
Abstract— Automatic and dynamic generation of Web
applications is the future of Web applications development.
Database metadata holds a significant amount of information
which can be used for this purpose. Separation between content,
logic and presentation tasks cut down the cost of recoding and
recompiling web applications when a minor upgrading is needed.
Java and XML are among the most successful web technologies
due to their portability feature. In this paper we aim to investigate
how far can we go to make use of these technologies to develop an
abstract, faster to develop, easier to maintain and less error prone
Web application.

Keywords— JDBC, Metadata, Web application
interface, XML

I. INTRODUCTION

The interaction of database and Web is becoming the
cornerstone of developing Web application systems. Shifting
legacy data which was held in stand alone systems to be used in
Web application systems was an expensive and time consuming
chore for many corporations. HTML [1] and some server-side
technologies such as CGI [2], PERL [3], Cold Fusion [4] and
ASP [5] were widely adopted to put in action the above task.
Internet usage is growing exponentially, this fact forces many
corporations to upgrade and maintain their web application
systems frequently to be market competitive which leads to high
cost Web applications. To obviate this penalty, we propose
using database metadata that can be extracted from the
catalogue tables in relational database systems like PostgreSQL
[6] and MySQL [7] by making use of JDBC [8]. Although
involving database metadata, using HTML and server-side
technologies such as (Java Servlet [9] and JSP [10]) has
improved the development process overall, it does mix the
content, logic and presentation. As a result it was not possible to
change or improve the Web user interface without re-writing or
re-compiling the whole system. To avert this weakness, we
propose the development of a framework (Fig. 1) that fetches
database metadata via JDBC and converts it into an XML [11]

Fig. 1. Structure of the proposed framework

document via Java Servlet. The XML document can then be
transformed into HTML, XHTML [12] or any other sort of web
page by making use of an XSLT [13] stylesheet. As a result, all
business logic processes are performed by Java Servlet. XSLT
style sheet takes the responsibility of presentation task. Any
small alterations in XSLT stylesheet results in a new look Web
user interface without the need to recompile the system.

The remainder of this paper is organized as follow: In section
II, we present some previous academic papers that are related to
our work. Section III presents the framework life cycle and an
example is given for demonstration purpose. Section IV
describes the technique used to validate entry data. In Section
V, we introduce the reason behind developing a set of rules, a
sample of them is presented and this section is ended by a brief
discussion of the limitations of metadata and possible solutions.
Section VI concludes and gives directions for future research.

Using Database Metadata and its Semantics to
Generate Automatic and Dynamic Web Entry

Forms

Mohammed M. Elsheh and Mick J. Ridley

Manuscript received August 10, 2007.
Mohammed M. Elsheh is with the Department of Computing, Informatics

school, University of Bradford, BD7 1DP, UK (phone: +44(0)1274233659;
fax:+44(0)1274235856; e-mail: M.M.Elsheh@bradford.ac.uk).

Mick J. Ridley is with the Department of Computing, Informatics school,
University of Bradford, BD7 1DP, UK (phone: +44(0)1274233946; fax:
+44(0)1274 233920; e-mail: M.J.Ridley@bradford.ac.uk).

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

II. PREVIOUS RELATED WORK

Many efforts have been made in the last few years to enhance
the appearance and functionality of Web applications. This
section will focus on some of these efforts. The first suggests a
way that allows Web applications to access several databases.
The second aims to generate dynamic Web applications based
on database metadata held in database tables without making
use of XML technology. The third makes use of XML
technology but misses using database metadata.

Nguyen and Srinivasan [14] suggested a general purpose
solution which can be used to create Web applications that can
access several databases by using a page layout paradigm which
encapsulates HTML and SQL [15].This approach is based on a
flexible, general purpose variable substitution mechanism that
provides cross-language variable substitution between HTML
input and SQL query strings as well as between SQL result rows
and HTML output. They use the mechanism mentioned above in
the design and implementation of the system called DB2 WWW
Connection that enables quick and easy construction of
application that access relational DBMS data from the Web.

Elbibas and Ridley [16] proposed a method to generate
dynamic Web entry forms based on database metadata. A
database was queried and the extracted metadata was used to
build the web entry form. Form elements had been constructed
based on the metadata. For instance, size of the text field is
determined based on the length of that column. Also help
messages were generated by using Java and metadata. This
approach presented a good way to produce a dynamic user
interface, however, using a Java Servlet to produce HTML
forms directly led to the impossibility of altering the user
interface appearance without re-coding and re-compiling the
source code.

Kirda, E., C. Kerer, and G. Matzka in [17] describe how
XML/XSL can be deployed in creating adaptable database
interfaces using WebCUS, a tool they implemented to achieve
their goal. WebCUS uses XML/XSL technologies and their
MyXML template engine to generate Web forms from the
underlying database schema description and has support for
access control management. In WebCUS, the database schema
is represented in an external XML file separate from the
database. This XML information uses a special syntax to
describe the tables, columns, rows and relations between tables
in the database.

III. FRAMEWORK LIFE CYCLE

The life cycle of the proposed framework consists of several
stages. These stages are demonstrated as follow:

 A connection to a database system is made and
metadata about this database and its tables are
extracted via JDBC.

 Java Servlet class converts this metadata into an XML
document.

 This document is transformed into an XHTML
document by using an XSLT stylesheet in conjunction

with a set of rules (section V). This methodology
makes a clear separation between content, logic and
representation. A small alternation to a XSLT
stylesheet results in a new look Web user interface
without the need to re-write or re-compile the source
code.

 XHTML document is returned back to the client as a
Web form which enables the user to fill in. JavaScript
functions are invoked for validation purpose. Entered
data is submitted back to Java server to re-validate and
store it into database system.

This methodology unites the best characteristics of the above
methods (section II). Dynamic use of metadata via Java and
JDBC eliminates problems of separate storage of database
information but use of XML to describe database and form
elements allows much more flexibility in the user interface.

Example:

For demonstration purpose, the following tasks were
performed:

1. A database table was created as in (Fig. 2).
2. Metadata was retrieved via JDBC and converted into

XML document via Java code. As shown in Fig. 3,
metadata for each column in the database table is
presented as a single node in the XML document
which is <Form_Element>. Although JDBC fetches a
significant amount of metadata information, only
required information for generating and validating a
Web form entry is placed in the XML document.
Applying an XSLT stylesheet to this document
resulted in XHTML Web form as shown in Fig. 4.

3. At this stage the Web application allows the user to fill
in the form. Entered data is validated on client side
against the metadata in order to minimise the trips
between the server and the client. Finally this data will
be sent back to Java Servlet for extra validation to
maintain data integrity then it is stored into database.

As we can see in Fig. 2 database table consists of six columns.
Each column is mapped to a specific user interface element
based on a set of rules (Section V). However, Fig. 4 displays a
snapshot of an XHTML web form generated on the fly based on
database metadata. The web form contains only five Web form
elements due to the fact that the first column in database table
(id_card) is a Serial data type which means it is not mapped to
any form element and its value will be incremented
automatically when entered data is stored to database (section
V.1 Rule1).

However, first_name and last_name columns are mapped into
input text boxes with length size equal to 12 characters where as
address column is mapped to a text area form element since its
length is greater than 30 characters (section V.1 Rule3).
Database metadata is also used to give an indication of what
data type each field should accept (in the case of data types other
than strings) and whether it allows for null values or not.
Furthermore, metadata is used in conjunction with JavaScript to
display error messages informing the user of the name of the
field and its data type.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Fig. 2. Database table’s structure

IV. DATA VALIDATION

Since an XHTML Web form entry is generated automatically
and dynamically on the fly, a generic method for data validation
is needed to fit this approach. Two possible solutions are
considered to solve this issue. The first one is to use metadata
for each column located in the XML document to dynamically
generate JavaScript at the same time as the form is generated.
The second is to use the metadata to include the required
information to validate the form element in the name of the
element, as shown in the following program segment.

<input type=”text” name=”address” size=”35”
idtype=”String” idnull=”False”>.
 Then a generic JavaScript function is invoked to loop through
the form elements and parse the names to validate the data in the
element.

Although throughout this work only the second method was
implemented and tested, its functionality was good enough to
rely on without the need to consider the other method. However,
the implemented method can be contrasted to the first one since
it comes with a large amount of code on all pages, although that
the same block of code can be referenced by many pages
efficiency. The implemented method, however, has some
advantages compared to the first one. The first is that it is easier
to test the validity of what it is produced. The second, it moves a
lot of load to the client side whereas the validation code
production is loaded on the server-side in the first approach.

V. DEVELOPING THE RULES OR HEURISTICS

Clean separation between content, logic and presentation
tasks is the key of success for developing automatic and
dynamic Web applications. To achieve this goal by taking
advantage of database metadata, we propose to develop a set of
rules or heuristics which could be applied to database metadata
in order to produce abstract and generic Web entry forms.

Developing a set of rules is not arbitrary. It is based on
potential information that resides in database metadata and the
data itself. Since any Web user interface is built up of several
user interface controls such as those currently used in HTML
(radio button, drop down menu, input box, etc.), it will be more
efficient if we could generate a Web dynamic user interface on
the fly without the need to hard code the presentation of user

Fig. 3. XML document created from database metadata

interface following changes to database tables or data type of
each column in the database. By developing a set of rules, we
argue that it will be possible to automatically map each column

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

Fig. 4. A snapshot of an XHTML Web Entry Form
generated on the fly

in a database table to specific user interface control without
taking into account the way the browser will render the user
interface controls. Second, these rules can be used to maintain
database integrity. This can be achieved, for example, instead of
letting a non null Boolean column generate a database error; we
automatically generate an application that provides
TRUE/FALSE must be entered options and behaviour.

V.1. Examples of these rules

The set of rules shown below is built based on the columns’
data type. However, more rules can be built based on the
semantics of columns’ name.

 Rule1: If a column is a serial, then it should not be
mapped to any form element.

 Rule2: If a column is a foreign key, then get the
possible values from the referenced table and offer
them as choices initiated as a pull down menu if the
number of values is under a specific limit. This rule
shows the usage of database metadata to get the fact
that it is a foreign key and making use of the data itself
for possible values.

 Rule3: If a column is character type and less than 30
characters (for example), then it should be mapped to
text box. If longer than or equal to 30 characters it
could be mapped to textarea control.

 Rule4: If a column is a Boolean then refer it to a choice
and is implemented as a group of radio buttons in case
of HTML or XHTML Web forms. However, this
column could be implemented in other ways for
example in XForms where the browser has more
flexibility to render Web form elements.

 Rule5: If a column is a string and its length (l=x) then a
JavaScript function is called to check that the length of
input is acceptable.

This set of rules can be easily extended since there is a clear
methodology to implement such basic rules.

V.2. Limitation of database metadata

In the proposed framework, each database column is mapped
to a specific Web form element based on the metadata and set of
rules. Although JDBC retrieves a significant amount of
information about each column in database, the most reliable
piece of information that can give indication of how to perform
the mapping task is a column data type. However, this piece of
information is insufficient in some cases to generate a perfect
Web form entry. This raises interesting questions about the
limits of automation particularly in the context of
internationalization. For example, there is no fact that confirms
that a specific column is intended to be a password, there is no
password data type, but there may be a strong clue that we
require a password text box from its name. This leads us to
consider the issue of the semantic of columns’ names.

In our approach we have considered to tackle this issue,
another rule is developed and added to the rules’ list. For
instance, the following assumptions could be used to map a
specific database column into password text box instead of
input text box.
 If a column x is a String data type and its 6<= length <= 12 and
its name is password (or similar see below), then this column
should be mapped into a password text box.
 To make this assumption more general and less of an ad-hoc
solution, it is suggested that a list of “password” words could be
populated in an XML configuration file. This file could contain
non-English words such as French or Spanish words for
internationalization purposes.

Another example, as we can see in (Fig. 2) the sex column is a
Boolean and as a general rule, any Boolean column is mapped to
a group of radio buttons with a label True/False. However, to
give a meaningful label for this column, its name can be
interpreted and then the label is derived i.e. if a column’s name
is a sex or gender then the label should be presented as
Male/Female assuming that Male is associated with True and
Female with False. As in the password example, this may be
further internationalized via data in XML configuration files.

As it is assumed that any label is the actual value of the
column’s name in database. For enhancing the appearance of
Web forms, column’s name can be processed to produce an
elegant label. For example, a column’s name with more than one
word separated with underscore could be represented as a label
with underscores replaced with space and the first character of
words in upper case. For instance, if a column’s name is a
first_name it could be presented as First Name (See Fig. 4).

VI. CONCLUSION AND FUTURE DEVELOPMENTS

The proposed approach in this work suggests that generating
an abstract Web user interface for Web applications can be

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

achieved via the potential metadata that is stored in system
catalogue tables and integrating it with XML technology. This
offers a new solution for generating reliable Web user interface
for Web applications. Clean separation between content, logic
and presentation also is achieved which overcomes the existing
problems with old Web technologies such as Perl, ASP and JSP
that implemented in conjunction with HTML. However, more
work on the semantics of metadata is needed to achieve a high
percentage of web form accuracy.

XForms is a combination of two of the most successful
experiments ever performed with the Web: XML and forms
[18]. As a future work we aim to investigate and test for how we
can make use of XForms technology and database metadata in
solving browsers compatibility and how XForms features can
reduce or eliminate the need to use JavaScript for data
validation tasks.

REFERENCES

1. HTML Specifications.
http://www.library.cmu.edu/Unofficial/WebCourse/sp
ecs.html.

2. CGI Specification.
http://www.utoronto.ca/webdocs/HTMLdocs/NewHT
ML/bibliography.html#6.

3. The source for PERL.http://www.perl.com/.
4. COLDFUSION Developer's Journal.

http://coldfusion.sys-con.com/.
5. Meyer, J., Creating Database Web Applications with

PHP and ASP. 2003: Charles River Media.
6. PostgreSQL: The world's most advanced open source

database, http://www.postgresql.org/.
7. MySQL:: Developer Zone, http://www.mysql.org/.
8. Manu, K., An Introduction to JDBC. Linux J., 1998.

1998(55es): p. 2.
9. Hunter, J. and W. Crawford., Java Servlet

Programming. 1998: O'Reilly & Associates.
10. Java Server Pages Specifications version 2.1. 2006.

available online at: http://java.sun.com/products/jsp/.
11. Needleman, M.H., XML. Standards Update, 1999.

25(1): p. 117-121.
12. XHTML Specifications.

http://www.w3.org/TR/xhtml1/.
13. Burke, E.M., Java and XSLT. 2001: O'Reilly &

Associates, Inc., 101 Morris Street, Sebastopol, CA
95472.

14. Tam, N. and V. Srinivasan, Accessing relational
databases from the World Wide Web, in Proceedings
of the 1996 ACM SIGMOD international conference
on Management of data. 1996, ACM Press: Montreal,
Quebec, Canada.

15. SQL Language Reference.
http://ugweb.cs.ualberta.ca/~c391/manual/chapt6.ht
ml.

16. Elbibas, A. and M.J. Ridley. Developing Web Entry
Forms Based on METADATA. in International
Workshop on Web Quality in conjunction with ICWE

04- International Conference on Web Engineering.
July 27, 2004. Munich (Germany).

17. Kirda, E., C. Kerer, and G. Matzka. Using XML/XSL to
Build Adaptable Database Interfaces for Web Site
Content Management. in 23rd International
Conference on Software Engineering. 2001. Toronto,
Ontario, Canada.

18. Dubinko, M., XForms essentials. 2003, Sebastopol,
Calif ; Farnham: O'Reilly. xiv, 215 p.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

