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 Abstract – This paper suggests over-segmenting the 
feature space for improved initialisation of the k-means 
clustering method. Two over-segmentations (OS) of a 
dataset are achieved and then fused to determine the best-
possible initial means to perform the iterative process of k-
means. The method is tested over both, image as well as 
non-image data. The image data is segmented using tex-
ture features based on Gabor energy features (GEF). The 
method is compared with single-run k-means and k-means 
with multiple restarts. Encouraging results have been 
obtained while segmenting a variety of texture images and 
the non-image data. The 40% OS is found to give the best 
results.  This technique addresses the issue of data cluster-
ing in all the possible areas including data mining, pattern 
recognition, machine learning and statistics. 
 
Index Terms -- Fusion, K-means Clustering, Over-
segmentation, Data mining 

I.   INTRODUCTION 
Despite continued research by hundreds of researchers 

engaged for many long years, data clustering remains 
one of the most non-trivial and one of the most challeng-
ing tasks in the fields of data mining, statistics, bio-
informatics, and image segmentation alike. Although 
there are many clustering techniques, however, so far k-
means remains the most popular among unsupervised 
techniques of data clustering due to its simplicity and 
faster convergence. Nevertheless, often falling into a 
local minimum remains a problem semper instans. The 
k-means is generally performed several times (usually 
hundreds of times) before choosing the best solution 
among the several ones found therein. Moreover one is 
never sure that the best solution found is the optimal 
one. 

This paper presents a method of initialising k-means 
clustering technique, herein called as FOOS, which 
helps prevent k-means from falling in the suboptimal 
points that lead to extremely undesirable clustering; 
thereby achieving optimal or near-optimal solution. A 
good comparison of the initialisation methods for k-
means is [1] that discusses the problems associated with 
the k-means clustering. 

The remainder of the paper is organized as follows: 
section II describes the 3 methods used and compared 
herein, section III describes more precisely the prob-
lems and conditions of failure of k-means and the 
success of FOOS, section IV estimates the computa-
tional cost involved in the clustering methods, section 
V presents the results and their comparison and finally 
section VI concludes with final remarks on the results 
and possible future work. 

II.   METHODS 
Here is the explanation of the three methods of clus-

tering used and compared herein, namely, single-run 
k-means and FOOS algorithms implemented with our 
own programs and k-means with multiple restarts 
implemented with the software Gene Cluster 3.0. 

 

 A.   K-Means Algorithm 
K-means clustering, invariant to instance order, 

based on the similarity metric of Euclidean distance is 
performed with the random initialisation. The dataset 
is randomly sampled to a much smaller subset, and 
then K means are selected randomly, making sure that 
there is a (considerable) minimum allowable distance 
between any two of the randomly selected means.  

The iterative process of clustering is then performed 
to determine new class means and assign a class to 
each data-point in the dataset on the basis of closest 
Euclidean distance until difference between the current 
and the previous class means is zero. Generally, it is 
known that k-means assumes that the desired clusters 
are populated in spherical Gaussian distributions; and 
that any deviation from this situation causes k-means 
algorithm to fall into a sub-optimal point. 

 

 B.   Gene Cluster 3.0 
Gene Cluster 3.0 is a computer program developed 

by M. de Hoon [2] based on the original Cluster pro-
gram written by Mike Eisen of Berkley Lab. In addi-
tion to the results obtained with our program of single-
run k-means, results obtained with Gene Cluster 3.0 
are also presented and compared with those from 
FOOS. Gene Cluster 3.0 performs k-means several 
times before choosing the best solution out of the sev-
eral available. The criterion for choosing the best solu-
tion is the minimum Intra-Cluster Distance [1] defined 
as 
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where K is the total number of clusters, Nk is cardinality 
of the kth cluster, µk is the mean feature vector of the kth 
cluster, and xn is the feature vector of the nth data mem-
ber of a running cluster k. 
 

 C.   The Proposed Approach 
The proposed approach, referred to as Fusion Of Over-

Segmentations “FOOS”, is a means of finding the initial 
means that, unlike k-means, leads to the optimal or a 
near-optimal solution even if the desired clusters do not 
lie in the spherical Gaussian distribution. FOOS per-
forms the k-means procedure only 3 times: it initialises 
the 3rd run of k-means with the cluster means found from 
the 2 preceding runs of the algorithm.   

The clustering algorithm suggested here finds out 2 
over-segmentations (OS) and then performs a kind of 
fusion of the clusters found therein.  The k-means algo-
rithm is first used to segment a dataset into M and N 
clusters, respectively, where K is the desired number of 
clusters, M>K and N=M+1. The 2 OS are then fused to 
determine good initial means to perform simple k-means 
clustering explained in the preceding section. Hence 
those K pairs of clusters, one from each M-cluster and 
N-cluster OS, respectively, are selected that have the 
largest number of common member data-points.  

Least possible OS is suggested for the datasets with 
K≤5. In this case, M=K+1. The procedure is described 
mathematically in (2) through (7). 
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where M=K+1, N=K+2, I is the set of all the data-points 
in the dataset, Xm is one of the M clusters found in first 
OS and Yn is one of the N clusters found in the 2nd OS. 
 

nmnm YXZnm ∩=∃∀ ,,, , (3) 

where ZZ nm ∈, , NMZ ×=  and *  represents the 
cardinality of a set. 
 

nmnm ZT ,, =  m=1, 2, .., M and n=1, 2, …, N  (4) 
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where Wn is the nth order pair in the set W that is the set 
of order pairs representing the K largest clusters of com-
mon data-points from M and N segmentations; nμ

r
 and 

nWT , respectively, are mean and cardinality of the nth 

cluster, and iW n
x ,
r

 is the feature vector of the ith data-

point in the nth cluster  
Equation (5) explains that the smallest sets are re-

jected, selecting only the K largest clusters among 
Zm,n.  FOOS algorithm then computes the correspond-
ing K means from them to be considered as initial 
means to perform the following and decisive iterative 
process of k-means over the dataset as follows: 
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where Xn is the nth cluster, dj,n is the Euclidian distance 
of  xj from the nth cluster, and dj,i is the Euclidian dis-
tance of xj from ith cluster. 

 
Fig.1.  (a) The image with four textures from Brodatz 
 collection, Segmentation into  (b) 5 clusters  (c) 6 clusters   (d) 
The 4 largest classes of common member pixels 

 
For example, fig. 1 shows an image with 4 (K) tex-

tures D92, D55, D4, and D21 from the Brodatz album, 
its segmentation into 5 (M), 6 (N), and 4 (K) clusters 
having the highest number of common member pixels. 
The pixels that are not part of the 4 largest classes of 
common members are shown in black.  Table 1 shows 
the statistics of the number of common pixels in this 
particular case of the image in fig. 1. The table shows 
that class 3 from M segmentation and class 4 from N 
segmentation have the highest number of common 
member pixels, i.e. 16324. The following 3 (M,N) 
order pairs are (2,5) with 13964, (5,6) with 12777, and 
(4,2) with 11135 common members. These sets of 
common members form the new clusters with the new 
means that are better means to be taken as initial 
means to perform k-means for clustering the dataset 
into K segments. 

For the datasets having more classes, i.e. K>>5, the 
least possible OS doesn’t seem to be the best solution, 
as shown in the results in section V. In case where 
K≤5, we perform least possible OS leading to 
M=K+1=6, and N=K+2=7; i.e. 2 more on 5 or 40% 
OS.  If we extend this idea of 40% OS to a dataset 
with K=10, the 2 proposed OS shall be M=13 and 
N=14.  
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Table 1: Statistics of the clusters formed after OS of the image in 5 clusters   (left column) and 6 clusters (top row).  
The other cells in the table show the number  of common pixels found in the 2 OS, with the highest 4  numbers in bold 

Segmentation into N (k+2) 6 clusters 
Class # n 1 2 3 4 5 6 

 nY  7395 11245 3656 16388 14075 12777  
m 

nX   nmT ,        

1 3660 13 0 3647 0 0 0 

2 16710 2598 96 0 52 13964 0 

3 16405 38 10 0 16324 33 0 

4 15975 4746 11135 5 12 77 0 

Segmentation 
Into M 
(k+1) 

5 
clusters 

5 12786 0 4 4 0 1 12777 

III.   NOTION BEHIND FOOS 
Reference [3] is a recent work that points out 3 estab-

lished problems/disadvantages with the k-means algo-
rithm that are already pointed out by many earlier 
works. First that it requires the number of clusters be-
forehand, second that it is sensitive to the outliers, and 
third that any two randomly chosen initial means might 
be too close to be considered as two distinct centroids. 
Reference [1] notes that despite having all the advan-
tages of convergence and computational simplicity, the 
k-means is affected by the choice of initial means and 
may easily converge into a local optimum due to its 
assumption that the clusters it is trying to find lie in a 
spherical Gaussian distribution.  

Requiring the number of clusters beforehand is not 
always a problem. Often, the user prefers to decide 
upon it. Even the results of manual clustering of any 
given dataset will yield different outcomes since the 
number of clusters is almost always subjective depend-
ing on how rigorous segmentation is required. There-
fore in many situations, the number of clusters (K) is a 
user-defined parameter. It is hence rather an advantage 
in many situations. The random selection of initial 
means can be repeated if any two of the selected means 
do not lie at a considerable distance.  Rest of the prob-
lems, i.e. its assumption of spherical Gaussian distribu-
tion, sensitivity to outliers, and dependence on the 
initial means, all are inter-related. Keeping in view the 
determination of the number of clusters using Gaussian 
separation in [4], one can summarize these problems 
into a single problem statement as follows: 

A given dataset usually has a different number of 
clusters from the Gaussian analysis [4] viewpoint than 
the number of clusters determined by application, re-
quirement, and/or subjective assessment. This dis-
agreement makes distributions of the desired clusters 
look non-Gaussian and some of their members as out-
liers to the k-means algorithm, causing sensitivity to the 
choice of initial means while dividing the dataset into 
the desired number of non-Gaussian clusters. 

The problem of so-called outliers is the same problem 
of non-Gaussian distribution in the different words. For 
a given dataset, segmenting in to a larger number of 

clusters relieves the problem of outliers or that of 
skewness in the cluster distributions; since more and 
smaller/finer Gaussian classes can more closely ap-
proximate non-Gaussian distributions. References [5-7] 
explain how non-Gaussian distributions can be ap-
proximated by piecewise Gaussian distributions. 

Consider a situation requiring a dataset to be seg-
mented into 2 clusters, whereas the dataset seems to 
have 2 major clusters (large in population) “A”, “B”, 
and a minor (small in population) cluster “C” as per 
Gaussian separation [4]. The 2 major populations lie 
close in the feature space in such way that the minor 
cluster “C” is more distinct from cluster “A” than the 
major cluster “B” is from “A”.  In this situation, the k-
means is most probably going to result in a merged 
class comprising the 2 major clusters “A” and “B” and 
the minor cluster “C” as a separate class. Even the k-
means with multiple restarts will result in the same 
solution, since the merger of the 2 major classes will 
result in the minimum Intra-Cluster Distance. 

Doing OS helps distinguish 2 relatively closer major 
classes from one another and the minor class. The fol-
lowing fusion process excludes the smaller/minor class, 
finding out the best initial means from the 2 major 
populations. 

IV.   COST ANALYSIS 
The computational cost of k-means is given by 

 
)( KtNOC kmeans = , (8) 

where K represents the number of clusters to be found, t 
is the number of iterations performed, and N is the 
cardinality of the dataset to be clustered. 

Reference [8] argues that since {K, t}<<N, the com-
putational cost in (8) can be approximated by 

 
)( NOC kmeans = . (9) 

Since FOOS can be thought of successive application 
of k-mans to perform clustering into K+2, K+1, and K 
clusters respectively, its computational cost can be 
computed as  

)))2()1((( tNKKKOC FOOS ++++=  (10) 
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and considering that 3Kt<<N, can be approximated as 
 

)()3( NOKtNOC FOOS ≈≅ , (11) 
which tells that the computational complexity of the 
two methods happens to be the same. 

 
The conventional k-means with multiple restarts is 

obviously computationally more demanding than FOOS 
that takes only 3 runs, whereas in the case of k-means, 
it is a function of cardinality of the dataset. 

V. RESULTS 
The results on both, the image and the non-image data 

are presented from the k-means, the Gene Cluster 3.0, 
and the FOOS algorithms. 

 
Fig.2. (a) The image with 4 textures from Brodatz collection, 

(b) its ideal segmentation, segmentation result with (c) k-
means, (d) Gene Cluster 3.0, (e) FOOS algorithm 

 

A. Clustering the Image Data 
For image data, the results are presented for the appli-
cation of texture segmentation. The texture segmenta-
tion is one of the important aspects of not only the 
computer vision systems but also finds application in 
remote sensing (RS). The texture segmentation is car-
ried out by extracting texture features and then using 
some data clustering technique such as k-means to 
segment the areas having homogeneous textures.  

i.   Collages of Four Brodatz Textures 
An image with collage of 4 patches of the Bordatz 
textures D73, D34, D57, and D29, each of 1282 pixels 
from Brodatz texture collection is shown in fig. 2(a).  In 
this case, we over-segment the image into M=5 and 
then into N=6 clusters.  

The 2 OS are then fused to find 4 clusters. As shown 
in fig. 2(c), the k-means heavily misclassifies the tex-
tures on the bottom-right (D29) and the top-left (D73) 
corners achieving the accuracy of 69.5%. Gene Cluster 
3.0 is no different from k-means, achieving even worse, 
i.e. 69.2% accuracy. Contrarily, the FOOS algorithm 
considerably outperforms with an accuracy of 88.8% 
and is quite successful in discriminating all the classes.  

In fact, many such combinations of textures were seg-
mented. Table 2 lists the details of the collages and 
shows the results obtained with the k-means, FOOS, 
and the Gene Cluster 3.0. The Gene Cluster 3.0 doesn’t 
provide the optimal solution after making 100s of runs 
of k-means, and sometimes gives even worse results 
than k-means performed once by our program.  

 
Fig.3. (a) The image with 5 textures from airborne CASI 

sensors, (b) its ideal segmentation, segmentation result with 
(c) k-means, (d) Gene Cluster 3.0, (e) FOOS algorithm 

 

ii.   Five Textures From a Natural RS Scene 
A collage of 5 textures from an RS image taken 

from an airborne sensor called CASI is presented. Fig. 
3(c) shows that the k-means fails in discriminating 
between bottom-left texture and the central texture, 
causing a forceful creation of the 5th class from within 
the region of homogeneous texture on the bottom-right 
corner. Contrary to this, the FOOS segments all the 
textures successfully with most of the misclassifications 
in the top-right texture that has been confused with the 
central texture as shown in fig. 3(e). The result of Gene 
Cluster 3.0, shown in fig. 3(d) is slightly worse than 
FOOS, achieving 89.1% accuracy after 26 runs of k-
means. K-means achieves 65.8% accuracy as compared 
to 89.4% accuracy with FOOS. 

In this example, k-means (single run) took 43 itera-
tions, whereas FOOS took a total of 93 iterations that is 
far below 3 times those of k-means. 
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Table 2: The list and details of the images with a collage of 4 Brodatz textures each: The last column shows how 

many times the Gene Cluster found clusters using k-means before choosing the best among them 
Segmentation Accuracy 

Gene Cluster 3.0 S. No. Textures Selected 
(From top left to bottom right) K-Means FOOS 

(3 runs of k-means) Accuracy No. of Runs 
1 D73, D34, D57, D29 69.5% 88.8% 69.2% 274 
2 D4, D55, D9, D21 67.6% 97.0% 96.9% 178 
3 D24, D84, D4, D21 67.8% 95.4% 95.4% 453 
4 D92, D55, D4, D21 67.5% 81.1% 67.2% 029 
5 D3, D22, D112, D80 60.4%  91.5% 91.4% 192 
6 D54, D84, D57, D100 52.3% 69.8% 69.5% 028 
7 D73, D37, D57, D29 55.0% 73.2% 55.0% 050 

Overall Average Accuracy 62.8% 85.3% 77.8% 172 
 

iii.   A Natural Image from Berkley Database 
Here are the results on a natural image from Berkley 

Segmentation Database (BSD) reported in [9]. As 
shown in fig. 4(a), the image apparently has 3 textures, 
1st one that of the grass, 2nd one that of the zebras, and 
3rd in the rest of the image. The image has the size of 
481X321. Fig. 4(b) illustrates its segmentation (into 36 
segments) by a human subject (user #1107) as given in 
the BSD benchmark, clearly outlining the zebras, the 
grass, and rest of the image (the non-grass background). 
It should be noted however that the provided segmenta-
tion is with reference to the edge detection only, and 
not with respect to the texture. Fig. 4(c) and 4(d) show 
the result obtained with k-means and Gene Cluster 3.0, 
respectively, with the outline of fig. 4(b) overlaid on 
them. Fig. 4(e) shows the result obtained with FOOS. 
The Gene Cluster 3.0 performed 472 k-means proc-
esses and took hours to complete. 
 

Fig.4. (a) The zebra image from BSD, its segmentation (b) as 
provided by BSD, (c) with k-means, (d) with Gene Cluster 

3.0, (e) with FOOS 

 
FOOS successfully separates the zebras, the grass, 

and the non-grass background. Having no texture, the 
mouths and the feet of the zebras also appear different 
from the zebra skin. Remaining misclassifications ap-
parently indicate the reduced discrimination ability of 
the extracted features. On the other hand, the k-means 
and Gene Cluster 3.0 fail in distinguishing between the 
grass and the non-grass background, forcefully creating 
a class within the zebra texture and classifying legs as 
different from zebra’s main body. The k-means and 
Gene Cluster 3.0 also misclassify the non-occluded part 
of the otherwise occluded zebra’s back.  

 

B. Clustering the Non-Image Data 
Results are presented on 2 datasets from UCI machine 

learning repository [10]. 
As seen in the results on the image data, the single 

run k-means may result in very good or very bad clus-
tering solution depending on its random initialisation. 
Hence, results from single-run k-means are considered 
no more. 

 

i.   A Dataset with 2 Classes 
This is a database of human body dimensions, whose 

original source is [11]. The data include 507 observa-
tions of 21 body dimension as well as age, weight, 
height, and sex. The subjects include 247 male and 260 
female individuals. The feature of sex was removed 
from this dataset. Further, all the feature values were 
rescaled from -250 to 250 to ensure that all the feature 
vectors get the equal weight in the distance measure-
ment. The dataset was segmented into 2 clusters corre-
sponding to the 2 sexes.  The removed column of sex 
was used as the ground truth. The results from Gene 
Cluster 3.0 and FOOS are exactly the same, i.e. 87.4%, 
with 443 instances classified correctly. Very small 
number of classes makes the task quite easy; therefore 
results ought to be the same. However, Gene Cluster 
3.0 performed 9216 runs of the k-means before reach-
ing the solution, against 3 runs by FOOS.  
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ii.   A Dataset with 10 Classes 
This database was originally provided by E. Alpaydin 

and C. Kayna. The dataset contains 2000 instances 
corresponding to hand-written digits “0” to “9”. The 
class distribution is uniform, viz. 200 instances of each 
class.  The number of dimensions is 649. Gene Cluster 
3.0 stopped after performing just a single run of k-
means, and as suggested, it was therefore run repeat-
edly 4 times. Each time, it stopped after performing a 
single run of k-means, yielding accuracies of 80.45%, 
80.15%, 80.55%, and 80.60%, respectively. FOOS was 
performed 4 times with different values of M, as illus-
trated in table 3. 

Table 3: FOOS Results with different over-segmentations 
M N % Over-segmentation Accuracy 
11 12 20% 75.95% 
12 13 30% 83.15% 
13 14 40% 91.70% 
14 15 50% 91.15% 

The last 3 results, i.e. corresponding to 30-50% over-
segmentations are better than those of Gene Cluster 3.0.  
The best result is the one corresponding to 40% over-
segmentation, with an accuracy of 91.7%, i.e. 11% 
more than that of Gene Cluster 3.0.   

Reference [12] reports that using neural network clas-
sifiers (NNC), even the learning error was not less than 
10%, which corresponds to accuracies of under 90%!  
It further states that the combined NNC failed in distin-
guishing between class “6” and class “9”. The clusters 
resulting from FOOS show that class “6” is well sepa-
rated from class “9” with not a single member of class 
“6” classified as belonging to class “9” or vice versa; 
although both cluster “6” and cluster “9”, have some 
misclassifications, with more than 90% accuracies. 

VI. CONCLUSION 
To initialize the iterative process of k-means cluster-

ing, an approach based on the fusion of over-
segmentations is proposed. The approach is shown to 
be successful with the segmentation of various image as 
well as non-image data that is publicly available. The 
favourable comparison is also shown with the single-
run k-means and Gene Cluster 3.0, reinforcing the 
theoretical notions behind FOOS presented in section 
III.  

Since FOOS makes only 3 runs of simple k-means, its 
computational complexity is also much lower than the 
other proposed methods that require performing k-
means exhaustively or repetitively on the multivariate 
data. Table 2 shows that Gene Cluster 3.0 gives the 
same or worse results after ~172 runs as compared to 
FOOS that is equivalent to 3 runs of k-means. 

To test its repeatability, the FOOS was performed 
many times repeatedly. It gave exactly the same results 
in some cases and only slightly different results in oth-
ers.  For example, it was always exactly the same result 
for the natural image of fig. 4.   

Computationally, FOOS is found to take less itera-
tions than 3 times those taken by a single run of k-
means, ensuring that it is almost never more expensive 
than 3 runs of k-means. 

Least possible OS is tried with the datasets containing 
up to 5 clusters. On the other hand, for a dataset with 
10 classes, rather 40% OS is found to be the best.  
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