
ILL_4W

G

SAW
_4W

G

M
O

V
E

_R
O

B

P
IC

K
_PLA

C
E

TR
A

N
SP

_P
A

L

M
A

N
_LO

A
D

M
A

H
O

KA
S

TO

R
O

B
_G

A
N

TR
Y

R
O

B
_G

A
N

TR
Y

AG
V

EUNLOAD_4WGMAN_LOAD

EIEMILL_4WGMAHO

EIESAW_4WGKASTO

MOVE_ROBROB_GANTRY

PICK_PLACEROB_GANTRY

TRANSP_PALAGV

M
A

N
_LO

A
D

M
ILL_4W

G

SAW
_4W

G

M
O

V
E

_R
O

B

P
IC

K
_PLA

C
E

TR
A

N
SP

_P
A

L

M
A

N
_LO

A
D

M
A

H
O

KA
S

TO

R
O

B
_G

A
N

TR
Y

R
O

B
_G

A
N

TR
Y

AG
V

PROCESS

AGENT

DSM

optimized
testing order

indicator for defintion of
scenarios to control
evitable interactions

Fig. 8 Test case design based on the Design Structure Matrix

process class is assigned to an agent. Thereby, the job
processing of an individual process class can require
interactions between control components. In order to determine
an optimal testing sequence the dependencies between control
components have to be analyzed. Thereby the dependencies
can be classified into two types:

 Interactions between two control components which
can be avoided by certain combinations of
influencing variables are referenced as evitable
interactions

 Interactions between two control components which
can not be avoided by certain combinations of
influencing variables are referenced as inevitable
interactions

 Thus, two consequences can be drawn. Firstly, the
influencing variables are suitable to define the scale of
interaction. Secondly, certain interactions between control
components can not be decoupled.
 In order to receive an optimal testing sequence, the DSM
algorithm is applied. As a result one can extract from the matrix
these control components which do not have any dependency
followed by those with single or multiple dependencies..
 The ongoing example demonstrates the above presented
approach on the base of the cosmos 4 platform. At first, the
agents as well as the associated process classes are inserted into
the matrix. According to the two derived dependency types
(evitable, inevitable) the interconnection between agents are
specified, see Fig. 8. In the following, the dependencies of the
sawing machine KASTO will be illustrated in detail.
 The dependency between the process class SAW_4WG of
the agent KASTO and the process class PICK_PLACE of the
agent ROB_GANTRY is determined as inevitable because
KASTO can only finish its sawing job if the sawed workpiece
is placed on a corresponding transport pallet by the robotic
palletizer ROB_GANTRY.
 An evitable interaction between two control components will
be illustrated on the interconnection of the agents KASTO and
AGV. The process class TRANSP_PAL of the AGV can be
avoided by establishing a relation (ASSIGN) between a storage
pallet and the transfer station of the sawing machine KASTO in
the object model. Hereupon the capability module
request_pallet of the agent KASTO does not request an AGV
and hence the process class TRANSP_PAL is evitable.
 This example points out two facts which have been
introduced before. Firstly, if the calling of the agent AGV
should be prevented, a corresponding test scenario by using the
influencing variables has to be created. Secondly, the agent
KASTO can not be decoupled from the agent ROB_GANTRY.
Thus the agent ROB_GANTRY has to be tested beforehand.

C. Testing concept
The usage of the above presented DSM provides an optimal

test sequence in which control components can be verified
successively [7]. In order to build up a comprehensive testing
tool, in the following a test concept will be presented in which
the DSM has been integrated, see Fig. 9.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Fig. 9. Testing concept, outer and inner control loop

The concept consists of two control circuits, an inner and an
outer control loop. The inner control loop is responsible for the
test specification, execution as well as the analysis of the
nominal and actual behavior of the system.

The test specification as well as the comparison of nominal
and actual behavior is carried out manually by the user. Hereto
information coming from the virtual kinematical model as well
as the agent’s user interface has to be taken into account. To
document the operability and capability of the entire FMS
control software, the test specification, as well as the test
execution in the virtual kinematical model will be recorder and
archived. Herewith the manufacturing equipment vendor is
able to proof that the software is meeting its quality gates. In
addition to the inner control loop the system will be completed
by applying an outer control loop ensuring the test coverage.
The outer control loop will be pictured in detail at the end of
this paper.

D. Realization of a prototype
 The test concept has been implemented as the cosmos 4
verification software tool and was integrated into the cosmos 4e
engineering platform, see Fig. 10. The tool is divided into three
components: test configuration, test definition and test control.
 The test configuration allows the specification of
dependencies between agents within the DSM as well as the
creation of scenarios to control evitable interactions.
 The test definition enables to specify test cases on the base of
the test configuration. To define test cases, two perspectives are
available. These are the agent view and the product view. The
agent view focuses on the verification of a single control
component and its associated process classes. Therefore, the
control components are arranged in the optimized testing
sequence. Based on a selected agent (e.g. KASTO), a list of
supported process classes (e.g. SAW_4WG) will be displayed.
Hereupon the corresponding parameters of the chosen process
class will be shown and a test case in consideration of the
influencing variables can be created.
If the selected process class has a dependency on another
process class of the type “e=evitable”, this one will be
displayed. At this point the user is able to decide whether the
process class and herewith a further agent should be included in
or excluded from a test case. For this purpose predefined
scenarios can be activated. The following example illustrates
this connection in detail.

Fig. 10. cosmos 4 verification system

Assumed the user wants to verify the sawing process

SAW_4WG. After choosing the desired process class the
verification tool automatically detects on the base of the test
configuration two evitable (MOVE_ROB; TRANSP_PLACE)
and one inevitable (PICK_PLACE) processes. At this point the
user can adjust the test range. The test case can comprise
between two and four process classes.

In order to prevent all time consuming supply processes the
user is interesting in downsizing the test range as much as
possible during the first test run. Therefore the user activates
only two of four processes. In the background the verification
tool auto generates two corresponding scenarios to prevent
calling the processes MOVE_ROB as well as TRANSP_PAL
automatically.
 This general procedure can be applied to all participating
agents of FMS control software. In case all control components
are single tested, the user can switch to the product view.
 The product view serves to verify the process chain of
successive manufacturing operations in order to produce an
entire product. Thereby the test can be scaled from a single
operation up to the complete process chain. In a second step the
several test cases for different products can be executed
concurrently with increasing numbers. Herewith the presented
test systematic ensures the step-wise ramp up from elementary
operations up to maximum utilization.
 After the test definition the coordination of the test execution
is carried out. Here the test cases can be generated, managed
and executed. This includes activating the control agents, the
generation of the corresponding test scenarios in the data model
as well as the synchronization with the virtual, kinematical
shop floor model.

VI. VIRTUAL PROCESS QUALIFICATION
 The virtual shop floor model allows the operation of the
control system independently from the real shop floor. It
provides the potential to analyze semantic relations between the
control process definition and the behavior on the

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Fig. 11: Virtual process qualification with the Digital Shop Floor

actuator-sensor level. It also permits the identification of
potential model errors. Therefore, the kinematical behavior of
the manufacturing, handling and transportation processes is
being emulated. The data flow between control software and
shop floor model is carried out analogous to the real shop floor
using so called virtual drivers that represent a service based
interface. Further on, the answer pattern of the device controller
(PLC) can be assigned in the virtual driver by the cosmos 4
verification tool in order to verify the operability of the
corresponding function modules.
 The concept for the virtual process qualification was
implemented as a software tool. Based on the application
programming interface (API) of the UGS Tecnomatix
eM-RealNC software, a tool named “Digital Shop Floor” has
been developed. Fig. 11 illustrates the graphical user interface
of the software in whose centre the 3D visualization of the shop
floor is located. The simulation speed is freely scalable and
enables a faster test execution and thus accelerates the control
software’s ramp-up significantly.

VII. CODE COVERAGE
 The above presented method for systematic verification of
flexible manufacturing control software can be ranked into the
category of functional testing. Thereby, the system which needs
to be tested can be considered as a black-box. An external
perspective of the test object is used to derive test cases.
Information about the degree of test coverage can not be
gathered. For this, white-box testing techniques such as
code-coverage will be applied [9]. Code-coverage is aware of
the internal structure of the test system (control logic) and
checks its internal execution paths. As a result, metrics (system
of ratios) are created and provide a perception about the degree
in which source code has been tested. On the basis of this
finding, new tests can be generated.
 An iterative application of both testing methods (systematic
verification and code-coverage) provides the opportunity to
maximize the quality of the entire control system.
 Integrated into the cosmos 4e platform an open source
code-coverage tool (EclEmma 1.2.2) to monitor the processing
of the multi-agent system has been realized. illustrates an auto

Fig. 12: Code-coverage report of the control logic of an agent (KASTO)

generated report about the code coverage of certain control
logic parts of the agent KASTO. The coverage ratio represents
55,5% after the first verification run. Herewith, the user
receives at any time feedback about the status of the
verification phase and thus he is able to make a statement about
the quality assurance based on these ratios.

VIII. CONCLUSION
The production ramp-up represents for the manufacturer as

well as the user of automated production systems a large
uncertainty and expense factor. In particular, the poor
predictability of the increasing diversification of the product
portfolio demands new approaches to ensure the early
validation of operability and capability of automated
production systems. Therefore, the developer has to cope with
the dilemma of ensuring the operability and capability on the
one hand and the need for a fast ramp-up on the other hand. The
presented cosmos 4 engineering solution dissolves this goal
conflict and represents a new approach to systematically verify
a model based shop floor control system on the basis of a
virtual process qualification.

REFERENCES
[1] G. Lay; E. Schirrmeister: Sackgasse Hochautomatisierung? Mitteilungen

aus der Produktionsinnovationserhebung Nr. 22. Fraunhofer Institute for
System Technology and Innovation Research, Karlsruhe, Germany 2001.

[2] M. Weck: Werkzeugmaschinen. Band 1 – Maschinenarten und
Anwendungsbereiche. 5. Auflage. Berlin: Springer-Verlag, 1997.

[3] M. Weck: Werkzeugmaschinen Band 4 – Automatisierung von
Maschinen und Anlagen. 6. Auflage. Berlin: Springer-Verlag, 2006.

[4] C. Brecher, F. Possel-Dölken, and C. Almeida. FMS control software with
programmable control agents. In CIRP Conference on Reconfigurable
Manufacturing Systems, 2005.

[5] Y. Cheng: Entwicklung von Konzepten und Werkzeugen zur
Modellbasierten Projektierung verteilter Fertigungsleitsysteme. Diploma
thesis. RWTH Aachen, 2006

[6] R. Langen: Methoden und Werkzeuge zur Erstellung von
Fertigungsleitsoftware. PhD thesis, RWTH Aachen, 1998.

[7] A. Karlberger: Entwicklung eines Werkzeugs zur systematischen
Verifikation der Funktions- und Leistungsfähigkeit eines projektierten
Fertigungsleitsystems. Diploma thesis. RWTH Aachen 2007

[8] C. Brecher, T. Buchner: Modellbasiertes Engineering verteilter
Fertigungsleitsysteme. In VDI Fortschrittsbericht, Simulation in der
Produktion, 1. Auflage VDI-Verlag 2006

[9] J. Jenny Li, J. Robert Horgan. χSuds-SDL: A Tool for Testing Software
Architecture Specifications. In Software Quality Journal, Volume 8,
Number 4 / December 1999, pp. 241-253

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

