

Abstract—Discovery of frequent itemsets is an important
problem in Data Mining. Most of the previous research based on
Apriori, which suffers with generation of huge number of
candidate itemsets and performs repeated passes for finding
frequent itemsets. To address this problem, we propose an
algorithm for finding frequent K-itemsets in which the itemsets
whose length is less than K will be pruned from the database and
will not be considered for further processing which reduces the
size and number of comparisons to be performed. In addition to
this, it generates 1-itemset as a data pre processing step which
saves time and makes execution fast. The experimental results are
included.

Index Terms— Frequent itemset, algorithm, database,

apriori, support

I. INTRODUCTION
 Association rule mining is a focused area in today’s data
mining research. It usually consists of two phases viz.,
discovery of frequent itemsets and generation of rules from the
discovered frequent itemsets. Finding frequent itemsets has
gained popularity because it has more number of applications
viz., market basket analysis, catalog design, add-on sales, and
store layout and customer segmentation.

 The efficiency of any algorithm to find the frequent itemset
is based on three factors viz., generation of candidate keys,
data structures used and way of implementation. Frequent
Itemset Mining (FIM) is mainly based on minimum support
value, which finds all itemsets with supports no less than a
user-specified minimum support threshold. Several algorithms
have been proposed [7, 8, 9, 11, 12, 16, 19, 20, 22, 23, 24, 28]
in this area.

 Apriori like algorithms performs more number of scans and
generates huge number of candidate keys. To find the frequent
K-itemset, it is necessary to start the algorithm from frequent
1-itemset, 2-itemset………. to frequent K-itemset. The
proposed method generates frequent K-itemset with a
minimum support directly from the database. At the data
warehousing level, 1-itemset will be generated while
processing a transaction. Prior to the execution of the proposed

Manuscript received July 15, 2007. This work was supported in part by the
TEQIP.

F. A. H. Ravi sankar is with the CTRI, Rajahmundry, India, Phone:
91-9849418571, email : hravisankar@india.com

S. B. M.M. Naidu was with Sri Venkateswara Univesity, Tirupati, India. He
is now the Vice-Principal and Professor, Department of Computer science and
engineering, Phone: 91-9848348473., e-mail: mmnaidu@yahoo.com.

algorithm, 1-itemset is available which prunes the first pass
from the apriori-like algorithm which in turn saves time.

 The outline of this paper is as follows: Section II presents
definitions of frequent itemset and an outline of apriori
algorithm for finding frequent itemsets. Section III reviews the
related work done in this area. Section IV explains the
motivation for proposing the algorithm. Section V presents the
proposed algorithm, database schema and an illustrative
example. Section VI gives the experimental results and the
conclusions of study are given in section VII.

II. BACKGROUND
The definitions of frequent itemset are follows.

Definition 1.1 [30]: Let ‘I’ be a finite set of attributes called
items and D be a finite multi set of transactions. Each
transaction T⊆ D is a set of items is usually called an itemset.
The length or size of an itemset is the number of items that
contains. An itemset of length ‘K’ is referred to as K-itemset.

Definition 1.2 [26]: Let L= {I1, I2 …Im} be a set of literals,
called items. Let a non empty set of items T be called an
itemset. Let D be a set of variable length itemsets, where each
itemset T⊆ L. We say that an itemset T supports an item x∈L if
x is in T. We say that an itemset T supports an itemset X⊆L if T
supports every item in the set X. Each itemset has an associated
measure of its statistical significance, called support. The
support of the itemset T in the set D is:

Support(X, D) = | {T ∈ D | T supports X} |

 | D|
 In other words, the itemset ‘X’ holds in the set ‘D’ with
support‘s’, if‘s’ is the fraction of itemsets in ‘D’ supporting
‘X’. A frequent itemset is an itemset, whose support is above a
user-defined threshold.

Introduction to Apriori:
 It is an influential algorithm for mining frequent itemsets
for Boolean association rules. This algorithm uses prior
knowledge of frequent itemset properties. This algorithm
iteratively finds all possible itemsets that have support greater
or equal to a given minimum support value. The first pass of the
algorithm counts item occurrences to determine the frequent
1-itemsets. In each of the next passes, the frequent itemsets,
Lk-1 is found in the (K-1)th pass are used to generate the
candidate itemsets CK, using apriori-gen function described
below. Then the database is scanned and the support of

A New Approach for Mining Frequent K-itemset
H. Ravi Sankar and M.M. Naidu

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

candidates in CK is counted. The output of the first phase of the
apriori algorithm consists of a set of K-itemsets (K=1,2,……..)
that have support greater or equal to a given minimum support
value. Figure 1 presents a description of the algorithm.

 Scan D to find L1;
 For (k=2; Lk-1 <> 0; k++) do begin
 Ck = apriori_gen (Lk-1);
 For all transactions t ∈ D do begin
 Ct = subset (Ck, t);
 For all candidates c∈Ct do
 c.count ++;
 end
 Lk = { c ∈ Ck | c.count ≥ minsup } ;
 end
 Answer = Uk Lk ;

 Figure 1: Apriori Algorithm

III. RELATED WORK

 FIM is first introduced by Agrawal et al [21] in 1993.
Most of the researchers designed various algorithms using
bottom-up approach, top-down approach, hashing, indexing
and sampling. Similarly they represented the data either in
horizontal, vertical, bit vector, or trie, which is a rooted directed
tree [27]. Later many researchers extend the research on
closed frequent itemsets [14] and designed various algorithms
viz., TFP [13], CLOSET, MAFIA [10], CHARM [15],
CLOSET+[17], LCM[18]. An itemset is said to be closed if it
has no proper superset with the same support.

 The first algorithm proposed is AIS and later it was
improved and named it as ‘Apriori [1]’. Apriori uses bottom-up
approach which performs a breadth-first search by generating
candidate k+1 itemsets from frequent k-itemsets. The Apriori
algorithm uses the Ariori-gen algorithm repeatedly to generate
candidates and then count their supports by reading the entire
database once. Later many variations of Apriori have been
proposed to reduce the number of scans or the number of
candidates to be generated. AprioriTid [25] is generated in
which the database is not used at all for counting the support of
candidate itemsets after the first pass. Rather, an encoding of
the candidate itemsets used in the previous pass is employed for
this. In later passes, the size of the encoding can become much
smaller than the database, thus saving much reading effort.

 Based on Apriori algorithm various algorithms viz., OCD
[4], Direct Hashing and Pruning [5] (DHP), Dynamic Itemset
counting [6] (DIC), Partition [3] and Sampling [2] algorithms
have been developed.

 Recent studies in frequent itemsets concentrated on
Maximal frequent itemsets (MFI). A frequent itemset is said to
be maximal if it has no proper supersets and that are themselves

frequent. The problem of discovering the frequent set can be
reduced to the problem of discovering the MFI.

IV. MOTIVATION

 Apriori algorithm needs to scan the database multiple times.
When mining a huge database, multiple database scans are
costly. One feasible strategy to improve the efficiency of
Apriori algorithm is to reduce the number of database scans.

 The Apriori algorithm has to generate a huge number of
candidates. Storing and counting these candidates are tedious.
To attack this problem, some studies focus on reducing the
number of candidates.

 Apriori-like algorithms use full database scan once to find
the 1-itemset. If the database consists of more number of
transactions, for example, 1000, the time takes to execute for
generating 1-itemset is more. For avoiding pass-1, it is
proposed to generate 1-itemset at the data warehousing level.
In each iteration of the apriori, ‘join’ operation is to be
performed on all itemsets to generate candidate keys for the
next iteration. It is expensive to generate a huge number of
candidate sets. For finding frequent 4-itemsets, apriori starts
the algorithm by generating frequent 1-itemset, frequent
2-itemset, frequent 3-itemset followed by frequent 4-itemset
which takes more number of scans and time.

 Research has been done widely for finding all frequent
itemsets, maximal frequent itemsets and closed frequent
itemsets and most of the algorithms are based on apriori which
iterative in nature. No algorithm suggested a method to find the
frequent K- itemset directly from the database without
generating 1 to (N-1) frequent itemsets. So, finding frequent
K-itemset without generating K-1 itemsets is an open area of
the research which reduces number of scans, time and
generating huge number of candidate itemsets. With this aim, a
novel method is proposed in which itemsets whose length is
less than K will be pruned from the database at the initial stage
of the algorithm that reduces further processing overhead. With
this algorithm, the number of scans and time will be reduced.
The efficiency of the algorithm increases if the value of K >
(N/2) where N is the longest itemset in the database.

V. PROPOSED METHOD

 In this section, a new method for finding frequent
K-itemset is presented. In this method, 1-itemset will be
generated directly from the transaction database which
performs efficient data preprocessing at the data warehousing
level while processing a transaction. To find the frequent
K-itemset, the algorithm starts the searching of itemsets whose
length is at least K, i.e., the itemsets whose length is less than
K will be pruned from the database and will not be considered
for further processing which reduces the size and number of
comparisons to be performed.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

a) Notation:

The following notation is used in development of proposed

algorithm.

 TID = Transaction code for identifying each
 transaction uniquely
 ICODE = Item code for identifying each item uniquely
 ICOUNT = Number of occurrences of an item for a set of
 transactions
 NCOUNT = Number of items of a transaction
 M = Minimum support threshold
 I = Item table
 I1 = Frequent 1-itemset table
 K = length of itemset

 N = Itemset table
 LK = K-itemset table where K ≥ 1

 NK = Pruned itemset table where NCOUNT ≥ K
 D = Transaction table

 DK = Pruned transaction table based on K

 b) Database Schema:

 The initial database schema is shown in fig. 2.

 Figure 2. Database schema

¾ ICODE is the primary key for table I.

¾ TID is the primary key for table N.

¾ {TID, ICODE} is the primary key for table D where

 TID is the foreign key that references table N and

 ICODE is the foreign key that references the table I.

As and when a transaction is processed, ICOUNT is updated
and a record is appended to itemset table.

c) Algorithm

1. Generate I1 from I by applying M
2. Generate LK using join operation K times on I1
3. Prune the tuples from N whose NCOUNT < K that

results NK
4. Delete from D such of those tuples with TID

associated with NCOUNT < K that results DK
5. Find the occurrence frequency for each itemset of LK

using DK. If it is greater than or equal to M, then that
K-itemset is frequent K-itemset.

 d) Illustrative Example: Find Frequent 3-Itemsets with
Minimum support of 2.

The transaction table, D, consisting of 9 transactions, the
item table, I, consisting of 5 records and the itemset table, N,
consisting of 9 records are shown in tables I, II and III
respectively. Following the step-1 of the algorithm, the
frequent 1-itemset table, I1 is generated as shown in table IV.
The 3-itemset table, L3 is generated using join operations 3
times on I1 and shown in table V. After deleting the tuples from
N whose NCOUNT < 3 resulted N3 as shown in table VI. After
deleting the tuples, D, whose NCOUNT < 3 resulted D3 as

TABLE I TABLE II

TABLE III

Transaction table, D Item table, I

 Itemset table, N

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

shown in table VII. Using step 5, frequent 3-itemsets are found
as I1I2I3 and I1I2I5.

VI. EXPERIMENTAL RESULTS
 In this section we show the results of our computational
experiments. The proposed method was implemented on HCL
PC powered by PIII 850 MHZ, 128MB RAM, Windows 98 2nd
Edition, FoxPro 2.6. The transaction data was collected from a
retail shop and a transaction database was designed which
consists of 250 transactions, 825 records, 15 items and
maximum of 5 itemsets. Minimum support is plotted on X-axis
and CPU time (in seconds) on Y-axis as shown in Fig. 3. With
a minimum support of 2% the proposed method takes 86
seconds for execution, while the apriori algorithm takes 152
seconds for finding the frequent 3-itemsets. Similarly for a
minimum support of 10%, the proposed method takes 45
seconds while the Apriori takes 81 seconds.

0
20
40
60
80

100
120
140
160

C
PU

 ti
m

e
(s

ec
on

ds
)

2% 6% 10%

Min. sup (%)

Proposed Apriori

 Figure 3. Frequent 3-itemset

0
20
40
60
80

100
120
140
160
180

C
PU

 ti
m

e
(s

ec
on

ds
)

2% 6% 10%
Min. sup (%)

Proposed Apriori

 Figure 4. Frequent 4-itemset

 The computational time for frequent 4-itemsets with a
minimum support of 2%, 6% and 10% is shown in fig. 4. The
proposed method takes 92 seconds for finding frequent
4-itemset with a minimum support of 2%, while the Apriori
takes 171 seconds; means the efficiency of the proposed
algorithm is increased in terms of execution time when the
minimum support is low.
 VII CONCLUSION

 Finding frequent itemsets using Apirori algorithm requires
multiple scans of the database and generation of candidate keys
for each iteration. Based on our performance study, the
proposed algorithm achieves high accuracy and efficiency
which can be credited to the following distinguished features.
1) Pruning of 1-itemset generation which will be generated at
the time of transaction 2) All itemsets whose length is less than
K will be pruned from the transaction database which reduces
the size of the database and further processing overhead.

VII. REFERENCES
[1] Agarwal, R., and Srikant R., 1994, “Fast algorithms for mining

association rules,” Proc. 20th VLDB, Santiago, Chile.

 TABLE IV

 TABLE VI

 TABLE V

 TABLE VII
Frequent 1-itemset, I1

 K-itemset, LK

Pruned itemset table, NK

Pruned transaction table, DK

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

[2] Toivonen, H.., 1996, “Sampling large databases for Association
Rules,” Proc. VLDB conference.

[3] Sarasere, A., Omiecinsky, E., and Navathe, S., 1995. “An
efficient Algorithm for Mining Association Rules in Large
Databases”, Proc. 21st VLDB conference, Swizerland..

[4] Mannila, H., Toivonen, H. and Verkamo, A., 1994, “Improved
methods for finding association rules,” Proc. AAAI Workshop
Knowledge Discovery.

[5] Park, J., Chen, M., and Yu. P., 1995, “An effective hash based
algorithm for mining association rules,” Proc. ACM Special
Interest Group on Management of Data (SIGMOD).

[6] Brin, S., Motwani, R., Ullman, J., and Tsur, S., 1997, “Dynamic
Itemset Counting and Implication Rules for Market Basket Data”,
Proc. ACM Special Interest Grou on Management of Data
(SIGMOD).

[7] Gopalan, R., and Sucahyo, Y.G., 2003, “Fast Frequent Itemset
Mining using compressed data representation,” Proc. IASTED
International Conference on Databases and Applications
(DBA'2003), Innsbruck, Austria.

 [8] Fu, H., and Nguifo, E.M., 2003, “A Fast Scalable Algorithm to
Build Closed Itemsets from Large Data” Proc. Third IASTED
International Conference on Artificial Intelligence and
Applications (AIA03), Benalmádena, Spain, pp 210.

[9] Szymon, Jaroszewicz and Simovici, Dan A., 2004,
“Interestingness of frequent itemsets using Bayesian networks as
background knowledge” Proc. Tenth ACM SIGKDD
International conference on Knowledge discovery and data
mining, USA, pp: 178-186.

[10] Doug Burdick, Manuel Calimlim, Johannes Gehke, 2001,
“MAFIA: A Maximal Frequent Itemset Algorithm for
Transactional Databases”, Proc. 2001 International Conference
on Data Engineering (ICDE’01), pp:443-452.

[11] Han, J., Pei, J., Yin, Y., and Mao, R., 2004, “ Mining Frequent
patterns without candidate generation: A Frequent-Pattern Tree
Approach”. Data Mining and Knowledge Discovery, Vol. 8(1),
Pp: 53-87.

[12] Sriphaew, K., and Theeramunkong, T., 2002, “A new method
for finding generalized frequent itemsets in generalized
association rule mining”. Proc. Seventh International Symposium
on Computers and Communications, pp: 1040-1045.

[13] Wang, J., Han, J., Lu, Y., and Tzvetkov, P., 2005, “TFP: An
Efficient Algorithm for Mining Top-K Frequent Closed
Itemsets”. IEEE Transactions on Knowledge and Data
Engineering. Vol. 17(5), pp. 652-664.

[14] Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L., 1999,
“Discovering Frequent Closed Itemsets for Association Rules”.
Proc. Seventh International Conference on Database Theory
(ICDT’99), pp. 398-416.

 [15] Zaki, M.J., and Hsiao, C.J., 2002, “CHARM: An Efficient
Algorithm for Closed Itemset Mining”, Proc. 2002 SIAM
International Conference on Data Mining (SDM ’02), pp. 457-
473.

 [16] Lin, D., and Kedem, M., 2002, “Pincer-Search: An Efficient
Algorithm for Discovering the Maximum Frequent Set”, IEEE
Transactions on Knowledge and Data Engineering. Vol. 14(3).

[17] Wang, J., Pei, J., and Han J., 2003, “ Closet+: Searching for the
best strategies for mining frequent closed itemsets”, SIGKDD.

[18] Uno, T., Asai, T., Uchida, Y., and Arimura, H., 2003, “ LCM :
An efficient algorithm for enumerating frequent closed
itemsets”, SDM.

[19] Bodon, F., 2003, “ A fast apriori implementation”, Informatics
Laboratory, Hungary.

[20] Borgelt, C and Kruse, R, 2003, “ Induction of Association rules:
Apriori implementation”, Department of Knowledge processing
and Language Engineering, Germany.

[21] Agarwal, R., Imielinski, T., and Swami, A., 1993, “Mining
association rules between sets of items in large databases”, Proc.
ACM SIGMOD conference on Management of Data,
Washington, D.C., May, 1993.

[22] Grahne, G., Zhu, J., 2005, “Fast Algorithms for Frequent
Itemset Mining Using FP-Trees”, IEEE Transactions on
Knowledge and Data Engineering. Vol. 17(10).

[23] Shen, Li., Shen H., and Cheng, L., 2003, “ New Algorithms for
Efficient Mining of Association Rules”, School of computing
and IT, Griffith University, Australia.

[24] Gouda, K., Zaki, J.M., 2001, “Efficiently Mining Maximal
Frequent Itemsets”, IEEE Transactions on Knowledge and Data
Engineering.

[25] Chao Li, Z., Lian He, P., and Lei, M, 2005 “ A High Efficient
AprioriTID algorithm for mining association rule”, Proc. Fourth
International Conference on Machine Learning and
Cybernetics, Guangzhou.

[26] Wojciechowski, M., and Zakrzewicz, M., 2005 “
HASH-MINE: A New Framework for Discovery of Frequent
Itemsets”, Poznan University of Technology, Poland.

[27] Bodon, F., 2005, “Trie based Apriori Implementation for Mining
Frequent Itemsequences, SIGKDD Workshop on Open Source
Data Mining Workshop (OSDM’05), Chicago, USA.

[28] Seno, M., and Karypis, G., 2001, “LPMiner: An Algorithm for
Finding Frequent Itemsets Using Length-Decreasing support
constraint”, IEEE Transactions on Knowledge and Data
Engineering.

[29] Baralis, E., Cerquitelli, T., and Chiusano, S, 2005, “Index Support
for Frequent Itemset Mining in a Relational DBMS”, Proc. 21st
International Conference on Data Engineering (ICDE).

[30] Christos, B., George, T. and Loannis, V, 2005, “Mining
for contiguous frequent itemsets in transaction
databases”, Proc. IEEE workshop on Intelligent data
application and advanced computing systems, Sofia,
Bulgaria.

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007

