
 
 

 

  
Abstract—We propose a formula that quantifies the reliability 

of kNN classification in the two class case. Let the training set 
consist of N1 instances of class 1 and N2 instances of class 2. Let the 
k nearest neighbors of the test instance contain k1 instances of 
class 1 and k2 instances of class 2, k = k1 + k2, k1 << N1, k2 << N2. 
We derive, under some additional assumptions, the estimate for 
the probability that the test instance belongs to class 1. 
 

Index Terms—classification, kNN, confidence, probability, 
error 
 

I. INTRODUCTION 
k-Nearest Neighbor (kNN) is a powerful method of 

nonparametric discrimination, or supervised learning [1]-[4]. 
Each object, or instance, to be classified, is characterized by d 
values , 1ix i d= K and is thus represented by a point in 
d-dimensional space. The distance between the two instances 
can be defined in different ways, the simplest of which is the 

usual Euclidean metric 2( ) .i ii
x x′−∑  Given a training set (a 

set of instances with known class assignments) and a positive 
(odd) integer k, classification of the test object is performed as 
follows. 
1. In the training set, find the k nearest neighbor training 

instances to the test object. 
2. Each of these k instances belongs to one of the two classes. 

As k is assumed odd one class has more members in the 
k-neighborhood of the test instance.  

3. Classify the test instance as belonging to this class. 
This simple algorithm has two noticeable drawbacks. First, it 

does not properly take into account the number of instances of 
each class in the training set. Simply adding more instances of a 
given class to the training set would bias classification results in 
favor of this class. Thus the algorithm in the above simple form 
is only applicable when each class in the training set is 
represented by  an equal number of instances.  

Second, the algorithm provides no information on the 
confidence of class assignment for individual test instances. 
Consider, for example, the case of 15k =  and two classes. It is 
intuitively clear that the confidence of class assignment in the 
15:0 situation is much higher than in the 8:7 situation. In many 
applications, such as those related to clinical diagnostics, it is 
very important to be able to characterize the confidence of each 
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individual class assignment. 
Here we address these problems by providing a probability 

estimate of the test instance belonging to each of the classes, 
based on the class labels of each of the k nearest neighbors from 
the training set. We restrict ourselves to the case of two classes. 
We provide two derivations, one within the kernel density 
estimation framework (a fixed vicinity of the test instance 
determines the number of neighbors), the other within the kNN 
framework (a fixed number of neighbors determines the size of 
the vicinity). Both lead to the same result for the probability 
estimate of the test instance belonging to each of the classes. 

 

II. PROBABILITY ESTIMATE WITHIN THE KERNEL APPROACH 
Consider the case of two classes, which we denote as 1 and 2. 

Each instance is represented by a point 1( )dx x x=r K  in a 
metric d-dimensional space. Denote the full d-dimensional 
space by Ω . Class 1 is characterized by the (unknown) 
probability distribution 1 1( ), ( ) 1p x p x dx

Ω
=∫

r r r . Class 2 is 

characterized by the (unknown) probability distribution 

2 2( ), ( ) 1p x p x dx
Ω

=∫
r r r . The training set consists of 1N points 

drawn from class 1, and 2N points drawn from class 2. Denote 
a vicinity of the test point (representing the test instance) by .ω  
(In case the Euclidean distance is used,ω is a sphere centered at 
the test point, but this is irrelevant for the following.) For a 
given realization of the training set, we observe 1k points in 
ω from class 1, and 2k points in ω from class 2.  

We make the following assumptions and approximations. 
1. Existence of probability densities. As already stated above, 

the training set is considered to be a sample drawn from the 
underlying probability distributions with densities 1( )p xr  
and 2 ( )p xr . 

2. Fixed .ω  The vicinity ω of the test point is considered 
fixed: It can depend on the position of  the test point, on the 
probability distributions from which the training set is 
drawn, as well as on 1N  and 2N , but is assumed to stay  the 
same for each realization of the training set.  

3. Uniformity within .ω  The vicinity ω is sufficiently small, 
such that probability densities for the classes, 1( )p xr  and 

2 ( )p xr , are approximately constant within .ω  
4. Poisson approximation. For each class, we make an 

approximation that the number of training set instances of 
this class in ω  is drawn from the Poisson distribution. This 
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approximation is valid when ,i ik N<<  ( ) 1,ip x dx
ω

<<∫
r r  

1, 2i = . 
In the Poisson approximation, ik  is drawn from the Poisson 

distribution with expectation value iλ , 

 ( ) , 1, 2.i i iN p x dx i
ω

λ = =∫
r r  

Assuming equal prior probabilities for class assignment of 
the test point, that is, (class 1) (class 2) 0.5P P= = in the 
absence of any information about the neighbors, the 
probabilities of the test point belonging to class 1 or to class 2 
are as follows: 

 
1

2

( )(class 1) .
(class 2) ( )

p x dxP
P p x dx

ω

ω

= ∫
∫

r r

r r  

Thus 

 
1 1 1

1 1 2 21 2

( ) /
(class 1) .

/ /( ) ( )

p x dx N
P

N Np x dx p x dx
ω

ω ω

λ
λ λ

= =
++

∫
∫ ∫

r r

r r r r  

Here we have also implicitly used the uniformity assumption 
(assumption 3). Now we can estimate 1λ  and 2λ  in the usual 
Bayesian manner. Both 1k  and 2k  are assumed to obey the 
Poisson distribution, 

 ( | ) .
!

k

p k e
k

λλλ −=  

Denoting the prior distribution for λ  by 0 ( ),p λ by standard 
Bayesian reasoning we obtain 

 0

0

( | ) ( )
( | ) .

( | ) ( )
p k p

p k
d p k p

λ λλ
λ λ λ

=
∫

 

Assuming from now on a flat prior distribution of ,λ  

0 ( ) ,p constλ =  we obtain 

 ( | ) ( | ) .
!

k

p k p k e
k

λλλ λ −= =  

Eventually, 

 1
1 2 1 1 2 2

1 1 2 20 0

(class 1) ( ) ( ),
( / )

P d d p p
N N

λλ λ λ λ
λ λ

∞ ∞

=
+∫ ∫  

where 

 
1 2

1 21 2
1 1 2 2

1 2

( ) , ( ) .
! !

k k

p e p e
k k

λ λλ λλ λ− −= =  

Computation of this integral gives 

 ( )1

2

1
2 1 2 1 2

1 2

1
(class 1) 1, 1; 3;1 .

2
N
N

k
P F k k k

k k
+

= ⋅ + + + −
+ +

 (1) 

This is our main result. For equal sample sizes in the training 
set 1 2( )N N= this simplifies to the following: 

 1 1

1 2 2

1 1(class 1)(class 1) , .
2 (class 2) 1

k kPP
k k P k

+ +
= =

+ + +
 (2) 

 

III. PROBABILITY ESTIMATE WITHIN THE KNN FRAMEWORK 
The above estimate has been obtained in the fixed-ω 

framework. It is interesting to check whether it holds in the 
fixed-k, i.e. proper kNN framework. For each of the k nearest 
neighbors we have,  

 

1

1 1

1 1 2 2

(neighbor belongs to class 1)

( )
.

( ) ( )

p P

N p x dx

N p x dx N p x dx
ω

ω ω

≡

=
+

∫
∫ ∫

%
r r

r r r r
 (3) 

Then 

1 1
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1
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P k k p p p

k
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where NN stands for “nearest neighbors”. Thus 
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where we have again assumed a flat prior distribution of 1p% : 

0 1( ) .P p const=% From (3) we obtain  

 
2 1

2 11

( ) 1 1 .
( )

p x dx N
N pp x dx

ω

ω

⎛ ⎞
= −⎜ ⎟
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∫
∫

r r

r r %
 

Then for given 1p%  the probability that the test point belongs 
to class 1 is 

 2 1

2 1 1 12

1

1(class 1) .
(1 )( )

1
( )

N p
P

N p N pp x dx

p x dx
ω

ω
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+ −

+ ∫
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Finally, using (4),  
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1

2

1
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1
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N
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k

F k k k
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∫
 (5) 

which is identical to the result (1) obtained in the previous 
section. 

IV. CONCLUSION 
Unlike the estimates of the overall error rate of kNN 

classification [1]-[3] that depend on the probability 
distributions associated with the classes, our formula (1) 
provides a reliability of class assignment for each individual 
test instance, depending only on the (known) training set data. 
It also properly accounts for complications arising when the 
numbers of training instances in the two classes are different, 
i.e. 1 2 .N N≠  
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has been also addressed in [5]-[8]. However, the “confidence 
level” proposed in [5]-[7] has a completely different statistical 
meaning and cannot be used to estimate the reliability of class 
assignment for each individual test instance. The same is true 
for P-values discussed in [8], p.466.  
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