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Abstract— In this study, we focus on the stability
analysis of equilibrium points of population dynamics
with delay when the Allee effect occurs at low pop-
ulation density is considered. Mainly, mathematical
results and numerical simulations illustrate the stabi-
lizing effect of the Allee effects on population dynam-
ics with delay.
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1 Introduction

Dynamic population models are generally described by
the differential and difference equations with or without
delay. These models have been considered by many au-
thors, for these related results we refer to [1], [4], [6]-[10].

In 1931, Allee [1] demonstrated that a negative density
dependence, the so called Allee effect, occurs when popu-
lation growth rate is reduced at low population size. The
Allee effect refers to a population that has a maximal per
capita growth rate at low density. This occurs when the
per capita growth rate increases as density increases, and
decreases after the density passes a certain value which is
often called threshold. This effect can be caused by dif-
ficulties in, for example, mate finding, social dysfunction
at small population sizes, inbreeding depression, food ex-
ploitation, and predator avoidance of defence. The Allee
effects have been observed on different organisms, such as
vertebrates, invertebrates and plants. (see, for instance,
[2], [3]).

The purpose of this paper is to study the following general
non-linear delay difference equation with or without the
Allee effect

Nt+1 = F (λ,Nt, Nt−T ), (1)
where λ is per capita growth rate which is always positive,
Nt represents the population density at time t, T is the
time sexual maturity. Here, F has the following form

F (λ; Nt, Nt−T ) := λNtf(Nt−T )

where f(Nt−T ) is the function describing interactions
(competitions) among the mature individuals. It is gen-
erally assumed that f continuously decreases as density
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increases. Mainly, we work on the stability analysis of
this model and compare the stability of this model with
or without Allee effects.

Eq. (1) is an appropriate model for single species with-
out an Allee effect. Therefore, a natural question arising
here is that ”How the stability of equilibrium points are
effected when an Allee effect is incorporated in Eq. (1)” .
In this work, we answer this question, especially, for the
case when T = 1.

2 Stability analysis of Eq. (1) for T = 1

Before we give the main results of this paper, we shall
remind the following well-known linearized stability the-
orem (see, for instance, [5] and [9]) for the following non-
linear delay difference equation

Nt+1 = F (Nt, Nt−1). (2)

Theorem A (Linearized Stability). Let N∗ be an equi-
librium point of Eq. (2). Then N∗ is locally stable if and
only if

|p| < 1− q < 2,

where

p :=
∂F

∂Nt
(N∗, N∗) and q :=

∂F

∂Nt−1
(N∗, N∗).

We now consider the following non-linear difference equa-
tion with delay

Nt+1 = λNtf(Nt−1) =: F (λ; Nt, Nt−1), λ > 0, (3)

where λ is per capita growth rate, Nt is the density at
time t, and f(Nt−1) is the function describing interac-
tions (competitions) among individuals. Firstly, we as-
sume that f satisfies the following conditions:

1◦ f ′(N) < 0 for N ∈ [0,∞); that is, f continuously
decreases as density increases.

2◦ f(0) is a positive finite number.

Then we have the following result.
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Theorem 1 Let N∗ be a (positive) equilibrium point of
Eq. (3) with respect to λ. Then N∗ is locally stable if
and only if

N∗ f ′(N∗)
f(N∗)

> −1. (4)

Proof. By hypothesis, we have

1 = λf(N∗). (5)

Let p := FNt(λ; N∗, N∗). Then, the equality (5) implies
that p = 1. Also, observe that

q := FNt−1(λ; N∗, N∗) = N∗ f ′(N∗)
f(N∗)

. (6)

Theorem A says that N∗ is locally stable if and only
|p| < 1 − q < 2. Since p = 1, we conclude that N∗ is
locally stable if and only if −1 < q < 0. However, since
f is a decreasing function for all N , we get from (6) that
the inequality q < 0 is always valid. So the proof is
completed.

Now we find a sufficient condition that increasing λ in
Eq. (5) decreases the stability of the corresponding equi-
librium points.

Theorem 2 Let λ1 and λ2 be positive numbers such that
λ1 < λ2, and let N (1) and N (2) be corresponding positive
equilibrium points of Eq. (3) with respect to λ1 and λ2,
respectively. Then the local stability of N (2) is weaker
than N (1) provided that

N(2)∫

N(1)

[N(log f(N))′]′ dN < 0 (7)

holds; that is, increasing λ decreases the local stability of
the equilibrium point in Eq. (3) if (7) holds.

Proof. By the definitions of N (1) and N (2), it is easy to
see that

1 = λ1f(N (1)) and 1 = λ2f(N (2)). (8)

Since λ1 < λ2, it follows from (8) that f(N (1)) > f(N (2)).
Also, since f is decreasing function, we have N (1) < N (2).
Now, for each i = 1, 2, qi := FNt−1(λi; N (i), N (i)). Then,
we can easily get that

qi = N (i) f
′(N (i))

f(N (i))
for i = 1, 2

holds. So, by Theorem 2.1, each N (i) is locally stable if
and only if

N (i) f
′(N (i))

f(N (i))
> −1 for i = 1, 2. (9)

If the condition (7) holds, then we have

N (1) f
′(N (1))

f(N (1))
> N (2) f

′(N (2))
f(N (2))

. (10)

Now by considering (9) and (10) we can say that the local
stability in N (2) is weaker than N (1), which completes the
proof.

The following condition is weaker than (7), but it enables
us to control easily for increasing λ being a destabilizing
parameter.

Corollary 3 Let λ1, λ2, N (1) and N (2) be the same as in
Theorem 2.2. Then the local stability of N (2) is weaker
than that of N (1) provided that

[
N (log f(N))′

]′
< 0 for all N ∈ [N (1), N (2)]. (11)

Remark If there is no time delay in model (3), i.e.,

Nt+1 = λNtf(Nt) =: F (λ; Nt), λ > 0, (12)

then we have the same result as in theorem 2 where the
stability condititon reduces to

N (i) f
′(N (i))

f(N (i))
> −2 for i = 1, 2. (13)

See Example 2 below.

Example 1 Consider the difference equation

Nt+1 = λNt

(
1− Nt−1

K

)
, λ > 0 and K > 0, (14)

with the initial values N−1 and N0. An obvious drawback
of this specific model is that if Nt−1 > K and Nt+1 < 0.
However, if we assume 0 < N−1 < K and 0 < N0 < K,
then, by choosing appropriate λ > 0, we can guarantee
that Nt > 0 for any time t. According to this example
f(N) = 1−N/K. In this case, we have, for all 0 < N < K,

[
N (log f(N))′

]′
= − K

(K −N)2
< 0.

So, by Corollary 2, we easily see that if the λ increases,
then the local stability in the corresponding equilibrium
point of Eq. (14) decreases.

Example 2 Consider the difference equation with no de-
lay term

Nt+1 = λNt exp[r(1−Nt/K)] (15)

λ > 0, r > 0 and K > 0,with the initial value N0. Ac-
cording to this model

f(N) = exp[r(1−Nt/K)].

In this case, we have, for all N > 0,

[
N (log f(N))′

]′
= −N

r

K
< 0.

So, Corollary 2 immediately implies that if λ increases,
then the local stability of the corresponding equilibrium
point of Eq. (15) decreases.
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3 Allee effects on the discrete delay
model (3)

3.1 Allee effect at time t− 1

To incorporate an Allee effect into the discrete delay
model (3) we first consider the following non-linear dif-
ference equation with delay

Nt+1 = λ∗Nta(Nt−1)f(Nt−1) =: F (a−)(λ; Nt, Nt−1),
(16)

where λ∗ > 0 and the function f satisfies the conditions
1◦ and 2◦. As stated in the first chapter, the biological
facts lead us to the following assumptions on a :

3◦ if N = 0, then a(N) = 0; that is, there is no repro-
duction without partners,

4◦ a′(N) > 0 for N ∈ (0,∞); that is, Allee effect de-
creases as density increases,

5◦ limN→∞ a(N) = 1; that is, Allee effect vanishes at
high densities.

By the conditions 1◦ − 5◦, Eq. (16) has at most two
positive equilibrium points which satisfy the equation of

1 = λ∗a(N)f(N) := h(N).

Assume now that two equilibrium points N∗
1 and N∗

2

(N∗
1 < N∗

2 ) exist so that we have h(N∗
1 ) = h(N∗

2 ) = 1. In
this case, by the mean value theorem, there exists a crit-
ical point Nc such that h′(Nc) = 0 and N∗

1 < Nc < N∗
2 .

Then we have the following theorem.

Theorem 4 The equilibrium point N∗
1 of Eq. (16) is

unstable. On the other hand, N∗
2 is locally stable if and

only if the inequality

N∗
2

(
a′(N∗

2 )
a(N∗

2 )
+

f ′(N∗
2 )

f(N∗
2 )

)
> −1 (17)

holds.

Proof. Notice that since for each i = 1, 2, N∗
i is positive

equilibrium point of Eq. (16), we have

p∗i := F
(a−)
Nt

(λ∗, N∗
i , N∗

i ) = λ∗a(N∗
i )f(N∗

i ) = 1

and

q∗i := F
(a−)
Nt−1

(λ∗, N∗
i , N∗

i ) = N∗
i

(
a′(N∗

i )
a(N∗

i )
+

f ′(N∗
i )

f(N∗
i )

)
.

(18)
Then, by Theorem A, we get

N∗
i is stable ⇔ |p∗i | < 1− q∗i < 2

⇔ −1 < q∗i < 0 for i = 1, 2.

Since N∗
1 ∈ (0, Nc), it is easy to see that q∗1 > 0, which

implies that N∗
1 must be unstable. On the other hand,

for N∗
2 ∈ (Nc, +∞) the inequality q∗2 < 0 always holds so

that N∗
2 is locally stable if and only if (17) holds.

Now, choose λ = λ∗a(N∗
2 ) and consider the following

Nt+1 = λNtf(Nt−1) =: F (λ; Nt, Nt−1) (19)

Then observe that N∗
2 is also positive equilibrium point

of Eq. (19). Furthermore, since a(N∗
2 ) < 1 and λ =

λ∗a(N∗
2 ), we get λ < λ∗.

We have the following result.

Theorem 5 The Allee effect increases the stability of
the equilibrium point, that is, the local stability of the
equilibrium point in Eq. (16) is stronger than that of in
Eq. (19).

Proof. By the definition of a, for each i = 1, 2, we get

N∗
2

(
a′(N∗

2 )
a(N∗

2 )

)
> 0,

which yields

N∗
2

f ′(N∗
2 )

f(N∗
2 )

< N∗
2

(
a′(N∗

2 )
a(N∗

2 )
+

f ′(N∗
2 )

f(N∗
2 )

)
. (20)

Now considering (20), Theorem 2 and Theorem 3.1 we
can say that the stability in Eq. (16) is stronger than the
stability in Eq. (19).

Observe that Theorem 5 implies the following result.

Corollary 6 There is a locally stable equilibrium point
for Eq. (16) such that it is unstable for Eq. (3)

3.2 Allee effect at time t

In this part we incorporate an Allee effect into the discrete
delay model (3) as follows:

Nt+1 = λNta(Nt)f(Nt−1) =: F (a+)(λ;Nt, Nt−1). (21)

Assume now that N∗
1 and N∗

2 (N∗
1 < N∗

2 ) are positive
equilibrium points of Eq. (21).

Then we have the following theorem.

Theorem 7 We get that N∗
1 is an unstable equilibrium

point of Eq. (21). On the other hand, N∗
2 is locally stable

if and only if the inequality

N∗
2

f ′(N∗
2 )

f(N∗
2 )

> −1. (22)

holds.

Proof. Since, for each i = 1, 2, N∗
i is positive equilibrium

point of Eq. (16), we have

p∗i := F
(a+)
Nt

(λ∗, N∗
i , N∗

i ) = 1 + N∗
i

a′(N∗
i )

a(N∗
i )
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and

q∗i := F
(a−)
Nt−1

(λ∗, N∗
i , N∗

i ) = N∗
i

f ′(N∗
i )

f(N∗
i )

.

Then, by Theorem A, we get for each i = 1, 2

N∗
i is stable ⇔ |p∗i | < 1− q∗i < 2

⇔ 1 + N∗
i

a′(N∗
i )

a(N∗
i
) < 1−N∗

i
f ′(N∗

i )
f(N∗

i
) < 2.

⇔ N∗
i

a′(N∗
i )

a(N∗
i
) < −N∗

i
f ′(N∗

i )
f(N∗

i
) < 1

i.e.,

N∗
i

(
a′(N∗

i )
a(N∗

i )
+

f ′(N∗
i )

f(N∗
i )

)
< 0 < 1 + N∗

i

f ′(N∗
i )

f(N∗
i )

.

Since N∗
1 ∈ (0, Nc), it is easy to see that

N∗
1

(
a′(N∗

1 )
a(N∗

1 )
+

f ′(N∗
1 )

f(N∗
1 )

)
> 0,

which implies that N∗
1 is an unstable equilibrium point.

Furthermore, since N∗
2 ∈ (Nc,+∞), the inequality

N∗
2

(
a′(N∗

2 )
a(N∗

2 )
+

f ′(N∗
2 )

f(N∗
2 )

)
< 0

always holds. So N∗
2 is locally stable if and only if (22)

holds.

Let N∗ be a positive equilibrium point of Eq. (3). So,
by the choice of λ = λ∗a(N∗), N∗ is also an equilibrium
point of Eq. (21). In this case, combining Theorem 1
with Theorem 7, we get the following result at once.

Corollary 8 Equilibrium point N∗ is locally stable for
Eq. (21) if and only if it is locally stable for Eq. (3).

4 Numerical simulations

In this section, we numerically verify our analytical re-
sults (or theorems) obtained in previous sections by using
MATLAB programming. In Matlab programs, by taking
the initial conditions of the population density as N−1

and N0 in the difference equations we compute Ni’s for
the model that we discussed in previous sections. After
computing Ni’s, mainly we illustrate the graph of the tra-
jectory of models in 2D graph in which we can see the
stability of equilibrium points. Note that in each graph,
we connect the discrete points of population by straight
lines.

As we prove analytically in Theorem 2, if we graph the
population density function Nt with respect to t (time) in
the model (14) of Example 1, we can easily see in Figure
1- (a)-(b)-(c) that as the parameter λ increases, the local
stability of the equilibrium points decreases.

In Figure 2 we graph the 2D trajectory of the population
dynamics model (14) respectively with and without Allee
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Figure 1: Density-time graphs of the model (14) with
K = 1 and the initial conditions N−1 = 0.2 and N0 = 0.3.
(a) λ = 1.4. (b) λ = 1.7. (c) λ = 1.95.
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Figure 2: Density-time graphs of the models Nt+1 =
λNt(1−Nt−1/K) and Nt+1 = λ∗Nta(Nt−1)(1−Nt−1/K)
with K = 1, λ = 1.9, a(Nt−1) = Nt−1/(α + Nt−1), α =
0.03, λ = λ∗a(N∗) and the initial conditions N−1 = 0.2
and N0 = 0.3.
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effect at time t−1, which verifies our Theorem 4. In these
figures we take the Allee effect function as a(Nt−1) =
Nt−1/(α + Nt−1), where α is a positive constant. As we
can see from the graph that population density function
obviously verify that when we impose the Allee effect at
time t−1 into our model in Example 1, the local stability
of the equilibrium point increases and trajectory of the
solution approximates to the corresponding equilibrium
point much faster.
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N
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1/N
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Figure 3: Bifurcation diagram of the models in Figure 2
with K = 1, α = 0.06, λ = 1.9 : 0.001 : 2.3, λ = λ∗a(N∗)
and the initial conditions N−1 = 0.2 and N0 = 0.3.

Finally, Figure-3 shows bifurcation diagram of the model
in Example 1 as a function of intrinsic growth rate λ with-
out the Allee effect (on the left) and with the Allee effect
(on the right). In this numeric simulations, N−1 = 0.2
and N0 = 0.3 are taken as the initial conditions as in
the previous calculations. Here we again take the Allee
function as a(Nt−1) = Nt−1/(α + Nt−1), where α is a
positive constant. It is obvious from the graph that the
comparison of bifurcation diagrams still verifies the sta-
bilizing effect of Allee effect. Besides this result, we also
observed that the Allee effect diminishes the fluctuations
in the chaotic dynamic which is different from the results
obtained in the former studies.

5 Conclusions and remarks

Previous studies demonstrate that Allee effects play an
important role on the stability analysis of equilibrium
points of a population dynamics model (see, for example,
[10] and [6]). Generally, an Allee effect has a stabilizing
effect on population dynamics. In this paper, we consider
a second order discrete models (i.e. with delay), where
increasing per capita growth rate decreases the stability
of the fixed point. First, we characterized the stability
of equilibrium point(s) of this model. Imposing an Allee

effect into the system, the stability of equilibrium points
were also studied. Keeping the normalized growth rate
the same, we compared the stability of the same equilib-
rium point corresponding to the model with and without
Allee effect.
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[9] Kulenović MRS, Ladas G and Prokup NR. ”A ratio-
nal difference equation” Comput. Math. Appl. V41,
pp.671-8, 01.

[10] Scheuring I. ”Allee effect increases the dynami-
cal stability of populations”, J. Theor. Biol. V199,
pp.407-14, 99.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007


