
 
 

 

  
Abstract—Discovery of frequent itemsets is an important 
problem in Data Mining. Most of the previous research based on 
Apriori, which suffers with generation of huge number of 
candidate itemsets and performs repeated passes for finding 
frequent itemsets. To address this problem, we propose an 
algorithm for finding frequent K-itemsets in which the itemsets 
whose length is less than K will be pruned from the database and 
will not be considered for further processing which reduces the 
size and number of comparisons to be performed. In addition to 
this, it generates 1-itemset as a data pre processing step which 
saves time and makes execution fast. The experimental results are 
included.        
 
Index Terms— Frequent itemset,  algorithm, database,                           

apriori, support 
 

I. INTRODUCTION 
  Association rule mining is a focused area in today’s data 
mining research. It usually consists of two phases viz., 
discovery of frequent itemsets and generation of rules from the 
discovered frequent itemsets. Finding frequent itemsets has 
gained popularity because it has more number of applications 
viz., market basket analysis, catalog design, add-on sales, and 
store layout and customer segmentation.  
 
    The efficiency of any algorithm to find the frequent itemset 
is based on three factors viz., generation of candidate keys,  
data structures used  and  way of implementation.  Frequent 
Itemset Mining (FIM) is mainly based on minimum support 
value, which finds all itemsets with supports no less than a 
user-specified minimum support threshold. Several algorithms 
have been proposed [7, 8, 9, 11, 12, 16, 19, 20, 22, 23, 24, 28] 
in this area. 
 
    Apriori like algorithms performs more number of scans and 
generates huge number of candidate keys. To find the frequent 
K-itemset, it is necessary to start the algorithm from frequent 
1-itemset, 2-itemset………. to frequent K-itemset. The 
proposed method generates frequent K-itemset with a 
minimum support directly from the database. At the data 
warehousing level, 1-itemset will be generated while 
processing a transaction.  Prior to the execution of the proposed 
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algorithm, 1-itemset is available which prunes the first pass 
from the apriori-like algorithm which in turn saves time.  
 
   The outline of this paper is as follows: Section II presents 
definitions of frequent itemset and an outline of apriori 
algorithm for finding frequent itemsets.  Section III reviews the 
related work done in this area. Section IV explains the 
motivation for proposing the algorithm.  Section V presents the 
proposed algorithm, database schema and an illustrative 
example. Section VI gives the experimental results and the 
conclusions of study are given  in section VII.  

II. BACKGROUND 
The definitions of frequent itemset are follows.  
  

Definition 1.1 [30]: Let ‘I’ be a finite set of attributes called 
items and D be a finite multi set of transactions. Each 
transaction T⊆  D is a set of items is usually called an itemset. 
The length or size of an itemset is the number of items that 
contains. An itemset of length ‘K’ is referred to as K-itemset. 
 
Definition 1.2 [26]:  Let L= {I1, I2 …Im} be a set of literals, 
called items. Let a non empty set of items T be called an 
itemset. Let D be a set of variable length itemsets, where each 
itemset T⊆ L. We say that an itemset T supports an item x∈L if 
x is in T. We say that an itemset T supports an itemset X⊆L if T 
supports every item in the set X. Each itemset has an associated 
measure of its statistical significance, called support. The 
support of the itemset T in the set D is: 
          
Support(X, D)  =     | {T ∈ D | T supports X} |                                         
                          -------------------------------------- 
                                             | D|                            
    In other words, the itemset ‘X’ holds in the set ‘D’ with 
support‘s’, if‘s’ is the fraction of itemsets in ‘D’ supporting 
‘X’. A frequent itemset is an itemset, whose support is above a 
user-defined threshold. 
 
Introduction to Apriori: 
       It is an influential algorithm for mining frequent itemsets 
for Boolean association rules. This algorithm uses prior 
knowledge of frequent itemset properties. This algorithm 
iteratively finds all possible itemsets that have support greater 
or equal to a given minimum support value. The first pass of the 
algorithm counts item occurrences to determine the frequent 
1-itemsets. In each of the next passes, the frequent itemsets,  
Lk-1  is found in the (K-1)th pass are used to generate the 
candidate itemsets CK, using apriori-gen function described 
below. Then the database is scanned and the support of 
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candidates in CK is counted. The output of the first phase of the 
apriori algorithm consists of a set of K-itemsets (K=1,2,……..) 
that have support greater or equal to a given minimum support 
value. Figure 1 presents a description of the algorithm. 
 
      Scan D to find L1; 
       For (k=2; Lk-1 <> 0; k++) do begin 
                     Ck =  apriori_gen (Lk-1); 
            For all transactions t ∈ D  do begin 
                Ct = subset (Ck, t); 
                 For all candidates c∈Ct do 
                           c.count ++; 
             end 
           Lk =  { c ∈  Ck | c.count ≥ minsup } ; 
        end 
            Answer =  Uk Lk  ; 
    
                Figure 1: Apriori Algorithm 

 

III. RELATED WORK 
 
     FIM is first introduced by Agrawal et al [ 21 ]   in 1993. 
Most of the researchers designed various algorithms using 
bottom-up approach, top-down approach, hashing, indexing 
and sampling. Similarly they represented the data either in 
horizontal, vertical, bit vector, or trie, which is a rooted directed 
tree [27].   Later many researchers extend the research on 
closed frequent itemsets [14] and designed various algorithms 
viz., TFP [13], CLOSET, MAFIA [10], CHARM [15], 
CLOSET+[17], LCM[18].   An itemset is said to be closed if it 
has no proper superset with the same support.  
 
    The first algorithm proposed is AIS and later it was 
improved and named it as ‘Apriori [1]’. Apriori uses bottom-up 
approach which performs a breadth-first search by generating 
candidate k+1 itemsets from frequent k-itemsets. The Apriori 
algorithm uses the Ariori-gen algorithm repeatedly to generate 
candidates and then count their supports by reading the entire 
database once. Later many variations of Apriori have been 
proposed to reduce the number of  scans or the number of 
candidates to be generated.  AprioriTid [25]  is generated in 
which the database is not used at all for counting the support of 
candidate itemsets after the first pass. Rather, an encoding of 
the candidate itemsets used in the previous pass is employed for 
this.   In later passes, the size of the encoding can become much 
smaller than the database, thus saving much reading effort.  
 
     Based on Apriori algorithm various algorithms viz., OCD 
[4], Direct Hashing and Pruning [5] (DHP), Dynamic Itemset 
counting [6] (DIC), Partition [3] and Sampling [2] algorithms 
have been developed.   
 
     Recent studies in frequent itemsets concentrated on 
Maximal frequent itemsets (MFI).  A frequent itemset is said to 
be maximal if it has no proper supersets and that are themselves 

frequent. The problem of discovering the frequent set can be 
reduced to the problem of discovering the MFI.   

IV.  MOTIVATION 
 
     Apriori algorithm needs to scan the database multiple times. 
When mining a huge database, multiple database scans are 
costly. One feasible strategy to improve the efficiency of 
Apriori algorithm is to reduce the number of database scans. 
 
     The Apriori algorithm has to generate a huge number of 
candidates. Storing and counting these candidates are tedious. 
To attack this problem, some studies focus on reducing the 
number of candidates. 
 
     Apriori-like algorithms use full database scan once to find 
the 1-itemset. If the database consists of more number of 
transactions, for example, 1000, the time takes to execute for 
generating 1-itemset is more. For avoiding pass-1, it is 
proposed to generate 1-itemset at the data warehousing level.  
In each iteration of the apriori, ‘join’ operation is to be 
performed on all itemsets to generate candidate keys for the 
next iteration.  It is expensive to generate a huge number of 
candidate sets.  For finding frequent 4-itemsets, apriori starts 
the algorithm by generating frequent 1-itemset, frequent 
2-itemset, frequent 3-itemset followed by frequent 4-itemset 
which takes more number of scans and time.  
 
     Research has been done widely for finding all frequent 
itemsets, maximal frequent itemsets and closed frequent 
itemsets and most of the algorithms are based on apriori which  
iterative in nature.  No algorithm suggested a method to find the 
frequent K- itemset directly from the database without 
generating 1 to (N-1) frequent itemsets. So, finding frequent 
K-itemset without generating K-1 itemsets is an open area of 
the research which reduces number of scans, time and 
generating huge number of candidate itemsets. With this aim, a 
novel method is proposed in which itemsets whose length is 
less than K will be pruned from the database at the initial stage 
of the algorithm that reduces further processing overhead. With 
this algorithm, the number of scans and time will be reduced.  
The efficiency of the algorithm increases if the value of K > 
(N/2) where N is the longest itemset in the database.  
 

V. PROPOSED METHOD 
 

       In this section, a new method for finding frequent 
K-itemset is presented.  In this method, 1-itemset will be 
generated directly from the transaction database which 
performs efficient data preprocessing at the data warehousing 
level while processing a transaction. To find the frequent 
K-itemset, the algorithm starts the searching of itemsets whose 
length is at least  K,  i.e., the itemsets whose length is less than 
K will be pruned from the database and will not be considered 
for further processing which reduces the size and number of 
comparisons to be performed.   
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a) Notation: 

The following notation is used in development of proposed   

algorithm. 

  TID          =     Transaction code for identifying each  
                          transaction  uniquely 
  ICODE     =     Item code for identifying each item uniquely  
  ICOUNT  =     Number of occurrences of an item for a set of    
                           transactions 
  NCOUNT =    Number of items of a transaction      
            M    =     Minimum support threshold 
             I     =     Item table 
             I1    =     Frequent 1-itemset table 
            K    =     length  of itemset 

         N    =     Itemset table 
        LK    =     K-itemset table where K ≥ 1 

            NK   =     Pruned itemset table where NCOUNT ≥ K 
         D    =     Transaction table 

            DK     =     Pruned transaction table based on K  
         
 
   b) Database Schema: 

        The initial database schema is shown in fig. 2. 

     

 
            Figure 2. Database schema 
 
¾ ICODE is the primary key for table I. 

¾ TID is the primary key for table N. 

¾ {TID, ICODE} is the primary key for table D where    

        TID is the foreign key that references table N and  

        ICODE is   the foreign key that references the table I. 

 
As and when a transaction is processed, ICOUNT is updated 
and a record is appended to itemset table. 
 
c) Algorithm  

1. Generate I1 from I by applying M  
2. Generate LK using join operation K times on  I1 
3. Prune the tuples from N whose NCOUNT < K that 

results NK 
4. Delete from D such of those tuples with TID 

associated with NCOUNT < K  that results DK   
5. Find the occurrence frequency for each itemset of LK 

using DK. If it is greater than or equal to M, then that 
K-itemset is frequent K-itemset.  

 
 

    d) Illustrative Example: Find Frequent 3-Itemsets with   
Minimum   support   of 2.  

 

 
 

The transaction table, D, consisting of   9 transactions, the 
item table, I, consisting of 5 records and the itemset table, N, 
consisting of 9 records are shown in tables I, II and III 
respectively. Following the step-1 of the algorithm, the 
frequent 1-itemset table, I1 is generated as shown in table IV. 
The 3-itemset table, L3 is generated using join operations 3 
times on I1 and shown in table V. After deleting the tuples from 
N whose NCOUNT < 3 resulted N3 as shown in table VI. After 
deleting the tuples, D, whose NCOUNT < 3 resulted D3 as 

TABLE I TABLE II

TABLE III

Transaction table, D        Item table, I

      Itemset  table, N
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shown in table VII.  Using step 5, frequent 3-itemsets are found 
as I1I2I3 and I1I2I5.  

 

 

VI. EXPERIMENTAL RESULTS 
  In this section we show the results of our computational 
experiments.  The proposed method was implemented on HCL 
PC powered by PIII 850 MHZ, 128MB RAM, Windows 98 2nd 
Edition, FoxPro 2.6. The transaction data was collected from a 
retail shop and a transaction database was designed which 
consists of 250 transactions, 825 records, 15 items and 
maximum of 5 itemsets. Minimum support is plotted on X-axis 
and CPU time ( in seconds) on Y-axis as shown in Fig. 3. With 
a minimum support of 2% the proposed method takes 86 
seconds for execution, while the apriori algorithm takes 152 
seconds for finding the frequent 3-itemsets.  Similarly for a 
minimum support of 10%, the proposed method takes 45 
seconds while the Apriori takes 81 seconds.  
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                     Figure 3.  Frequent 3-itemset 
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 Figure 4.  Frequent 4-itemset 

       
    The computational time for frequent 4-itemsets with a 
minimum support of 2%, 6% and 10% is shown in fig. 4.  The 
proposed method takes 92 seconds for finding frequent 
4-itemset with a minimum support of 2%, while the Apriori 
takes 171 seconds; means the efficiency of the proposed 
algorithm is increased in terms of execution time when the 
minimum support is low.   
                                        VII CONCLUSION 
 
 Finding frequent itemsets using Apirori algorithm requires 
multiple scans of the database and generation of candidate keys 
for each iteration. Based on our performance study, the 
proposed algorithm achieves high accuracy and efficiency 
which can be credited to the following distinguished features. 
1) Pruning of 1-itemset generation which will be generated at 
the time of transaction 2) All itemsets whose length is less than 
K will be pruned from the transaction database which reduces 
the size of the database and further processing overhead.  
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