
Integrity verification for XML data

Jules R. Nya Baweu and Huiping Guo ∗

Abstract—The success of the Internet has made the
communication very easy between parties and XML
is one of the most used standard for information rep-
resentation and exchange. A huge amount of data is
crossing the Internet on the daily basis. Since the
Internet is an unreliable network, XML data can be
easily captured and tampered by unauthorized users.
This study is proposing a scheme that uses fragile
watermarking to detect and localize any modification
made to an XML data. This scheme is distortion free
since it doesn’t introduce any distortion to the XML
data. This scheme uses an algorithm that distributes
elements of the XML data into groups in a secure
manner according to certain parameters. The water-
mark is verified without the need to have the initial
XML data, and also, the embedding and the verifica-
tion process in each group are independent. Exper-
imental results and security analysis show that the
chance to detect and locate change in the XML data
is very high.

Keywords: XML, security, integrity, watermarking

1 Introduction

XML (eXtensible Markup Language) was created by the
W3C [1] to overcome the limitation of the HTML. It
is being used for large web site maintenance, exchange
of information between organizations, database popula-
tion, scientific applications, electronic books, handheld
devices, electronic commerce application and more [13].
As of today, the most standard used for information rep-
resentation and exchange over the Internet is XML. A
considerable amount of sensitive and secret information
is being exchanged between several parties on the daily
basis across the Internet using XML. The Internet is an
unreliable network where malicious users can easily mod-
ify and duplicate data. The huge popularity of the XML
standard over the Internet comes along with a major con-
cern for the unauthorized modification, duplication and
distribution of XML data. Digital watermarking, which
is a technology to embed information into digital data in
a obscure, unknown, and unremarkable way, provides an
artery of protecting XML data from illegitimate modifi-
cation, duplication and distribution [11, 3]. Digital Wa-
termarking is divided into two categories according to
the way it is applied: fragile watermark and robust wa-

∗Department of Computer Science, California State Uni-
versity at Los Angeles, Los Angeles, CA 90032 Email:
hpguo@calstatela.edu

termark. Fragile watermark is used for tamper detection
while robust watermark is applied for ownership verifica-
tion.

Several works were done on digital watermarking and sev-
eral proven technologies were verified and appeared to be
efficient. However most of the works were focused on dig-
ital watermarking of multimedia data; for example in [4].
As of today, few works have been done on non-multimedia
content.

Recently, the idea to apply digital watermarking to non-
multimedia data has been brought to attention. Mostly
oriented in the robust watermarking direction with the
goal to protect copyright of goods, we will now see soft-
ware digital watermarking [2], database digital water-
marking [5, 6] and XML watermarking [6, 13, 8].

Even though the need to apply digital watermarking to
non-multimedia became persistent, fragile watermarking
of those contents was almost left aside. we will note
database fragile watermarking [9] and streaming data wa-
termarking [10].

As we say above, some researches were actually done on
watermarking XML data, but most of them were focusing
on robust watermarking of XML [13, 8].

The following work presents a Tamper Detection And
Localization For XML Data using Fragile Watermarking.

2 Related work

In [13], the scheme proposed is called WmXM. WmXM
is described as a system for watermarking XML, which
generates queries from essential semantics to identify the
available watermarking bandwidth in XML documents.
As further described, it uses query templates to repre-
sent data usability, generate queries from semantic, which
allows elements identification and structure units for wa-
termarking. It also considers the internal semantics to
walk through vulnerabilities that come with redundancy
found in XML data. This watermarking scheme starts
with the initialization, where a schema is specified and
XML data are validated . A set of query templates is
specified to represent data usability. Using a secret key,
a number of data elements or structure units is selected
for the watermark embedding. Queries are then created.
The process ends up with the Watermark Insertion. Just
as above in [8], we note that this technique falls into ro-

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



bust watermarking.

In [15], a scheme for watermarking semi-structured data
that uses a graph labeling is proposed; As other schemes
mentioned before this one also falls into robust water-
marking.

In [9], a scheme for fragile watermarking is proposed. The
technique used here is a proven method for detecting and
localizing malicious alterations made to a database rela-
tion with categorical attributes. Furthermore, the scheme
is distortion free, which means there is no distortion made
to the actual data. It prevents illegal embedding and ver-
ification, since the watermarking process is governed by a
key. The watermark embedding process and verification
can only be done by a person who possesses the neces-
sary key. The original database relation with no embed-
ded watermark is not required for watermark verification.
Finally, in case the watermark verification fails, the em-
bedded watermarks indicate where the modifications are.
The algorithm used in this scheme can be resumed as fol-
low: In the watermark embedding phase, first a primary
key hash value is calculated for each tuple according to a
watermark key and the primary key of the tuple. Accord-
ing to their primary key hash value, all tuples are par-
titioned into relative groups. After grouping, all tuples
in each group are sorted according to their primary: this
is done for the purpose of synchronization. The water-
mark embedding process ends up by watermarking each
group independently. One main thing to keep in mind
which is very important is that the grouping and sorting
operations are only virtual operations: there is no change
of physical position of the tuples. In the watermark de-
tection phase, the same operations as in the watermark
embedding phase are repeated except that when the ex-
tracted bits from a group hash are retrieved; They are
checked against the position of the tuples to verify the
watermark. As opposed to all the techniques that we
mention thus far that fall into robust watermarking, the
one described over here falls into fragile watermarking. It
cannot only detect if the database relation was tampered,
but it can also localize the regions where the unauthorized
modifications, insertions or deletions were made.

In [10], following quite the same idea as [9] with some ad-
justments, the proposed scheme is a fragile watermarking
algorithm which verifies the integrity of streaming data
at the application layer. The algorithm divides data into
groups on the fly according to a secret key. A water-
mark is is embedded directly to the data in each group.
As opposed to [9], here there is a slight distortion on
the data, but with no harm since data manipulated are
stream. The embedded watermark can also detect and
locate modifications made to the data stream as in [9].
For the completeness of the data stream, watermarks are
chained across sequential groups. This allows data dele-
tion to be correctly detected.

In [14], several techniques for hiding information in an
XML document has been proposed.

The first techniques is using the empty element rep-
resentation in XML. The W3C recommends the rep-
resentation of an empty element as follow “<element-
Tag-Name> < /element-Tag-Name> or <element-Tag-
Name/ >.” With those two representations of an empty
element, bit of data could be hidden in an XML docu-
ment. For instance, “<element-Tag-Name> < /element-
Tag-Name>” could be used to hide the bit “0” while “
<element-Tag-Name/ > ” is used to hide the bit “1.”

The second technique uses the XML element tag name
to hide information. It is proposing to insert or delete
white space in the element tag name. For instance, the
representation of an element tag name as follow:

“<element-Tag-Name>, < /element-Tag-Name> or
<element-Tag-Name/ > ” could be used to hide the
bit “0” while “ <element-Tag-Name >, < /element-Tag-
Name > or <element-Tag-Name / > ” is used to hide the
bit “1.”

Several other techniques for hiding information in an
XML document are further discussed in [14].

The scheme used in [9] is distortion free. It embeds the
watermark in the database by modifying the order of tu-
ples. Unfortunately, the technique used here cannot be
applied to XML data. Because of the structure of XML
data, its content cannot be ordered as needed without
affecting the data as with tuples in a database.

The scheme used in [10] is processing streaming data on
the fly. The problem with this technique is that it intro-
duces slight distortions to the actual data, which cannot
be tolerated by XML data.

The techniques discussed in [14] are ways to hide informa-
tion in an XML document that can be retrieved later on
as needed. Those techniques alone cannot allow the wa-
termark embedding and verification process on an XML
file.

The scheme proposed in this work fulfills the lack of work
and research on XML data toward fragile watermarking.

3 Algorithms

In this section, we present the algorithm relative to our
fragile watermark scheme for XML data. The watermark,
which can be a white space or any combination of string
characters, is embedded in the tag name of an element
in the XML file as the technique detailed in [14]. The
verification process detects and locates any modification
that is made to the text within an element tag name or
the alteration of the value of its attributes and also the
insertion or deletion of one or several elements.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



3.1 Assumptions and Design Purposes

In this study, we only focus on the modification of the
data that are present within the tag name of an element
or the value of its attributes and the insertion or deletion
of elements.; Any changes that can be made on the tag
name itself or some structures of the XML file is not taken
into consideration. Since some proven methods and tech-
niques that are part of the XML standard such as Docu-
ment Type Definition (DTD) or schema can validate an
XML document, it seems legitimate in our work to focus
only on the data that are contained in the XML doc-
ument. The design purposes of watermarking schemes
are somewhat different according to specific applications.
The scheme used in this work is a fragile watermark for
tamper detection on XML data. An unauthorized user
will modify the XML document with the precaution of
making the modification undetectable by the watermark
verification process. This scheme can detect and locate
any modification that is made to an XML document,
since it is designed to be fragile. Also, this scheme is dis-
tortion free, which means that it doesn’t introduce any
distortion to the actual data that are contained in the
XML file. The followings are the properties of our fragile
watermark for XML data:

1. Invisibility: In our fragile watermarking scheme for
XML data, the embedded watermark doesn’t intro-
duce distortion to the data contained in the docu-
ment.

2. Prevent illegal embedding and verification: The wa-
termark embedding and verification process used in
the present scheme is regulated by a watermark key
and the number of groups. Only authorized people
with the key and the group number would be able
to embed and verify the watermark process.

3. Blind verification: The initial XML document that
is used during the watermark embedding process is
not required for the watermark verification.

4. Localization: If the XML document is tampered, the
embedded watermark should able to detect and nar-
row down the modification to a set of elements.

3.2 General Description

The algorithm used in our scheme takes a XML file and
embeds watermark into it. It then later takes the XML
file with embedded watermark to verify if the file was
tampered or not. To embed the watermark, the algo-
rithm first decomposes the XML file to elements. Each
element ei is identified with its pathi (the concatenation
of its tag name with all the tag names of its parents up to
the root of the XML document), its texti (the concatena-
tion of the text within the element tag name - leave of the

Table 1: Notations and Parameters

ei the ith element in the XMLFile or group

ω number of elements in the XMLFile

g number of groups for the XMLFile

v average number of elements in a group

hi element hash value (key, path, text and attributes)

H group hash

Gj the jth group

sj size of group j

K watermark embedding key

V watermark verification result for W

atti attributes list of element ei

texti all text within the element ei

pthi path from element ei to the root of the XML document

W watermark embedded in a group

W ′ watermark extracted in a group

element ei), and its attri (the concatenation of all the val-
ues of its attributes. After all the elements are identified
and retrieved, the algorithm computes the hash value of
each element according the watermark key, pathi, texti,
and attri. It then assigns each element to its relative
group according to its hash value of the element. After
the grouping, the elements are sorted in each group for
synchronization purpose; the hash value of each group is
processed according to the watermark key and the hash
values of all the elements in that particular group. The
extracted bits are retrieved from the group hash. The wa-
termark is embedded in the element tag name according
to the relative position and value of the extracted bits.

The verification process goes into the same steps, except
the fact that when extracted bits are retrieved, instead
of embedding the watermark, the relative position and
value of the extracted bits are checked against the em-
bedded watermark at the end of the element tag name
(if any was embedded). The watermark verification will
succeed if all the embedded watermarks are verified. The
localization of the tampered data will be narrowed down
to the groups that have a least one element that the em-
bedded watermark failed to be verified.

3.3 Decompose XML File to Elements

Algorithm 1 - Decompose XMLFile to elements - will
browse the XML file and retrieve the element - ei, the
path of the element - pthi, which is the concatenation of
the element tag name and all the element tag names of its
parents, the attributes - atti, which is the concatenation
of all the attribute values of the relative element, the
concatenation of text within the element tag - texti, and
the total number of element in the XML file - ω

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



Algorithm 1 Decompose XMLFile to elements
Input: XMLFile
Output: ei, pthi, atti, texti, ω
while not (End Of File) do

retrieve ei, pthi, atti, texti
end while
return ei, pthi, atti, texti, ω

Algorithm 2 Watermark embedding
1: For all k ∈ [1, g]
2: for i = 1 to ω do
3: hi = HASH(K, ei.pthi, ei.atti, ei.texti)
4: end for
5: k = hi mod g
6: Gk ← ei

7: for j = 1 to g do
8: Embed Watermark (K,h1, h2, · · · , hsG ) in Gj

//See algorithm 3
9: end for

3.4 Watermark Embedding

Algorithm 2 - Watermark embedding - completes the pro-
cess of the watermark embedding. It uses Algorithm 3.
Algorithm 2 computes the HASH of every extracted el-
ements. The HASH takes as parameters in following
order: the watermark key K, pthi, atti, and texti. It then
assigns the element ei to its corresponding group Gk ac-
cording the its HASH. Algorithm 2 then calls Algorithm
3 to actually embed the watermark in each group Gk.

3.5 Embed Watermark

Algorithm 3 - Embed Watermark - embeds the water-
mark in each group. In our scheme the watermark em-
bedding process and the watermark verification processes
are synchronized. There is an urgent need to keep syn-
chronization for the two processes, otherwise the water-
mark verification will fail even if the XML file wasn’t
tampered. For this reason, Algorithm 3 sorts elements
ei in the group according to their relative hash value.
Algorithm 3 computes the group HASH that takes as
parameters the watermark key K and the ordered ele-
ment HASH h′i. The watermark bits of the group are
then extracted. According to the value of the watermark
bit (in this case W [i] == 1 ) the watermark is embedded
in the tag name (in this case a white space).

3.6 Watermark Detection

The watermark key K and the number of group g used in
our scheme are known in advance on both side - the water-
mark embedding and watermark verification processes.
Algorithm 4 starts by extracting the XML element and
other necessary information from the XML file (ei, pthi,
atti, texti, and ω). It then computes the HASH of ev-

Algorithm 3 Embed Watermark
1: sort elements in the group according to their relative

hash value
2: H = HASH(K,h′1, h

′
2, ...h

′
Gj

) //h′i is the element
hash of the ith after ordering

3: W = extracBit(H, sG)
4: for i = 1 to sG do
5: if W [i] == 1 then
6: ei-elementTagName = ei-elementTagName +

WhiteSpace
7: end if
8: end for
9: extractBits(H, l){

10: if length(H ≥ l) then
11: W = concatenation of first l selected bits from H
12: else
13: m = l - length(H)
14: W = contatenation of H and extractBits(H, m)
15: end if
16: return W }

Algorithm 4 Watermark detection
1: decompose XMLFile to elements //See algo-

rithm 1
2: For all k ∈ [1, g]
3: for i = 1 to ω do
4: hi = HASH(K, ei.pthi, ei.atti, ei.texti)
5: end for
6: k = hi mod g
7: Gk ← ei

8: for j = 1 to g do
9: Watermark verification (K, h1, h2, · · · , hsG ) for Gj

//See algorithm 5
10: end for

ery extracted elements. The HASH takes as parameters
in following order: the watermark key K, pthi, atti, and
texti. It then assigns the element ei to its corresponding
group Gk according the itsHASH. After that, Algorithm
4 then calls Algorithm 5 for the watermark verification.

3.7 Watermark Verification

As we mention earlier, the watermark embedding process
and the watermark verification processes have to be syn-
chronized. Algorithm 5 starts by sorting elements ei in
the group according to their relative hash value. It then
computes the group HASH that takes as parameters the
watermark key K and the the ordered element HASH
(h′i). The watermark bits of the group are then extracted.
According to the value of the watermark bits, the test for
the verification is made. In this case W [i] == 1, Algo-
rithm 5 will check to see if there is a white space(or other
chosen embedded string character) at the end of the tag
name of the element. If W [i] == 0, the process checks
to see if there is no white space(or other chosen embed-

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



Algorithm 5 Watermark verification
1: sort elements in the group according to their relative

hash value
2: H = HASH(K, h′1, h

′
2, ...h

′
Gj

) //h′i is the element
hash of the ith after ordering

3: W ′ = extracBit(H, sG)
4: V = true
5: for i = 1 to sG do
6: if (W ′[i] == 1 and not (spaceEndTag(ei))) or

(W ′[i] == 0 and (spaceEndTag(ei))) then
7: V = true
8: end if
9: end for

10: spaceEndTag(e) {
11: if there is a space at the end of the tag name of the

element then
12: return true
13: else
14: return false
15: end if}

ded string character) at the end of the tag name of the
element. If either of the above test fails, Algorithm 5
detects a modification and retrieves the location of the
corrupted elements (all elements in the group that fail
the verification test).

4 Experiments

We used the programming language Java with the fol-
lowing characteristics: java version 1.5.0 06 Java(TM) 2
Runtime Environment, Standard Edition (build 1.5.0 06-
b05).

We also used the Java version of Apache Xerces as XML
processor with the following characteristic: Xerces-J 2.8.0
.

During the programming exercise the XML file is repre-
sented as DOM tree before manipulation.

The hardware used has the following characteristics: Dell
Dimension 8300, Intel(R). Pentium(R) 4 CPU 2.60GHz,
512 MB of RAM running Microsoft Windows XP Profes-
sional SP2.

For our experiment, we use an XML file with real data.
The characteristics can be seen in the tables 3 and 4.

The results of the tests done on our XML file can be seen
in the table 2. For each case(each line of the table), 10
tests were done(for a total number of 200 tests combined)
and the changes were applied randomly.

Note: success% = (total number of errors detected) /
(total number of expected errors to be detected). Since
some groups were actually bigger than others during this

Table 2: Experiment Results
Insertion of a Single Element

n g v succes%
1 4908 2 30%
1 981 10 100%
1 193 51 100%
1 99 96 100%

Deletion of a Single Element
n g v succes%
1 4908 2 20%
1 981 10 90%
1 193 51 100%
1 99 96 100%
Modification of a Single Element(atti and pathi)
n g v succes%
1 4908 2 50%
1 981 10 100%
1 193 51 100%
1 99 96 100%

Modifications of Multiple Elements
n g v succes% (m = 50)
50 4908 2 20%
n g v succes% (m = 10)
50 981 10 80%
50 193 51 100%
50 99 96 100%

Table 3: Characteristic of the XML Test File
Number of elements 9814
Number of attributes 143
Number of spaces 0

Table 4: Watermark Embedding and Verification Process
time

Parsing time XML to DOM object 390 ms
Watermark embedding 11718 ms
watermark Verification 13380 ms

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



experiment, v was processed as follow: (number of ele-
ments in the biggest group + number of elements in the
smallest group)/2. n represents the number of modified,
inserted or deleted elements.

Also, for the ”Modification of Multiple Elements” case,
we consider the number of modified groups m = 10, and
ki = kj (the number of modified elements in each mod-
ified group is equal). However for the first line v = 2,
50 groups were modified (one element in each modified
group). For the rest, 50 elements were modified with 5
elements in each of the 10 modified groups.

5 Conclusions

Through this work, we proposed an algorithm for tam-
per detection and localization for XML data Using fragile
watermarks. As the scheme described in [9], there is no
distortion of data during the watermark embedding and
verification process. As seen in the experimental results,
the probability of missing a detection is very low. Also we
will mention again the watermark embedding and verifi-
cation process are done in each group independently and
the scheme can detect and localize any modification with
a high probability.

References

[1] The W3C - World Wide Web Consortium, was
founded in October 1994 to lead the World Wide
Web to its full potential. www.w3.org

[2] C. Collberg and C. Thomborson Software wa-
termarking: models and dynamic embeddings In
Annual Symposium on Principles of Programming
Languages archive Proceedings of the 26th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, 1999.

[3] H. Wu and Y. Cheung A New Fragile Mesh Wa-
termarking Algorithm for Authentication In Pro-
ceedings of The 20th IFIP International Information
Security Conference, pp. 509–523, 2005.

[4] C. Rey and J. Dugelay A Survey of Watermarking
Algorithms for Image Authentication In JASP, No.
6, pp. 613-621, 2002.

[5] R. Agrawal and J. Kiernan. Watermark relational
databases. In Proc. of the 28th Inter. Conf. On Very
Large Data Bases, 2002.

[6] R. Sion, M. Atallah and S. Prahakar Watermarking
non-media content: XML and Databases In CE-
RIAS Security Symposium, 2001.

[7] X. Zhou, H. Pang, K. Tan and D. Mangla WmXML:
A System for Watermarking XML Data In Proceed-
ings of the 31st VLDB Conference, 2005.

[8] W. Ng and L. Lam Effective Approaches for Water-
marking XML Data In 10th International Confer-
ence on Database Systems for Advanced Applications
DASFAA, 2005.

[9] H. Guo, Y. Li, A. Liu and S. Jajodia A Fragile Wa-
termarking Scheme for Detecting Malicious Modifi-
cations of Database Relations In Information Sci-
ences , Vol. 176, No. 10, pp 1350-1378, 2006.

[10] H. Guo, Y. Li and S. Jajodia Chaining Watermarks
for Detecting Malicious Modifications to Streaming
Data In Information Sciences, to appear.

[11] O. Benedens and C. Busch Towards Blind Detec-
tion of Robust Watermarks in Polygonal Models In
Computer Graphics Forum, Vol. 19 Issue 3, p199,
10p, 2000.

[12] O. Harmanci and M. Mihcak Motion Picture Water-
marking Via Quantization of Pseudo-Random Lin-
ear Statistics In Proceedings of Visual Communi-
cations and Image Processing Conference (VCIP),
2005.

[13] X. Zhou, H. Pang, K. Tan and D. Mangla WmXML:
A System for Watermarking XML Data In Proceed-
ings of the 31st VLDB Conference, 2005.

[14] S. Inoue, K. Makino, I. Murase, O. Takizawa,
T. Matsumoto and H. Nakagawa A Proposal on
Steganography Methods using XML In Symposium
on Cryptography and Information Security, pp.301-
306 , 2002.

[15] R. Sion, M. Atallah and S. Prabhakar Resilient In-
formation Hiding for Abstract Semi-Structuresa In
Proceedings of the Workshop on Digital Watermark-
ing IWDW, Seoul, Korea, 2003.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007


