

Abstract—Risk assessment of movements entering the UK using 

Kohonen SOMs and decision trees was found to be 292% more 
accurate at discerning smuggling than incumbent systems.
Inbound freight is currently assessed using a series of risk flags 
based upon data provided by ferry companies to Government 
border agencies and a previous offender watchlist. This data 
constituted the input for the analysis, but presented complex 
challenges; including proportionally few seizures to train 
predictive models and a relatively un-diverse “selected for search” 
population. These factors prompted use of an unsupervised 
clustering technique to uncover abnormalities in the data and 
quantify changes in behavior. A supervised technique (a binary 
decision tree) was also used to enhance existing profiles. Initial 
tests indicated movements resulting in seizures had a Euclidean 
distance from their average centroid 10 times greater than the 
non-seizure mean and only 5% of vehicles ever moved significantly 
from their average centroid. Subsequent blind tests “selected” the 
riskiest 20% of movements - from which 39% of all seizures and 
57% of high value seizures occurring over the same period were 
identified. Based upon this research, further work has been 
commissioned to design a system which uses these methods for
targeting other movement types.

Index Terms— Kohonen Self-Organizing Maps, decision trees, 
unsupervised analysis, government applications, SAS.  

I. INTRODUCTION

Cigarette and drug smuggling are issues of great concern for 
the United Kingdom Government: cigarette smuggling in 
particular accounts for an estimated £2.5 Billion a year in lost 
tax revenue. This allows smugglers to make large profits on 
cheap imported cigarettes to the detriment of the UK 
government [1].

One of the easiest ways to transport goods into the UK is via 
lorry and Roll-On/Roll-Off (RoRo) cross channel ferries and the 
Channel Tunnel. The Government department who polices 
these borders has responsibility for prosecuting the drivers of 
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these vehicles as well as detecting contraband. Increasing 
seizure yields while at the same time facilitating the free 
movement of legitimate traders has forced the Client to review 
more advanced techniques for identifying illegitimate activity. 

A.  The problem

Historically vehicles were selected for search based on 
intelligence profiles. In 2005 these profiles were automated by a 
Freight Targeting System (FTS) which also utilizes vehicle 
licensing and UK taxation data to aid targeting. While this has 
improved targeting there are still problems with this approach:

 Current data analysis is of the seizure population only, 
which can lead to self-fulfilling prophecies. For 
example, if 70% of seizures come from red vehicles, it 
could be deduced that ‘red vehicle’ is a good indicator 
of criminality. If 70% of selected vehicles are red 
however, we can see that this indicator has no 
discriminatory power;

 Many of the risk indicators can only be applied to UK 
vehicles - which form ~15% of the inbound traffic - as 
they are based on haulage company tax information 
and vehicle licensing agency data;

 Difference between non-compliance and legitimacy is 
a continuum. The current profile indicators are binary 
in their ability to separate populations of risk. For 
example, early booking might be an indicator of risk; 
but the amount of risk varies depending on how close 
to the sailing a booking takes place;

 Consistent risk scoring methodology is required. Risk 
scoring is currently not trusted; statistically accurate 
risk scoring would considerably improve targeting 
consistency and effectiveness;

 No succinct way exists to compare how a movement 
differs from the norm; by segmenting vehicles we can 
assess risk by scoring movements to different segments 
and flagging vehicles which appear in high risk 
segments;

 There are patterns of risk which FTS and existing 
systems cannot detect.

The greatest advantage with the implementation of FTS it that 
is has allowed a vast amount of data to be collected – not just on 
vehicles associated with seizures (as in the past) – but across all 
movements in and out of the UK. This has allowed the use of 
more advanced analysis techniques.
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B. Techniques used

Analysis had shown the ‘selected vehicle’ population was 
relatively un-diverse and thus an unsupervised technique was 
chosen. Customs Officers asserted that generally there was a 
change in behavior associated with vehicles prior to a seizure. 
This made it clear that a clustering method which aggregated a 
large number of metrics, and generated a measurable distance 
between clusters would be required. Whilst there are many 
clustering techniques, the Self-Organizing Maps (SOMs) were 
seen as preferential because like all neural network techniques 
the most important input vectors in deciding the formation of 
clusters are magnified through the learning process. As the data 
was of low quality and the underlying defined behaviors only 
had limited discriminatory power individually, a technique 
which ‘learned’ the most important combinations of behaviors
with regards to differentiating groups was seen as preferential. 
Additionally the topographical nature of Kohonen SOM’s made 
the distance scores that would be outputted by a vehicle 
changing clusters more meaningful.

It was also felt that a supervised technique could be used to 
show what traits in the vehicles currently selected were 
statistically significant within the seizure population and 
therefore good indicators. The data was thus classified using a 
binary decision tree. The techniques were then trialed between 
the 1-14 October 2006 and achieved a selection to seizure 
conversion rate 292% better then existing methods. 

There were other indicators of criminality, which were 
analyzed using Social Network Analysis. This work is detailed 
in a separate paper.

II. METHOD

The first step was to define the behaviors which could be 
extracted from the available data sources. The most consistent 
data available was Ferry Company ticketing information and 
this formed the core of our behaviors, which were thus heavily 
based upon Customer Relationship Management (CRM) 
practice. The primary behaviors fell into the following 
categories:

 Recency (e.g. Days since last movement, days since 
last arrival)

 Latency (e.g. Average days between movements, 
standard deviation of time between booking tickets 
and sailing)

 Frequency (e.g. Number of appearances at this port, % 
of occasions this vehicle carries foodstuffs)

 Quantity (Trend information; e.g. how common is it 
for a vehicle to appear from this ferry)

In addition there are a number of second order behavioral 
metrics which compare a given vehicles’ first order metrics for 
one movement with the same vehicles’ average metrics. 

We also wished to compare a vehicle with other vehicles at a 
haulage company, but the poor data quality prevented this. The 
vehicle was compared with other vehicles using the same 
booking account however, and whilst not perfect this did have 
some discriminatory value. 

Most of the behaviors are centered on the vehicle as the 
registration data was a strong key to match with previous 
movements. Accurate matching of individuals with historical 
data was difficult as only ~30% of ferry operators provide driver 
passport numbers. Names alone were not a strong enough key 
for accurate matching – even with the use of SSA1 ‘fuzzy’ 
matching technology.

The behaviors were built from the data using SAS linked to 
an Oracle database. In total there were 60 metrics created. This 
allowed analysis of the behaviors predictive/discriminatory 
power. This in itself was a useful exercise as many of the 
indicators previously relied upon were proven to have little 
discriminatory power.

From these behaviors we built a decision tree and Kohonen 
Self Organizing Map. SAS Enterprise Miner 5.2 has dedicated 
nodes that allow for the creation of these by the user. The 
methodology followed SAS’s SEMMA (Sample Explore, 
Modify, Model and Asses) guidelines. One of the many 
advantages of using this tool is that the effectiveness of various 
statistical techniques, such as correspondence analysis and 
factor analysis could be assessed without significant effort.

A. Kohonen Self Organizing Map (SOM)

SOM’s [2,3] provide a way of representing multidimensional 
data in much lower dimensional spaces. They are ideally suited 
to exploratory data analysis, allowing one to impose partial 
structure on the clusters as well as better facilitate visualization 
and interpretation for users. Mangiameli et al [4] applied SOMs 
and seven hierarchical methods to 252 ‘‘messy’’ data sets with 
real-world data imperfections. SOMs were found to be superior 
in both robustness and accuracy.

To create an SOM, one first chooses a geometry of 
‘‘nodes’’— here a 5 by 4 grid, leading to 20 clusters, was used. 
The nodes are mapped into k-dimensional space, initially at 
random, and then iteratively adjusted. Each iteration involves 
randomly selecting a data point P and moving the nodes in the 
direction of P. The closest node NP is moved the most, whereas 
other nodes are moved by smaller amounts depending on their 
distance from NP in the initial geometry. In this fashion, 
neighboring points in the initial geometry tend to be mapped to 
nearby points in k-dimensional space. The process continues for 
20,000–50,000 iterations. Any new, previously unseen input 
vectors presented to the network will stimulate nodes in the zone 
with similar weight vectors.

The mapping of nodes is adjusted by moving points toward P
by the formula:

fi+1(N) =fi(N) + τ (d(N, Np), i)(P – fi(N))

The learning rate τ decreases with the distance of node N 
from NP and with iteration number i. The point P used at each 
iteration is determined by random ordering of the n data points 
generated once and recycled as needed. The function τ is

1 SSA-NAME3 is a Commercial of the Shelf (COTS) product which can be 
embedded into J2EE and Oracle systems and allows ‘fuzzy’ matching, 
effectively dealing with textual errors. For more details see 
www.identitysystems.com/products/name3T.htm
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defined by 
τ (x,i) = 0.02T/(T/100 i)

for x = ρ(i) and τ (x, i) = 0 otherwise, where radius ρ(i) decreases 
linearly with i(ρ(0) = 3) and eventually becomes zero [5]. Once 
it becomes zero the maximum number of iterations have been 
completed and the data clustered; T is the maximum number of 
iterations. 

As stated, the data was classified into 20 clusters, which 
mapped to different traveller types. Each cluster contained a 
roughly equal proportion of the whole population, ranging 
between 2 and 15%. A grid was developed to show the users 
what kind of traveller occupied a certain cluster, which was 
found to be very useful. For example cluster 20 was “Uses very
large account. Above average proportion of loaded movements. 
Above average number of movements for this vehicle, and 
frequency pattern correlates well with the other vehicles which 
use this account.”

Figure 1 shows how movements can be risk scored by their 
Euclidian distance from their normal behavior segment, and the 
distance of the clusters generated in this exercise. It should be 
noted that few movements would be found in the white space 
outside of the clusters. 

B.  Decision Tree

In a decision tree, each stage in the tree is a question asking 
whether a given movement has risky attributes. It terminates at a 
leaf when a decision about the movements risk can be discerned.

The selected population was broken into three groups for this 
analysis; 0 was no seizure, 1 a low value seizure and 2 was a 
high value seizure (class A narcotics or over 100,000 
cigarettes). Each leaf has a percentage attributed to each of these 
three groups.  The tree was ‘trained’ using a profit mechanism 
and a 3 month slice of movement data. If the tree predicted a 2 (a
high value seizure) and a 2 was the result, a profit of 1200 was 
awarded. Conversely if the tree predicted a large seizure and no 
seizure resulted, a fine of -700 was given. Using this method we 
could calculate the most profitable combination(s) of behaviors.
Whilst a certain combination of rules may have predicted vast 

Fig.1 Using Kohonen clusters to generate risk scores 

numbers of seizures, it may also have generated an even larger 
number of false positives, resulting in a lower profit.

Profit scores were used rather then probabilities because of 
the small size of the seizure population. If we had used 
probabilities, the majority of leaves would have predicted that 
no seizure would occur. The other way around this problem was 
to boost the seizure sample relative to the whole population. 
When we used this method however, the models built tended to 
be over-fit. The profit awarded for each outcome was arrived at 
via trial and error; multiple iterations helping to create 
discriminatory trees which were robust and not over-fit.

The decision tree builds itself from the data. The risk metric 
used at each branch is the one with the most discriminatory 
power at that point, based upon the attributes of the remaining 
population.  Because we used a binary decision tree, the same 
metric could be used multiple times, each step through the tree 
filtering the population further. The tree was built using data 
from November 2005 to May 15th 2006 – data from May 15th to 
June 6th 2006 was set aside as a test data set.

C. Testing the models

The first phase of testing these techniques considered both 
separately.  The tests used the historical data captured between 
May 15th and June 6th 2006.  First, we compared seizure results 
and selection information with the decision tree’s predictions 
over the same three week period. The SOM, which was 
designed to show abnormality rather then predict seizures, was 
more difficult to test.  Using the historical data, we were able to 
show that very few vehicles changed behavior between 
movements. Additionally the SOM identified unusual changes 
in behavior in a number of case studies from recent large 
seizures. 

The decision tree and Kohonen SOM were introduced to the 
client on the 25th September 2006, where our positive results 
from phase one led to the client issuing a challenge. With only 
movement data, and no seizure or selection data, we had to 
predict the seizures which took place between the 1st and 14th

October 2006. We risk scored all movements using both
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Fig. 2. Decision tree profit score

methods during this period. The risk scored movement data was 
loaded into an Access database and a weighted final score                                                                                  
generated; we defined the top 20% as worthy of selection. While 
this was a larger percentage then was selected by the Dover
teams, if our selections were as good as random we would only 
be expected to uncover 20% of the seizures. 

Targeting effectiveness could be discerned by dividing the 
percentage of seizures by 20%. Random would equal 100, 
greater then 100 would show the techniques had some 
discriminatory power.

III. RESULTS

The results, like the tests, are presented in two phases; a 
description of the initial test results from the two methods using 
the historical data followed by the results of the Detection and 
Intelligence departments challenge. 

The initial test of the decision tree showed that:
 40% of all seizures would have been flagged as high risk 

movements by the decision tree;
 82% of selections that didn’t result in seizures would have 

been flagged as low risk by the decision tree;
 Only 5-6% of incoming vehicles were identified as high 

risk; thus the tree did not generate large numbers of false 
positives (see figure 2). 

The Kohonen SOM clustering technique assessed risk based 
on whether a vehicle/driver was behaving differently to their 
usual modus operandi. Initial results showed that:
 Only 5% of vehicles regularly change behaviors; again 

showing the technique is unlikely to generate masses of 
false positives (see figure 3);

 When the seizure population was superimposed into the 
technique it was noted that vehicles involved in seizures 
had a Euclidean distance from their average centroid ~10 
times greater then the mean for non-seizure movements 
distance from their average centroid

The above result means a distance score would have strong 
discriminatory power as a risk indicator. As stated the majority 
of movements very rarely stray from their cluster; 95% always 
remain in the same cluster, and 80% do not even move 
noticeably from their usual centroid. These two facts, combined 
with the results from the decision tree test, contributed strongly 
to the Detection and Intelligence Department’s decision to 
combine these two methods into a single model and test the 
model in what became known as the Detection Challenge.

Using only movement data, the model produced a set of 
predictions.  These results were compared to the actual seizures 
in order to establish how effective the techniques had proved. 
The model predicted 39% of all seizures, but more significantly 
the model predicted 57% of seizures above the National 
Intelligence debrief threshold – i.e. seizures of over 250,000 
cigarettes and class A narcotics. These larger seizures were the 
primary focus of this evaluation since smaller seizures should be
harder to predict; they are rarely done by organizations or are 
pre-mediated.  As such the underlying behaviors are more likely 
to be highly variable. The effectiveness2 of the model and that 
of the current selection procedure were then calculated.  

2  Effectiveness compares the percentage a trait appears in the seizure 
population versus how often a trait appears in the selected vehicle population. 
A trait which has no discriminatory value would appear equally in both 
populations, and would have an effectiveness of 100. 20% would be random. 
38% was achieved during the trial, 38/20 x 100 = 190.
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Fig. 3. Distribution of distances from average centroid

The models were found to have an effectiveness of 190, 
compared with the existing FTS pilots’ effectiveness of 112 – a 
71% improvement. This is shown in Figure 4. The red line 
indicates the conversion rate 3  associated with a level of 
effectiveness based on current performance. This conversion 
rate is not an exact figure, but a guideline based upon the 
conversion rates associated with different FTS rules with a 
given level of effectiveness. It shows that the new model could 
bring a substantial improvement in conversion rate.

There was a significant divergence in what was deemed risky 
by the Detection teams and the behavioral model. For example, 
the model selected 13% of what Detection selected; 
significantly fewer than the 20% random sample. Therefore, out 
of all the movements which were selected, the model only 

3 Conversion rate is simply the percentage of vehicles stopped which lead to 
seizures. 

judged 13% of the vehicles searched to be high risk. From this 
13%, 39% of all the seizures were identified. If the behavioral 
techniques were as accurate as random selection, they would 
only have identified 13% of the seizures; by predicting 39% of 
the seizures, they have been shown to be 3 times more accurate 
then existing targeting practices, at least for targeting a high risk 
subset of the seizure population.

17 seizures were predicted by the model from the 395 
selections that the model would have selected which were 
actually rummaged; a conversion rate of 4.3%. This compares 
favorably with Detection’s conversion rate of 1.47% over the 
same period – thus the techniques demonstrated an 
improvement of 292%. Of course we cannot predict the 
outcome of the other selections, but this evidence was sufficient 
for the client to commission a system which uses these methods 
for targeting cross-border traffic. Even with the limitations of 
the current data, these techniques could help the client reach 
their conversion rate target of 5%. With the improved data 
promised by the Immigration, Asylum and Nationality (IAN) 
bill, these techniques could prove even more accurate.  

IV. DISCUSSION

These techniques could bring great benefit to anti-smuggling 
operations. If the client were able to achieve a conversion rate of 
4.37% operationally, with the seizures being of the same 
average value, the client could expect to increase the number of 
cigarettes seized by 302%, an increase worth £16.3 Million per 
annum. Even if the models were half as effective operationally 
as they were in the trial, the client could expect to seize 56% 
more cigarettes, an increase worth £4.3 million. 

Fig. 4. Behavioral models targeting effectiveness

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



Fig. 5. Discriminating between high and low value seizures

Whilst it could be argued that the models identified those 
seizures which were the easiest to identify, the ability to avoid 
false positives and quickly identify movements which are high 
risk via the techniques described, means the system will free up 
resources for targeting the more difficult to identify smugglers.

 Additionally, the models will undergo a circle of continuous 
improvement resulting from using these techniques and then 
rebuilding the models from new data with a greater number of 
seizures to drive predictions. These factors could realistically 
lead to better conversion rates.  A 6% conversion rate, for 
example, would lead to the seizure of an additional 144 million 
cigarettes a year.

In addition to predicting more seizures, the models were 
shown to be better at finding high value seizures. The decision 
trees created for the Challenge exercise were specifically 
designed to search for seizures of over 100,000 cigarettes.

The leaves which predicted a high value seizure very rarely 
predicted a low value seizure. Figure 5 shows the predicted 
outcome of the 40 highest profit leaves in the tree. The green 
bars show the percentage probability that a movement in that 
leaf is likely to result in a small seizure if the vehicle is stopped. 
The red points show the probability that a movement within that 
leaf is likely to result in a large (>100,000 cigarettes or Class A 
drugs) seizure. Crucially when the tree predicted a small 
outcome it rarely predicted a large outcome and vice versa.

Despite only accounting for 25% of all seizures, seizures with 
more than 100,000 cigarettes account for 98% of all cigarettes 
captured. If – by actively targeting them – large seizures 

comprised 30% of the seizure population, the Client would 
increase the value of it’s annual seizures by 50%.
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