
  
Abstract—In this paper, we introduce,  a new algorithm, 

QcleanNoise, for detecting   noisy  instances. The effects of the 
algorithm in three supervised classifiers: LDA, KNN and 
RPART, a decision tree classifier,  are discussed. Comparison 
with other procedures is carry out on four well known Machine 
Learning datasets.  The experimental results shows that our 
algorithm performs better than current procedures detecting 
efficiently  noisy instances using less computational time.  
 

Index Terms—Noise removal, data preprocessing, supervised 
classification, instance selection.  
 

I. INTRODUCTION 
  The ideal situation for extracting knowledge from a dataset is 
when  it does has neither outliers nor  noise. However, 
real-world databases are usually dirty and a cleaning process is 
required before performing a data mining task. The noise in a 
dataset may deteriorate  the performance of a classifier applied 
on it, since the  misclassification error as  well as the 
computing time may increase and the classifier and decision  
rules obtained could be more complex. 
In a supervised classification context, the quality of a dataset is 
characterized by two information sources: the predictor 
attributes and the categorical attribute which defines the 
classes. The quality of the predictors is determined by their 
quality to represent the instances to be classified, and the 
quality of the class attribute is determined by the correct 
assignment of each instance. 
The quality of a dataset is determined by internal and external 
factors. The internal factor reveals if the predictors and the 
classes has been correctly selected and are well defined. The 
external factor measures errors introduced in the predictors or 
in the class assignment, either systematically or artificially. In 
particular, an instance contains noise when it causes problems 
due to external reasons.   
According to  Zhu et al., (2003), the minimum 
misclassification error depends on the quality of the 
information contained on the training set and on the bias of  the 
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induction algorithm used to carry out the classification. This 
means that improving the data quality of the training set will 
reduce the misclassification error.  The classifier will 
perform better using a clean training set. 
Two type of noise can be distinguished (Zhu et al., 2003, 
2006): 
a) Noise in the attributes: It is given by the errors occurred 
during the entrance of the values of the attributes. Among 
the sources of this type of noise are:  variables with missing 
values, and redundant data. 
b) Noise in the classes: It is given by the errors introduced 
during the assignment of the instances to the classes.  The 
presence of this kind of  noise may be due to subjectivity, 
errors in the data entry process, and incorrect information for 
assigning a instance to a class.  There are two possible 
sources of class noise: i) Inconsistent instances. These are 
instances with the same attribute values  but belonging  to 
two or  more different classes of the dataset, and ii) Error in 
the classification. Instances assigned incorrectly to a class. 
This type of error usually happens when there are classes 
with similar values for the attributes. 
The presence of noise in the classes affects significantly the 
performance of a classifier, since it modifies the class 
boundaries and it becomes more difficult to determine them. 
The instances representing noise cause that a classifier  
assigns  incorrect classes to  instances that are correctly 
labeled. Thus, noisy instance have a direct effect on the 
accuracy of the classifier. 
In this paper, we propose a new strategy for  searching and 
identification of noisy instances in a training dataset.   A 
comparative study of the effect of  noise removal on the 
misclassification error is carry out.  The  proposed technique 
identifies efficiently the noisy instances. Which then are 
removed from the training data. The remaining instances are 
used to construct the classifier and the misclassification error 
is estimated using cross-validation   This noise removal 
process is applied to four datasets using three classifiers: 
Linear Discriminant Analysis (LDA) , a decision tree 
classifier based on recursive partitioning  (RPART) and the 
k-nn classifier (KNN ).  All three classifiers are available in 
the Rsystem for statistical computation and graphics 
(http://cran.r-project.org). 

II. PREVIOUS WORK 
The problem of classification under the presence of noise has 
called the attention of researchers in the Machine  Learning 
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field and  some algorithms of inductive learning have already 
mechanisms to handled  noise. Quinlan (1986) pointed out that 
when there are high levels of noise in the classes, then to clean 
out the training set previous to the construction of the classifier 
improves its predictive power. For instance, the purpose of the 
pruning process in a decision tree is to reduce the overfitting 
effect, which is  due to the presence of noise on the training set. 
Other alternative is to use combination of  classifiers such as, 
Bagging  (Breiman, 1996) and Boosting (Freund and Schapire, 
1996). Unfortunately, pruning and combination of classifiers 
solve partially the problems caused by the noise. Still the noise 
can affect dramatically the misclassification error, specially 
when there is a high  level of noise. Gamberger et al. (1999, 
2000), suggest that the noise must be eliminated before the 
construction of the classifier and,  in this way the noisy 
instances will not have influence on the classifier.  
There are several procedures to identify noisy instances. 
Guyon et al. (1996) use the criterion of the maximum 
information gain,  Gamberger, et al., (1999), use a method 
called  saturation filter. 
In other methods, the instances considered potentially as noise 
are detected and removed using  C4.5 (John 1995, Zhu et al., 
2003), or neural networks  (Zeng and Martinez, 2003). Some 
authors  (John, 1995, Brodley and Friedl 1996, 1999), use a 
procedure similar to remove outliers in regression. That is,  
they use the same model to detect outliers and to determine the 
final model once that the outliers are removed.  John (1995), 
presents a  robust  classifier based on decision trees, which 
eliminates outliers executing repetitively the C4.5 classifier. 
Brodley and Friedl  (1996, 1999), develop a similar strategy 
but use cross-validation to reduce the number of iterations. 
They propose a model for filtering instances. The initial 
training set that contains noise is filtered using several 
strategies in order to obtain a new clean  set, which is used to 
construct the classifiers. Several classification algorithms are 
used to construct the filter, and one instance in the test set is 
considered as noise if it is incorrectly classified for at least one 
classifier. 
There are several variants of the method depending on the 
criterion used to consider an instance as noise as well on  the 
number of classifiers used as filter.  In  Brodley and  Friedl 
(1999), different configurations are evaluated empirically 
using one single classifier as a filter or several classifiers using 
either majority voting or consensus voting.  The later type of 
voting means that an instance is considered as noise if it is 
incorrectly classified for all the classifiers used as filter. In 
voting for majority an instance is considered as noise if it is 
classified incorrectly for more of  the half of  the classifiers.  In 
case that only one classifier is used as filter, every instance 
incorrectly classified  is considered as noise and it must be 
removed. 
Zhu  et al., (2003, 2006), focused in the problem of  cleaning 
large and distributed  databases. In their procedure, they 
carried out first a partition of the whole training set, E, in 
disjoint subsets, each of them sufficiently small to be processed 
by a classification algorithm.  For each subset a classifier is 

generated. These classifiers are later used to evaluate the 
whole dataset.  A given instance, is counted   an error if it has 
been identified as noise for all the subsets.  An instance with 
large value in the counting error it  will have a high 
probability to be considered as noise.  In order to identify 
and delete noisy instances, the authors use  two strategies: 
majority and  non-objection. Other proposals for detecting 
noise are given by  Lawrence and Schölkopf (2001), and  Li 
(2004). As we can see most of the  work has been done on 
noise detection in supervised classification problems, but 
there is not much work on noise for unsupervised 
classification ( see Xiong et al., 2006). 
In the following section, we present  a new algorithm to 
detect class noise based on the quality of instances. 

 

III. THE PROPOSED ALGORITHM 
According to the definition of class noise (Zhu et. al., 2003), 
the noisy instances  will be those  that are badly located in the 
cloud of points that define each of the classes (see  figure 1). 
We introduce a measure to evaluate the quality of an 
instance. Thus, for   the i-th instance, we compute 
Qi=(ri-di)/max(di,ri) , where di is the distance of the i-th  
istance to the centroid of its class and ri is the minimum 
distance of the i-th instance to the centoid of the classes 
where does not belong to. A noisy instances will  have 
negative values for the quality measure Q. However, some 
instances located near to  the boundary of two or more 
classes may also have small negative values for the quality 
measure.   
 

 

 
 

Figure 1.  Graphical representation of class 
noise 

 
The proposed algorithm identifies the noisy instances and 
distinguishes them from the instances that are in class 
boundary.  The goal of the algorithm is to  identify and  
delete the noisy instances, preserving the class distribution 
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and the classes boundaries such that the neither separability of 
the classes nor the discriminant power of the classification 
algorithm is altered. 
The Fig. 2, shows our QcleanNOISE algorithm. First, the 
quality measure Q is computed for each instance of the training 
set. Then , each instance with Q<0 is regarded as a candidate to 
be a noisy instance. The next step is to find out the k nearest 
neighbors  to each  noisy instance candidate. Finally,  we count 
the number of neighbors that belong to the same class. If the 
majority of the neighbors does not belong to the same class the 
candidate instance is then regarded as noisy  and discarded 
from the training set. 
The computational complexity of the proposed algorithm is, in 
the worst case, ( )2NO . Observing the computational work 
carried out  by the algorithm, we can see that the computation 
of the quality measure and the selection of the noisy instances 
candidates have linear complexity ( )NO . The search for the 
nearest neighbors determines the quadratic complexity  part of 
the algorithm.  However, the search is done only among the 
instances candidate to be noise rather than in the whole training 
set. On the other hand, in the implementation of the algorithm, 
we have use the  Approximate Nearest Neighbor (ANN) library 
(Mount and  Arya, 1997), where the search for the nearest 
neighbors is done in   ( ))log(NNO . 
 
 
QcleanNOISE(Training Dataset E) { 
 For( each instance Ii in E)  
  Find out its quality measure Q(Ii) 
 endFor 
         CandNoise = Φ 
 For( each instance Ii in E) 
  if ( Q(Ii) < 0 ) 
   CandNoise = CandNoise U { Ii } 
 endFor 
 For( each instance Ii in CandNOISE) 
  Find out its  k nearest neighbors NN in E 
  Count(I) =0 
  For( each NN of Ii )  
   if (Class(NN) ==Class(Ii) ) Count = Count +1  
 endFor 
 For( each instance Ii in CandNOISE) 
  if (Count(I) < (k+1)/2 ) E = E - { I }  
 endFor 
 Return E 
} 
 
Figure 2. Algorithm QcleanNOISE 
 

IV. EXPERIMENTAL RESULTS 
A. Methodology 

In this section, we present experimental results on the 
performance of the proposed algorithm as well  as 
comparisons with the Brodley and Friedl’s proposals. The 
accuracy of three classifiers,  LDA, KNN y RPART is 
measured after  noise removal.  Four well-know datasets: 
Iris, Breastw, Segment and  Landsat are used in the 
experiments. 
Noise is introduced in the datasets  in the same way as  it is 
done by several authors  (Brodley and Friedl, 1999;  Zhu et 
al., 2003; Gamberger et al., 1999, 2000).  In this procedure, 
given a pair of classes (X, Y) and  a noise level  w, an instance 
labeled with the class X will have a   w% of probability to be 
changed to the class Y, and  vice versa.  According to,  Zhu 
et al., (2003), this procedure is justified due that in real 
situations only some classes tend to produce  noise.  It is 
clear that  adding  noise in this way, the percentage of noise 
with respect to the whole training set will be  than w%.  In 
our experiments, we introduce noise only into the two 
classes with the largest amount of instances in the training 
set. 
In each experiment, we use 10-fold cross-validation  to 
estimate the misclassification error. Thus, a 10%  of  the data  
is considered  as a test set and the remaining 90% is regarded 
as the training set.  In this last set, we introduce noise as is 
explained above and the performance of the  classifier is 
evaluate in the test set.  In order to evaluate the effectiveness 
of the noise detection method, we use the same measures 
proposed by  Brodley and Friedl, 1999, and   Zhu et al., 
2003; These  measures are the following: 

1E R D R R= ∩ % % , 
2E R D R R= ∩%  and the noise 

elimination precision, NEP, NEP D R D= ∩ . where, D = 

set of  instances  that are detected as noise and are 
eliminated, and  R = set of noisy instances. D%  and  R%  
represent their respective complement.  ER1, occurs when a 
non-noisy instance is considered as noise, ER2, occurs when 
a noisy instance is considered as an instance correctly 
labeled. The NEP measures the proportion of noisy instances 
that are detected as noise.  
 
B. Results 
The table I shows the values of each of the measures defined 
above, for our algorithm, QcleanNOISE, and for the three 
alternatives proposed by  Brodley and Friedl (1999),  on the 
Iris dataset. The results are based  on fifteen repetition of the 
experiment. The proposed algorithm QcleanNOISE detects a 
less number of good instances  as  noisy (ER1), than the 
Brodley’s method  that uses voting by consensus. At  low 
level of noise,  less than   10%,  the elimination strategies 
using   Majority  and Consensus voting,  show low levels of 
noise detection for good instances (ER2).  But, at high level 
of noise, greater than 20%, the levels of  the   ER2 error  
increases quickly.  The problem in  having large values  of   
ER1 and  ER2,  is that the noise detection method is 
discarding many good 
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Table I.  Measures  of noise removal on the Iris dataset 
 

QcleanNOISE Single Majority Consensus Noise 
ER1 ER2 NEP ER1 ER2 NEP ER1 ER2 NEP ER1 ER2 NEP 

5% 0.1 0.0 97.5 4.4 6.7 55.3 0.5 0.0 94.6 0.1 1.3 97.5 
10% 0.2 2.2 97.9 10.1 12.7 50.0 0.5 0.0 96.7 0.2 5.3 98.1 
20% 0.3 5.7 98.5 19.5 20.3 50.3 3.4 2.0 87.9 0.2 25.0 98.9 
30% 0.4 16.5 98.6 27.7 32.2 50.4 11.7 10.4 75.9 1.5 41.6 94.5 
40% 0.4 27.9 98.6 38.2 39.5 50.6 23.4 21.0 68.7 7.9 55.7 78.4 
45% 0.6 41.1 98.3 42.7 46.1 50.0 37.8 35.6 57.3 10.9 66.7 70.2 

instances since consider them as noise and/or retaining many 
noisy instances since it is considered them  as  good 
instances.  This problem causes that the classification 
algorithms constructed using training sets clean out and 
having large values of ER1 and/or  ER2, tend to loss precision 
giving high misclassification errors.  This can be seen in 
table II. Our algorithm, QcleanNoise, presents low levels of    
ER1  and moderate levels  of  ER2, that lead to a better 
precision for the three classifiers studied (see Figs.  3 and 4 ). 
Regarding  the precision for noise detection in the Iris 
dataset, we can see that our algorithm presents a better 
precision for all noise levels considered. 
 

Table II.   Misclassification error rates for the LDA 
classifier at different levels of noise removal using four 

detection methods on the Iris dataset. 
 

    Brodley   

Noise None Single Majorit
y Consensus QcleanNOISE

5% 4.7 2.0 2.6 2.1 2.0 
10% 7.0 2.2 2.5 2.3 2.1 
20% 10.7 3.7 3.0 4.3 2.1 
30% 13.2 8.6 5.3 9.1 2.2 
40% 15.5 14.2 11.2 13.5 2.6 

45% 22.7 20.4 16.9 19.6 2.3 
 
For the Breastw dataset, we can see a similar behavior as the 
Iris dataset, in both the measures for noise detection as well 
as in the misclassification error rate (see Fig. 6). As in Iris, 
for QcleanNoise,  the levels of ER1 are quite low, less than  
2%, keeping moderate levels of  ER2. Also, the precision of 
noise detection has large values compared with the other 
alternatives. With respect to the misclassification error rates, 
we can see that they remain steady  when the noise levels 
increases, whereas the misclassification error rates  using the 
Brodley’s methods  raise drastically.  Fig 5 shows the 
behavior of the misclassification error rate for the RPART 
classifier on the Breastw dataset at several noise levels. 
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Figure 3.  Misclassification error rates for the KNN 

classifier at different levels of noise removal using four 
detection methods on the Iris dataset 
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Figure 4.  Misclassification error rates for the RPART 
classifier at different levels of noise removal using four 

detection methods on the Iris dataset 
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The third  dataset,  Segment, has  7 classes, each of them 
with 330 instances. Under the scheme used to introduce 
noise into the  classes, a 5% of noise introduced into two 
classes is approximately   1.5% of noise in the whole dataset,  
and 13% approximately  for a  45%. This  will diminish the 
impact of noise on the misclassification error rate as it is 
visualized in Figs. 6 and  7.  We can see a similar impact of 
the detection methods on the misclassification error rates up 
to a 30% of introduced noise. However, the tendency is the 
same as observed in the Iris and Breastw datasets. Table III 
shows that  QcleanNoise outperforms the other noise 
detection methods in bot ER1 amd NEP, but Brodley’s 
majority voting yields better ER2 values that QcleanNoise. 
In the last dataset, Landsat, there are 6 classes and the two 
classes with the most amount  of instances  represent a 
47.26% of the whole dataset. Therefore, like in Segment, the 
impact of  the  noise introduction is reduced, although the 
trend of the results is the same as in the three datasets already 
considered. Fig. 8 shows the change on the misclassification 
error for the KNN classifier when the noise level goes from 5 
to 45 percent. More results are omitted due to the constrain 
on the number of pages. 
The computer programs were written in C++ and R 
language, and are available upon request from the second 
author. 

V.  CONCLUSION 
Our empirical results show that our algorithm for 

detecting noise, QcleanNoise, which it is based on a data 
quality measure, outperforms strategies proposed by 
Brodley and Friedl. Our algorithm gives better results in the 
measures for evaluation of noise detection. Also, classifiers 
give lower misclassification error rates once that the training 
dataset is cleaned out using QcleanNoise. KNN seems to be  
the classifier  most affected for the presence of noise. 
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Table III.  Measures of noise renoval on the Segment dataset  
 

QcleanNOISE Single Majority Consensus Noise 
ER1 ER2 NEP ER1 ER2 NEP ER1 ER2 NEP ER1 ER2 NEP 

5% 0.2 0.1 95.2 5.0 2.8 48.5 0.4 0.0 94.4 0.1 5.7 96.7 
10% 0.2 0.8 96.3 9.6 8.7 49.3 0.4 0.1 94.8 0.1 8.2 97.7 
20% 0.3 6.8 97.3 18.9 20.1 49.6 0.7 0.2 95.7 0.1 19.5 98.6 
30% 0.4 19.2 97.3 28.0 30.1 49.8 3.5 2.9 90.5 0.3 34.4 98.1 
40% 0.4 33.2 97.1 38.0 38.8 49.8 15.1 13.9 77.7 2.2 52.1 93.0 
45% 0.5 42.0 96.9 42.3 44.8 49.7 29.2 29.5 64.9 6.3 64.5 81.0 
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Figure 5.  Misclassification error rates for the RPART 
classifier at different levels of noise removal using four 

detection methods on the Breastw dataset 
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Figure 7.  Misclassification error rates for the RPART 
classifier at different levels of noise removal using four 

detection methods on the Segment dataset 
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Figure 6.  Misclassification error rates for the KNN 
classifier at different levels of noise removal using four 

detection methods on the Segment data 
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Figure 8.  Misclassification error rates for the KNN 
classifier at different levels of noise removal using four 

detection methods on the Landsat dataset 
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