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Abstract— The Hamiltonian Method of Swarm De-
sign is applied to the design of an agent based eco-
nomic system. The method allows the design of a sys-
tem from the global behaviors to the agent behaviors,
with a guarantee that once certain derived agent-level
conditions are satisfied, the system behavior becomes
the desired behavior. Conditions which must be sat-
isfied by consumer agents in order to bring forth the
”invisible hand of the market” [18] are derived and
demonstrated in simulation. A discussion of how this
method might be extended to other economic systems
and non-economic systems is presented.

Keywords: swarm engineering, Hamiltonian method of

swarm design, swarm economics

1 Introduction

Complex system design is a challenging field of science
in which some to many independent interacting parts are
combined so as to create a machine or system with a
particular desired function or property set. A subset of
the general field of complex systems is swarms, which
are groups of bidirectionally communicating autonomous
agents. Swarms are interesting for a number of reasons,
the most important of which is the tendency of swarms
to exhibit emergence, which allows them to undertake ac-
tions that are not explicitly part of the control algorithm.

The most challenging thing in complex system design is
ensuring that the different parts will interact with each
other in a such a way as to generate a desired system
behavior. This is particularly true for systems of au-
tonomous agents. Since each agent is independent, the
interactions can be very difficult to predict, a priori.

In the swarm literature, there is little in the way of gen-
erally applicable principalled approach to swarm design.
Some researchers [21, 17] have built preliminary systems
for monitoring or understanding the emergent behaviors
of agents. However, these studies do not yet generalize to
a methodology that works for a large number of swarm
systems. As a result, no particular method exists for gen-
erating swarms of particular design.

In this paper, we examine what we call the Hamilto-
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nian Method of Swarm Design (HMOSD)[6]. This
method is a principalled approach to swarm design con-
sisting of two main phases. In the first phase, the global
goal(s) is(are) written in terms of properties that can be
sensed and affected by the agents. The resulting equa-
tion(s) can then be used to develop requirements for the
behaviors of the agents that lead to the global goal.

Though swarm engineering has typically been applied to
robotic design and computation design, we broaden the
scope here by applying it to an economic system. So why
economics? Economies are complex systems which en-
compass micro and macro behaviors, individual interac-
tion, equilibriums, and, in most cases, some sense of self-
regulation [17]. Because of this overwhelming complexity,
a quantitative form of economics has been difficult to ob-
serve. However, with more powerful computational power
and the development of efficient control algorithms it is
now possible to approach economics from a more quanti-
tative, rather than theoretical, perspective [4][5][11]. One
such control method is swarm engineering. Just as a real
economy is decentralized, automated swarms require no
outside control [6]. An accurate simulation can be run
solely by itself, basic economics laws and theories gov-
erning the physics of interaction of agents. An advantage
of this method is the lack of the ceteris paribus (Latin for
“all other things unchanged”) aspect of traditional eco-
nomics. Observations qualified by ceteris paribus require
that all other variables in a causal relationship are ruled
out in order to simplify studies. A swarm controlled simu-
lation, on the other hand, allows all factors to be included
in the relationship between antecedent and consequent
[6][7]. Another salient advantage is an observer’s ability
to control the basic structure of interaction. Before a run,
the simulation allows one to tinker with basic parameters
of the system, such as sizes of budgets, rate of utility in-
crease, and the magnitude of competition. By allowing
such control, a user can predict results of economies in
several types of real-life situations, which is key in under-
standing the scope of economic systems and the realistic
range of our control.

Real economic systems are systems of autonomous agents
with bidirectional communication, satisfying a broad def-
inition of a swarm. Thus, it stands to reason that
swarm engineering techniques might be able to be ap-
plied to such a system so as to generate a predefined
global behavior of the system. Many studies have been
made which use agent-based simulations in which inter-
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actions between agents define what the economy will do
[1, 4, 8, 10, 11, 12, 15, 16, 19]. However, though these
studies extracted global behaviors from their systems,
they did not develop or apply a method of generating the
global behavior, and then designing the system around
that behavior. This study, which might be termed a
study in swarm economics, is meant to examine the de-
sign phase of an economic system using the swarm engi-
neering methodology.

The remainder of the paper is organized as follows.
Section 2 examines the theoretical application of the
HMOSD to a simple economic model. This section fo-
cuses on the properties of the agents that will give the
economy a particular behavior. Section 3 presents the
performance of the model under different expected agent
behaviors. Section 4 offers some discussion and conclud-
ing remarks.

2 Swarm Engineering Applied to Eco-

nomic Systems

In this section, we will theoretically explore the applica-
tion of the principles of swarm engineering to economic
systems. In swarm engineering, we are primarily inter-
ested in generating group behaviors by utilizing careful
examination of the desired global behavior and using this
analysis to guide the design of agent-level behaviors ca-
pable of producing the desired global behavior [6]. While
this method still requires considerable input from the en-
gineer, we have been able to use it to solve previously un-
solved problems in deployment of swarms. In the present
study, this means that we are interested in examining
one or more global economic measurables and putting
together a method of directly manipulating these by de-
signing specific agent behaviors.

In economic systems, there are many global measurables.
Each one is tied to local variables in a complicated and
non-linear way. This makes the prediction of the global
effect of a specific local behavior very difficult. As a re-
sult, it is often times simpler to utilize agent-based sys-
tems to get an idea of the effect of specific behaviors.
The difficulty with utilizing agent-based systems in this
way derives from the difficulty in creating a new system
with specific desired qualities; the nonlinearity of com-
plex systems makes this a very difficult thing to do. As
a result, we utilize the swarm engineering methodology,
which draws its initial motivation from the desired global
outcome.

As our global property, we choose a truly dispersed prop-
erty – that of the average cost of a commodity across ven-
dors for sales of specific commodities. This property is in-
teresting because it measures how much a consumer pays
for goods and services that are worth a specific amount.
If all vendors tend to end up with similar prices, this in-
dicates that either the system is designed to enforce a

specific price, or that there is some kind of communica-
tion between vendors that allows them to collude. We
shall see that there are specific system designs that allow
the former to occur without collusion or any communica-
tion between vendors.

We examine the design of consumer behavior as a method
of controlling the average price. Vendors are modelled as
profit maximizers who will increase their prices when all
else is kept constant. The reaction of the consumers must
be made in such a way that slow creeping price increase
does not occur. We shall see that specific agent behaviors,
designed properly, can limit the average prices to prices
that very closely match the cost of vending the product.

2.1 Vendors and consumers

We begin by modelling the main factors that affect the
vendors in their decision to alter prices of commodities
that they are selling. We begin with the assumption
that all vendors will choose a price for a commodity that
equals or exceeds his or her costs incurred during the
sale of the commodity. The question then is what factors
affect the change in the price?

We begin by assuming that the price function used by
a vendor is a complicated function of several different
values. That is, let the price be represented as

pv,c = f (m1, m2, . . . , mn) . (1)

Then, each of these values mi represents a factor in de-
termining the price of the commodity.

There are many factors one might include in a decision
about the cost of a commodity or in a decision about
whether or not to increase the cost of a commodity.
Among these factors are the demand for the commod-
ity (D), the vendor’s account balance (b), the total cost
of the commodity to the vendor including the cost to
put it on the shelf (space, cost outlays, and personnel)
(cc), any memorized or recorded data of the past l cycles

({mj}
l
j=1), and the current income of the vendor (i). We

assume, for the moment, that these are the main effectors
of the cost of the commodity.

As we stated above, our goal is to examine the dynamics
of the average price of specific commodities. This is the
average price over all vendors of the commodity. I.e.,

Pa,c =
1

Nv

Nv∑
v=1

pv,c (2)

where Pa,c is the average price for commodity c, Nv is
the number of vendors, and pv,c is vendor v’s price for
the commodity c.

In real economic systems, the average price of a spe-
cific commodity typically remains stable or increases over
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time. However, theoretical prices should actually de-
crease or remain stable over time as the cost of production
decreases. Moreover, the market is assumed to produce
corrections to initially poorly priced items (i.e. items
whose prices are much higher than the cost to produce
it). We are interested in discovering what the minimal
conditions are for consumers which will result in com-
modity prices that decrease or stabilize over time. This
can be written mathematically as

dPa,c

dt
=

1

Nv

Nv∑
i=1

dpv,c

dt
≤ 0. (3)

If a single vendor’s prices start decreasing, then under
competitive conditions, all vendors’ prices should start
decreasing. This being the case, we don’t expect one
vendor’s price to increase while any of the other vendors’
prices decrease. As a result, we can replace the require-
ment of (3) with

dpv,c

dt
≤ 0. (4)

If we begin by assuming that the vendors have a system-
atic method to their pricing choices, then we may write
the prices faced by consumers as (1). Utilizing the various
measurements indicated above, this means that

dpv,c

dt
=

∂f

∂D

dD

dt
+

∂f

∂b

db

dt
+

∂f

∂cc

dcc

dt
+

l∑
j=1

∂f

∂mj

dmj

dt
+

∂f

∂i

di

dt
.

(5)

The term in (5) ∂f
∂cc

dcc

dt would seem to have little to do
with the consumers, and so cannot be directly affected
by a behavioral change among consumers. We therefore
ignore it as a potential design point. On the other hand,
it is interesting to note that db

dt is the rate at which the
bank account changes. Thus, we identify this with the
profit. If profit is Pr then,

Pr (t) =
db

dt
= D (t) (f (t)− cc (t)) . (6)

where D (t) represents the number sold per time pe-
riod. Moreover, this profit/loss may be memorized by
the agent, affecting behavior. For each vending agent,
the behavior can be different, but in general

mk (t) = Pr (t− ktp) = D (t− ktp) (f (t− ktp)− cc (t− ktp))
(7)

where tp represents a time period and k represents the
specific memory element being stored. k typically runs
from 1 through Nm, the number of memory elements used
in the function.

Since we are examining conditions that make
dpv,c

dt a non-
increasing function of time in the absence of inflation and
supply variations, we want

0 ≥
∂f

∂D

dD

dt
+

∂f

∂b

db

dt
+

∂f

∂cc

dcc

dt
+

∂f

∂mp/l

dmp/l

dt
+

∂f

∂i

di

dt
.

(8)

As a result, we have that

∂f

∂D

dD

dt
≤ −

(
∂f

∂b

db

dt
+

∂f

∂cc

dcc

dt
+

∂f

∂mp/l

dmp/l

dt
+

∂f

∂i

di

dt

)
(9)

Inserting the results of (6) and (7) reveals that the actual
form of this equation becomes

∂f

∂D

dD

dt
≤ −

(
∂f

∂b
(D (t) (f (t)− cc (t))) +

∂f

∂cc

dcc

dt
+

∂f

∂i

di

dt

)

−

(∑
k

[
∂f

∂mp/l
D (t− ktp) (f (t− ktp)− cc (t− ktp))

])

(10)
In the case that the vendor simply reacts to current con-
ditions, the relation takes the form

∂f

∂D

dD

dt
≤ −

(
∂f

∂b
(D (t) (f (t)− cc (t))) +

∂f

∂cc

dcc

dt
+

∂f

∂i

di

dt

)
.

(11)
Now, we examine (10) to determine the form of f .

1. If the cost to the vendor increases, it is reasonable to
expect the vendor to either increase or hold steady
its prices. That is

dcc

dt
> 0⇒

∂f

∂cc
> 0. (12)

2. If the income increases, one can infer that the de-
mand at a particular price has increased. There-
fore, by increasing the price, the profit will increase.
Thus, we expect that

∂f

∂i
> 0. (13)

3. If profit increases, one can infer that the demand
at a particular price has increased. Therefore, by
increasing the price, the profit will increase. Thus,
we expect that

∂f

∂b
> 0.

4. If the demand increases, typically the price increases.
Therefore we expect that

∂f

∂D
> 0

These results together give us that

dD

dt
≤ −

1
∂f
∂D

(
∂f

∂b
(D (t) (f (t)− cc (t))) +

∂f

∂cc

dcc

dt
+

∂f

∂i

di

dt

)

−

(∑
k

[
∂f

∂mp/l
D (t− ktp) (f (t− ktp)− cc (t− ktp))

])

(14)
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or in the case that the agents are purely reactive

dD

dt
≤ −

1
∂f
∂D

(
∂f

∂b
(D (t) (f (t)− cc (t))) +

∂f

∂cc

dcc

dt
+

∂f

∂i

di

dt

)
.

(15)

We have just proved the following theorem.

Theorem 2.1 If the condition in equations (14) or (15)
continually holds, then the price will be bounded above.

These last two equations give the limits of the behav-
ior of the consumer agents in a system composed of the
vendor and consumer agents only. It indicates that the
consumer agents must respond with a decrease in the
demand for a commodity which is greater in magnitude
than the magnitude of the right hand side of equations
(14) and (15). This is a severe design requirement on
the consumer agents. However, as we will see in the next
section, systems containing consumer agents which fol-
low these restrictions do tend to have the desired global
characteristics, while those that do not tend to have sig-
nificantly higher to run-away prices.

2.2 Design of consumer agents

Our primary concern is that the consumer agents prov-
ably behave in such a way that the global average price
remains bounded above. We have already seen in section
2.1 that if the conditions in equations (14) and (15) are
obeyed, the goal will be achieved. That completes the
top-down portion of the design problem. We now have
an engineering requirement with which to work. We can
now begin the bottom-up phase.

In this new phase, we must generate agents that satisfy
this requirement. The general solution to the general
equation given in (15) if ∂f

∂i = dcc

dt = 0, ∂f
∂D = α, and∂f

∂b =
γ, the general solution is

D = e
−

∫
t

0

−

γ

α (f(t′)−cc(t′))dt′
. (16)

As a result of this general solution, it is clearly the case
that, in order to react correctly in the next time frame,
our agents must have the following capabilities.

1. The agents must be able to measure the price of the
commodity.

2. The agents must be able to measure the demand
for the commodity. In our simulations, it is a good
estimate to know one’s own probability of purchasing
the commodity and multiplying by the population
size.

3. The agents must be able to accurately estimate the
cost to the vendor.

Thus, all agents must have this capability, and their be-
havior must be one of this family of behaviors. We can
write this as an update rule. This becomes

Di+1 = Di

(
1−

γ

α
(fi − cci

)
)

. (17)

This equation underscores the idea that the demand will
remain constant when the price is near the cost. However,
as the vendors will constantly be trying to increase the
price, and the consumers will be reacting to increases,
the actual average price will be greater than the cost to
vendors. It is worth noting, of course, that in the real
world, this cost is replaced by a very poorly defined notion
of the ”value” of an object. Since consumers have no idea,
in general, how much a specific object actually costs in
real terms, they must guess about it’s value. However,
despite this ignorance-driven inflation, the prices, once
equilibrated, must respond to the same type of force.

In the next section, we describe our simulation and the
behaviors of the agents carrying out repeated cycles of
interactions between consumers and vendors. We gener-
ate a family of behaviors parametrized by a small number
of parameters. Some values of the parameters generate
behaviors that obey the requirements of (15) and some
do not. We explore the effects of these parameters and
demonstrate that they yield the expected global behav-
iors.

3 Simulation Design

We examine our theoretical results using a computer sim-
ulation that centers around the interactions between two
types of agents: consumers and vendors. Our simulation
functions by creating repeated interactions between the
consumers and vendors as they learn and react to certain
situations [19]. Vendors have commodities to sell, and are
designed to maximize profit. Consumers purchase com-
modities from vendors using money provided to them by
jobs, and attempt to maximize consumption. The simu-
lation proceeds by repeated “sessions” during which con-
sumers visit vendors, evaluate what the vendors have to
offer, and decide whether or not to buy. Vendors respond
to changes in their products’ marketability by changing
prices in an attempt to increase their profit.

In our simulation, many details come into play. Both
consumers and vendors have memory which help them
decide on things such as which of the other class of agents
to do business with, how to change prices, etc., and how
to respond to current offerings [10]. In the coming sub-
sections, we explain these in detail, including motivating
assumptions borrowed from economic theory. Our goal
is to test our method of designing agents whose interac-
tions produce a desired global goal, namely the control
of the average price of a commodity. We describe, in ad-
dition to the agents’ designs, the tools used to evaluate
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the function of the system.

Begin

Create
Environment
Create tools

set iteration
bankrupt
vendors

.
until

vendorassigned

Consumer

satisfaction
calculates

Purchase

Purchase

Consumer
update memory

memoryupdate

Consumermemoryupdate

Vendor

consumer is

memoryupdateNo

No vendor

user−defined
iteration
After True Consumersacquire

salary

Vendors restockingprocess

Print finalprices End

False

Figure 3.1: This is a general flowchart of ABES

3.1 Vendors

As soon as ABES is executed, the products are assigned
a random cost. Each vendor sells a single commodity,
and so must assign and manage the price of the single
commodity. Each vendor calculates its own minimum
price. Initially, the price is set at twice the cost to the
vendor. All the profits made from a completed exchange
is directly added to the vendor’s bank account, the total
amount of money that the vendor has. The vendor will re-
stock its inventory when the number of products it holds
reaches a user defined number if there is enough money in
the bank to purchase more products. If the vendor fails
to restock using the amount of money in the bank, then
that vendor is considered bankrupt and is removed from
the pool of vendors. As a result, the bankrupt vendor no
longer participates in the interactions between vendors
any consumer.

Each vendor’s goal is to maximize its profit by any means.

After a user-defined number of iterations, if the vendor
has made more profit than it did in the previous period,
the prices of the vendor’s product are incremented by a
constant, user defined percentage of the product’s cost.
This price update rule comes from the assumption that
vendors will expect the same number (or nearly the same
number) of products to sell the next period. A slight
increase of price will increase the total profit. Conversely,
if the vendor has made less profit, it reduces its prices by
the same percentage. This behavior of decreasing the
price derives from the assumption that the vendor will
sell more the next period by slightly decreasing the price.
This should increase the total profit.

3.2 Consumers

Behaviors of our consumers are similar to consumers in
[16]. Each consumer interacts with its vendor in the same
way: the consumer buys from the vendor if all of the con-
ditions are met each time the consumer randomly chooses
a vendor to buy the commodity from. We assume the
commodity is something the consumer eventually must
buy, like water. If the consumer waits long enough, it
will be forced by necessity to purchase the commodity at
any price. If the consumer has enough money, the item is
in stock, the vendor is not bankrupt, and the consumer
is “satisfied” with the product, the consumer will pur-
chase the product. The consumer’s satisfaction with the
vendor’s products is represented by a number from 0 to
100, and is affected by the length of time since the last
purchase, the consumer’s memory of the prices, and the
vendor’s profit margin. Along with the information in
the consumer’s memory, the consumer calculates its sat-
isfaction toward the product. A random number from
0 to 100 is generated, and if the calculated satisfaction
is higher than the generated number, then the consumer
will be considered “satisfied” enough to buy the product.
Thus, the higher the satisfaction of the consumer is, the
more likely the consumer is to purchase an item from the
vendor. Each consumer’s cache of money is incremented
by a user defined salary after some number of iterations,
and decremented by the amount of each purchase.

The goal of the consumer in our simulation is maximize
consumption at the lowest price and at the highest possi-
ble satisfaction. Our consumers are sensitive to the ven-
dors’ profit margin and will not purchase a product if the
profit margin is too large. Whenever a vendor increases
its price, consumer satisfaction decreases. As a result,
consumers are less likely to purchase from the vendor.
At some point in the simulation this will so aversely af-
fect consumer satisfaction that very few of them will pur-
chase the commodity. Once consumers cease purchasing,
vendors react to a decrease in their income. Vendors, in
turn, have no choice but to lower their price. Once the
price has been lowered sufficiently, satisfaction returns
to a high enough level for consumers to begin buying
again. This consumer behavior keeps the vendors from
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constantly increasing their price and will result in a sta-
blized price. However, as we will see in the next section,
there are strict limits on even this behavior which yield
control on global price levels.

In our simulation, we model the consumer satisfaction as

S = smax[1− (
1

et−[α(profit)+(price−γ(pricemem))]
)] (18)

Here S is the satisfaction, α is a constant that controls the
consumer’s aversion to profit margin, and γ is a constant
that affects competition among vendors. Both of these
variables can be initially assigned different values. Profit
is the amount of money the vendors make after an ex-
change is complete. Price is the current price of the com-
modity and pricemem is the running average of the prices
paid by the individual consumer during the last several
interactions for the same commodity. The higher the ex-
ponent value, higher the satisfaction. Clearly, changing
the value of α will alter the consumer’s sensitivity toward
the profit. Likewise, γ affects the consumer’s sensitivity
to prices much higher than those recently paid. This in-
directly affects competition between vendors.

4 Simulation data

In section 2, we examined the theoretical basis for the
design of consumer agents which, we expect, are capa-
ble of causing the ”invisible hand of the market” to ap-
pear, limiting the prices of commodities. Section 3 de-
scribed our simulation. This simulation consisted of two
kinds of agents – consumers and vendors. The two types
of agents interact with each other, and have conflicting
goals. Moreover, the consumers have a limitation that
they must have the commodity that is being sold, even-
tually. Such a commodity might be like water. The con-
sumer agents have the limitation that the longer they
go without the commodity in question, the more they’re
willing to tolerate to get it. As a result, there is potential
for price gouging, leading to runaway prices.

In this section, we examine the behavior of the system
under the action of the consumer agents. The agents’
behaviors are controlled by the equation (18). In this
equation, there are two main parameters, α and γ. By
changing the values of these parameters, we can produce
differing agents behaviors. Some of these behaviors sat-
isfy equation (15) and some don’t. We shall see that the
desired outcome is achieved when equation (15) is satis-
fied.

4.1 The effects of γ

In equation (18), we have two parameters, γ and α. γ

primarily controls the effect of a high price with respect to
previous experienced prices. A high value of γ indicates
a high sensitivity to higher prices while a low γ value
indicates little or no effect. The overall effect is akin to

competition between individual vendors. With a high
value of γ, the prices tend to stabilize near those of the
agent with the lowest prices, while lower values do not
tend to reinforce this.

We can understand this in terms of equation (15). The
demand does not change on the left hand side if the prices
are all the same. However, the first term on the right
hand side is large enough that the equation does not hold.
As a result, the price does not reduce, but rather stays
constant once all vendors have synchronized their prices.
The situation is depicted in Figure 4.1.
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Figure 4.1: With a high value of γ the prices are limited
to the lowest price of all consumers. However, if this lowest
price is itself high, the prices will not rebound, as can be
seen in these figures.

While γ tends to cause competition among vendors, it is
not strong enough to cause the control of runaway prices.
Consumers are generally stuck with the lowest of the ven-
dor prices. We have seen that the failure of the system
to satisfy the theoretical conditions translates to a failure
of overall system to produce the desired property. If all
of the vendors tend to increase their prices at the same
rate (colluding or not), the effect on equation (18) is neg-
ligible, and so the condition is still not met. In this case,
we can have runaway prices as well. This situation is
depicted in Figure 4.2.
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Figure 4.2: Even with a high value of γ the prices can
increase unboundedly if vendors continually increase their
prices at similar rates.

4.2 Adding in α

It is clear that the competition between vendors is enough
to hold most prices equal, but not strong enough to stabi-
lize the cost of the commodities at prices that reflect their
actual cost. This is interesting for a great many reasons,
not the least of which is that this seems to contradict the
”invisible hand of the market” that underlies much of
economic theory. Clearly, more than simple competition
is required to restore this property.

Satisfying equation (15) requires that another, stronger
term become active. In equation (18), the parameter α

controls the sensitivity of the consumer to the profit mar-
gin that the vendor is receiving. Very high values for α

make the consumer intolerant of even small amounts of
profit. On the other hand, small values for α make the
consumer very tolerant of profits. We examine the effect
of this.

The immediate effect is that the decrease in demand as a
function of time becomes inextricably tied to the rate of
increase of profit. If the profit increases, then the demand
decreases. If α is high enough, the decrease exceeds any
increase in overall profit associated with increasing the
price. As a result, the condition in equation (15) is satis-
fied, and the price is controlled. The situation is depicted
in Figure 4.3.
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Figure 4.3: With γ high or low, a high value of α is suf-
ficient to control the prices of the commodity. This is ex-
pected due to equation (15), and confirmed in this simula-
tion.

Note that in subsection 4.1, we kept α low, and the simu-
lation had a global price increase over time. Only adding
this very strong affector seems to hold prices low over
time. The effect of this design element is so strong that
it can take hold long after the price increase has begun,
as illustrated in Figure 4.4.
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Figure 4.4: If α is initially small, and γ high, the sys-
tem exhibits slow price increase over time. However, if α
is ”turned on” at some later time, the system recovers its
low-price configuration.

4.3 Examining (15)

One of the main guiding principles of this study has been
the need to satisfy equation (15) in generating the con-
sumer behavior. The reason is that we showed in section
2 that if (15) is satisfied, then the behavior will lead to
the desired global behavior. We now examine how closely
our simulations adhere to this equation in generating the
behaviors that limit commodity prices.

We can graph both sides of equation (15) as a function
of the simulation iteration number. When we do this for
both cases in which the price is controlled and cases in
which the price is not controlled, we find that when a vast
majority of the data follows equation (15), the prices are
controlled. If this is not obeyed, even a bit more than
intermittently, the prices are not controlled.
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Figure 4.5: These graphs illustrate the values of equation
(15) as the simulation is run (top two) and histogram the
number of times it is obeyed and not obeyed (bottom two).
We find that when the equation is obeyed most of the time
(first and third), the prices are controlled. However, when
the equation is obeyed considerably less than all the time
(second and fourth), the prices are not controlled. This
supports our theoretical derivation of this condition.

5 Discussion and conclusion

Designing swarms of agents is a very tricky business, ow-
ing to the nonlinear interactions of the various agents. As
with all complex systems, swarms of a particular design
might have a particular global behavior, but swarms with
a very slight difference in behavior may have completely

different global behaviors. As a result, predictive design
has largely been avoided in the swarm literature.

In this paper, we’ve explored a method of swarm design
in which a specific global swarm behavior is developed
prior to the design of the agents. The desired behavior,
it has been shown, can be made to order once a set of
requirements for agent design is worked out which will
mathematically guarantee that the swarm accomplishes
the task [6]. Mathematical guarantee, which has eluded
swarm researchers previously, is achieved by utilizing the
global goal written in terms of the senses and actuators
that the agents can be expected to have access to. Once
the swarm condition has been met, the global goal may
be achieved with agents meeting this condition.

It is interesting to note that this method of designing
swarms is similar in form and function to the design of
mechanical systems using the Lagrangian method. The
power of this method lies in the ability of the engineer
to create one or more properties whose numerical val-
ues are unique to the state that the system is in. The
engineer, then, needs only chart a path through the al-
lowed phase space of the system to the final desired value,
hopefully utilizing behaviors which individual agents can
accomplish on their own, with or without guidance from
a central controller. The method can be applied to sin-
gle properties or to vectors of properties, provided that
the desired vector is well-defined in the same way a single
property might be. We believe that the method is so pow-
erful, in fact, that we now coin a term for this method:
The Hamiltonian Method of Swarm Design.

This study, which examines the design of an agent based
economic system, has demonstrated that in such systems,
the achievement of global goals is possible when specific
agent traits are required of the agents. It is interest-
ing that such systems can exhibit control that typically
comes from ”the invisible hand of the market” or from a
command economy [17]. In fact, we have unmasked the
”invisible hand of the market” in this study, revealing
not only where it comes from but under what conditions
it functions. It is interesting to ask, in light of the new
method of controlling these swarms, what other economic
indicators, trends, etc. can be commanded by the agents
within the system.

Another interesting aspect of this study is just how frag-
ile the system seems to be in terms of destabilizing under
the improper behavior of one or a few agents. As we have
seen in section 4, when the inequality (15) is not obeyed,
even a little, the prices become uncontrolled. It is inter-
esting, then, to ask whether or not this system is stable
in the sense that a few agents do not have the ability to
drive the system into this uncontrolled region. This may
give us insight into some of the interesting trends seen in
recent years in economic systems including overvaluing of
various commodities including .com stocks and housing
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prices. More research on this is clearly indicated.

In the future, we intend to apply this method to swarms
of greater complexity than this one. We expect that
this method of not only swarm design, but complex sys-
tem design, may be applied to a large number of dif-
ferent systems including, but not limited to, systems of
autonomous mechanical agents, computing systems, eco-
nomic systems, and social systems. While some of this
research is currently under way, we expect that the ex-
ploration of all fields to which this methodology might be
applied will reveal an extraordinarily vast scope. More-
over, we expect that an extension to this work will be
able to solve the problem originally posed ten years ago
which led us to these results: ”Is it possible that the
global specification of a problem is enough to yield the
basic requirements of the solution including all actuators,
sensors, processing, and other capabilities of agents in the
solution?” We believe the answer is yes.
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