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Abstract—In this article a fast, non-asymptotic al-
gebraic method is used for the estimation of state vari-
ables. The estimation is used to implement a position
control scheme for DC motor. In addition the estima-
tion of the Coulomb’s friction coefficient of the servo
motor model has been investigated. The approach
is based on elementary algebraic manipulation that
lead to specific formulae for the unmeasured states.
The state estimation algorithm have been verified by
simulation.

Keywords: State estimation, Algebraic Identification,

DC motors, State observer

1 INTRODUCTION

Control design method such as state feedback controls,
which use the states in their control laws are designed
under the assumption that all state variables are accessi-
ble for measurement. However, in many practical appli-
cation it may not be economical or convenient to measure
all of the state variables. An alternative approach is to
use an estimation technique to provide estimates of the
state variables which are not measured, for use in imple-
mentation of a feedback control law.

The foundation of linear state estimation was laid by
Kalman in [1], who developed the Kalman filter. Later
Luenberger in [2] introduced a deterministic version of
the Kalman filter, known as Luenberger observer. The
theorical properties of the Kalman filter and the Luen-
berger observer are well understood and can be found in
estimation and/or system theory textbooks [3].

It is clear that for an observable system, represented in
state space, the state estimation problem is intimately re-
lated to the computation of time derivates of the output
signals, in a sufficient number. The main contribution of
this article is that, we attempt an algebraic method, of
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non-asymptotic nature, for the estimation of states com-
puting a finite number of time derivates of the output.
The method is based on elementary algebraic manipula-
tions that lead to specific formulae for the unmeasured
states. Our approach uses the model of the system which
is known almost most of times. In this work, we use an
fast state estimation of continuous-time nature for the es-
timation of the state of a DC servomotor model in order
to implement an PD control scheme. After the estimates
of the state variables are obtained by algebraic method
the Coulomb’s friction coefficient is instantaneously esti-
mated. The importance of this coefficient estimation is
explained in [4] in order to appropriately control the sys-
tem by compensating this non-linearity. The estimation
method is based on elementary algebraic manipulations
of the following mathematical tools: module theory, dif-
ferential algebra and operational calculus. They were de-
veloped in [5]. A differential algebraic justification of this
article follows similar lines to those encountered in [6].

2 MOTOR MODEL AND ESTIMA-
TION PROCEDURE

This section is devoted to explain the linear model of
the DC motor and the algebraic estimation method. We
assume that the linear model is affected by unknown per-
turbation due to the Coulomb‘s friction effects.

2.1 DC Motor model

A common electromechanical actuator in many control
systems is constituted by the DC motor [7]. The DC
motor used is fed by a servo-amplifier with a current inner
loop control. We can write the dynamic equation of the
system by using Newton’s Second Law:

kV = J
¨̂
θm + ν

˙̂
θm + Γ̂c(

˙̂
θm) (1)

where J is the inertia of the motor
[
kg ·m2

]
, ν is the

viscous friction coefficient [N ·m · s], Γ̂c is the unknown
Coulomb friction torque which affects the motor dynam-
ics [N ·m]. This nonlinear friction term is considered as
a perturbation, depending only on the sign of the angular
velocity of the motor of the form µsign(θ̂m) with µ con-
stant. The parameter k is the electromechanical constant
of the motor servo-amplifier system [Nm/V ]. ¨̂

θm and ˙̂
θm

are the angular acceleration of the motor
[
rad/s2

]
and
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the angular velocity of the motor [rad/s] respectively.
The constant factor n is the reduction ratio of the motor
gear; thus θm = θ̂m/n, where θm stands for the position
of the motor gear and θ̂m for the position of the motor
shaft. Γc = Γ̂cn, where Γc is the Coulomb friction torque
in the motor gear. V is the motor input voltage [V ] acting
as the control variable for the system. This is the input
to a servo-amplifier which controls the input current to
the motor by means of an internally PI current controller
The electrical dynamics can be neglected because it is
much faster than the mechanical dynamics of the motor.
Thus, the servo-amplifier can be considered as a constant
relation between the voltage and the current to the mo-
tor: im = keV where im is the armature circuit current
and ke includes the gain of the amplifier, k̃, and the in-
put resistance of the amplifier circuit R. The total torque
delivered to the motor ΓT is directly proportional to the
armature circuit in the form ΓT = kmim, where km is
the electromechanical constant of the motor. Thus, the
electromechanical constant of the motor servo-amplifier
system is k = kmke. In order to obtain the transfer func-
tion of the system the following perturbation-free system
is considered :

KV = Jθ̈m + νθ̇m (2)

where K = k/n. To simplify the developments, let A =
K/J , B = ν/J .

2.2 The Procedure of fast state estimation

Consider the second order perturbed system given in (1).
Taking it into account and also the fact that K = k/n
and after some rearrangements, we have,

θ̈m + Bθ̇m + Γ∗ = AV (3)

where Γ∗ = Γ̂c

nJ . We consider this parameter as a constant
perturbation input and it will be identified in the next
stage.

We proceed to compute the unmeasured states, the mo-
tor velocity, dθm

dt , and the motor acceleration, d2θm

dt2 , as
follows:

Taking Laplace transforms, of (3) yields,

(s2θm(s)− sθm(0)− θ̇m(0))+ (4)

+B(sθm(s)− θm(0)) +
Γ∗

s
= AV (s)

we obtain multiplying out by s,

(s3θm(s)− s2θm(0)− sθ̇m(0))+ (5)

+B(s2θm(s)− sθm(0)) + Γ∗ = AsV (s)

Taking the third derivative with respect to the complex
variable s, we obtain independence of initial conditions.

Then (5) results in an expression free of the initial condi-
tions θ̇m(0), θm(0) and the Coulomb’s friction coefficient
Γ∗:

d3

ds3

[
s3θm(s)

]
+ B

d3

ds3

[
s2θm(s)

]
= A

d3

ds3
[sV (s)] (6)

Recall that multiplication by s in the operational domain
corresponds to derivation in the time domain. After re-
arrangements we multiply both sides of the resulting ex-
pression by s−2. We obtain

s
d3θm(s)

ds3
+ 9

d2θm(s)
ds2

+ 18s−1 dθm(s)
ds

+ 6s−2θm(s) (7)

+B(
d3θm(s)

ds3
+ 6s−1 d2θm(s)

ds2
+ 6s−2 dθm(s)

ds
) =

A(s−1 d3V (s)
ds3

+ 3s−2 d2V (s)
ds2

)

In the time domain, we have:

− d

dt
(t3θm) + 9t2θm − 18

∫ t

0

σθm(σ)dσ

+6
∫ t

0

∫ σ

0

θm(λ)dλdσ + B((−t3θm)

+6
∫ t

0

σ2θm(σ)dσ − 6
∫ t

0

∫ σ

0

λθm(λ)dλdσ)

= A(−
∫ t

0

σ3V (σ)dσ + 3
∫ t

0

∫ σ

0

λ2θm(λ)dλdσ) (8)

From here we obtain the estimation of the motor velocity

dθm

dt
=

1
t3

(6t2θm − 18
∫ t

0

σθm(σ)dσ

+6
∫ t

0

∫ σ

0

θm(λ)dλdσ) +
1
t3

(−Bt3θm+

6B

∫ t

0

σ2θm(σ)dσ − 6B

∫ t

0

∫ σ

0

λθm(λ)dλdσ)

+
1
t3

(A
∫ t

0

σ3V (σ)dσ − 3A

∫ t

0

∫ σ

0

λ2V (λ)dλdσ) (9)

by multiply both sides of the resulting expression in (7)
by s, we have:

(s2 d3θm(s)
ds3

+ 9s
d2θm(s)

ds2
+ 18

dθm(s)
ds

+ 6s−1θm(s))

+B(s
d3θm(s)

ds3
+ 6

d2θ(s)
ds2

+ 6s−1 dθm(s)
ds

)

= A(
d3V (s)

ds3
+ 3s−1 d2V (s)

ds2
) (10)

which may be written in the time domain as:

− d2

dt2
(t3θm) + 9

d

dt
(t2θ)− 18tθm + 6

∫ t

0

θm(σ)dσ
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+B(
d

dt
(−t3θm) + 6t2θm − 6

∫ t

0

σθm(σ)dσ)−At3V

+3A
∫ t

0

σ2V (λ)dσ

We obtain the following expression for the motor accel-
eration, d2θm

dt2 :

d2θm

dt2
=

1
t3

(3t2
dθm

dt
− 6tθm + 6

∫ t

0

θm(σ)dσ + 3Bt2θm)

+
1
t3

(−Bt3
dθm

dt
− 6B

∫ t

0

σθm(σ)dσ + At3V

−3A

∫ t

0

σ2V (λ)dσ) (11)

This expression may now be evaluated with the help of
the already computed estimate of dθm

dt .

3 Simulation

This section is devoted to show the good performance
of the proposed state estimation method. The values
of the motor parameters used in simulations are A =
61.13 (N/(V · Kg · s), B = 15.15 (N · s/(Kg · m), k =
0.21 (N ·m/V ), n = 50, µ = 34.74 (N ·m)/(kg ·m2). The
differential equation of the closed loop system is solved by
using a 1 · 10−3 [s] fixed step fifth order Dormand-Prince
method. We consider that there exists a servo amplifier
used to supply voltage to the DC motor; this amplifier
accepts control inputs from the computer in the range of
[−10, 10] [V ]. The signal used in the on-line estimation
of the motor velocity are the input voltaje to the DC
motor and the motor position as a result of that input.
In this case we have chosen the input to be a Bezier’s
eighth order polynomial with an offset of 0.8 (V ). We
have considered the following initial conditions for the
motor in order to show the robustness of the method to
every initial conditions: θm(0) = 100, θ̇m(0) = 0. Both
signals are depicted in Fig.1(a) and Fig.1(b) respectively.
The results are compared with fifth order error numerical
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Figure 1: Input and response of the motor. (a) Input to
the DC motor. (b) Response of the DC motor.

derivative. Fig.2(a) depicts the output of the velocity mo-
tor observer represented by dθt

dt . We can compare it with
that of the numerical derivative here represented by dθtn

dt .
Note that the two signals are superimposed. The differ-
ence between them is depicted in Fig.2(b) and this is with

10−3 order. In Fig.2(c) the estimation of the motor accel-
eration d2θt

dt2 is depicted in addition to the numerical esti-
mation d2θtn

dt2 . The difference d2θt

dt2 − d2θtn

dt2 between them is
depicted in Fig.2(d). Now, the difference is more notice-
able because is required the first derivative of the signal
to obtain the second one and in the case of the numerical
estimation not knowledge of the system is used, this is
the reason of the increasingly difference. On the other
hand, the observer proposed take all the information of
the system as posible providing more exacts estimations.
This premise will be demonstrated in the application of
Coulomb’s friction estimation where more accuracy state
estimation provides better parameter estimation.
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Figure 2: Comparison between the estimations of the ve-
locity and acceleration of the DC motor with the numer-
ical method and with the algebraic state estimation. (a)
Velocities estimation. (b) Difference between the two ve-
locity estimations θ̇tn − θ̇t. (c) Accelerations estimation.
(d)Difference between the two acceleration estimations
θ̈tn − θ̈t

In the new simulations robustness with respect noise of
the algebraic state estimation is demonstrated. We con-
sider noise in the measure (i.e in the motor position
measure) with zero mean and 10−3 standard deviation.
When noise appears in a measure, numerical estimation
of derivatives of a signal is very imprecise and the estima-
tion of bounded derivatives amplify the noise level. These
signals are, customarily, quite noisy and the use of low
pass filters become necessary to smooth them causing the
well known dynamic delays that affect the performance of
the obtained signals as a result. A solution to this prob-
lems may be the use of algebraic state estimator, which
present robustness to the noise. In Fig.3(a) the numerical
estimation of the motor velocity is depicted. It is obvi-
ous the effect that the noise produces in the estimation.
Fig.3(b) depicts the velocity estimation with the algebraic
state estimator. In Fig.3(c) the second derivative of the
motor position is represented. Note that in this signal
the noise level has been increased. At last, Fig.3(d) de-
picts the second derivative of the motor estimated with
the algebraic state estimator. Let us recall that in no one
of the estimations filters have been used. An scheme of
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the observers implementation is depicted in Fig.4. This
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Figure 3: Velocity estimations. (a) Numerical velocity es-
timation. (b) Algebraic velocity estimation. (c) Numer-
ical acceleration estimation. (d) Algebraic acceleration
estimation

Figure 4: Scheme of the algebraic observers implementa-
tion

technique may be used in many applications such as es-
timation of parameters in which estimation of states are
required and control of a feedback system because the
estimators can be used in both open and closed loop due
to the method does not require dependence between the
system input and output.

3.1 Estimation application

From the 1990’s decade interest in controlling systems
with gear reduction coupled in the motor shaft has in-
creased. Researchers had to deal with non linearities
which strongly affected the motor dynamics and which
were produced by the friction torque [4]. In order solve
that problem researchers used many techniques such as
robust control schemes with high gain that minimized this
effect [9] or the most modern techniques such as neural
networks [8] which delay the obtaining of the non lin-
earity parameters. We here propose a new and precise
technique to obtain such parameters by using algebraic
state estimators, which can be used in real time and in
continuous time without the used of any sort of filter. It is
well established that for a system operating at relatively
high speed, the Coulomb’s friction torque is a function of
the angular velocity. For those systems, the Coulomb’s
friction is often expressed as a signum function depen-
dent on the rotational speed.Consider system (3) with

Γ∗ = µsign(θ̇m) 1 From this equation, and due to the
fact that the angular velocity and acceleration of the mo-
tor are obtained with the fast state estimation method,
A and B are known, and we have

µsign(θ̇m) = AV − (θ̈m)e −B(θ̇m)e (12)

The term: µsign(
.

θm) is a perturbation produced by
the Coulomb’s friction torque, where µ is the scaled
Coulomb’s friction amplitude, or coefficient 2. With the
motor spinning only in one direction, Coulomb’s friction
coefficient will not change its sign, and can be consid-
ered as a constant. When the motor angular velocity is
close to zero, the Coulomb’s friction effect is that of a
chattering high frequency signal.

Γ∗ = µsign(V ) =
{

µ (V > 0),
−µ(V < 0)

}
(13)

Then, if the motor spins always in the same direction, in
the identification time interval we have that Γ∗ = µ and

µ = AV − (θ̈m)e −B(θ̇m)e (14)

Fig.5(a) depicts the estimation of the Coulomb’s friction
coefficient by using numerical state estimation (µn sig-
nal) and by using algebraic state estimation (µs signal).
Note that the estimation µs is obtained from the begin-
ning at time t ≈ 0 and this value is maintained while the
estimator works. Nevertheless, the estimation µn which
uses numerical state estimations introduce an error un-
til t = 1 (s), time at which the Bezier’s trajectory fin-
ishes. The error of the two estimates with respect the
real value of the Coulomb’s parameter µ is depicted in
Fig.5(b). εµn = µn − µ represents the error in the es-
timation with the numerical method and εµs = µs − µ
represents the error in the estimation with the algebraic
method. Note the error in the estimation with the alge-
braic state estimators has null error. This is because the
state estimation with the proposed method provides an
exact estimation of the bounded derivatives of the motor
position due to the estimator uses all the information as
posible from the system to estimate. Fig.6 depicts the
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Figure 5: Coulomb estimation with both numerical and
algebraic methods, µn, µs numerical and algebraic es-
timates respectively. (a) Estimations of coulomb. (b)
Estimation errors.

1The model sign(θ̇m) is defined as 1 if θ̇m > 0 and as −1 if
θ̇m < 0

2Note that Γ∗ = Γ̂c
nJ

= µsign(θ̇m) then, the Coulomb’s friction
coefficient is ξ = Jnµ
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results obtained in the Coulomb’s parameter estimation
with a noise in the measure of the motor position with
zero mean and 10−3 standard deviation as done in the
previous simulations. In Fig.6(a) the estimation with nu-
merical estimations of the states is depicted. Note that is
imposible to identify any value in such a figure. On the
other hand, Fig.6(b) depicts an accurate estimation of
the parameter estimated by using the algebraic method.
The error of this last estimation is shown in Fig.6(c).
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Figure 6: Coulomb estimation. (a) numerical (c) alge-
braic (d) algebraic error

3.2 Control application

DC motors is a topic of interest since is used as actuator
in an extensive variety of robotics systems and one of the
most used control methods is that based on proportional
derivative PD controller. [10] is an example of this. The
inconvenient of this sort of control is the computation
of the derivative action which always introduce noises in
the control voltage input due to the on-line estimation of
the input derivative to the controller. Sometimes filters
are required to smooth that signal. In this subsection a
control application for DC motors is proposed based on
the on-line algebraic estimation of the motor velocity. A
PD controller is proposed, Cpd(s) = kp+kvs, whose gains
{kp, kv} can be designed by locating all the poles in closed
loop of the complete system (See Fig.7 ) in the same
location of the negative real axis. The stability condition

Figure 7: Closed loop PD controller with algebraic ob-
server implementation

on the closed loop expression (1 + Gm0(s)Cpd(s)) leads
to the following characteristic polynomial,

s2 + (kvA + B)s + kpA = 0 (15)

We can equate the corresponding coefficients of the closed
loop characteristic polynomial (15) with those of a desired
second order Hurwitz polynomial. Thus, we can choose
to place all the closed loop poles at some real value using
the following desired polynomial expression,

p(s) = (s + a)2 = s2 + 2as + a2 (16)

where the parameter a, strictly positive, represents the
common location of all the closed loop poles. Identifying
the corresponding terms of the equations (15) and (17)
the parameters kp and kv may be uniquely obtained by
computing the following equations,

kp =
a2

A
, kv =

2a−B

A
(17)

With the previous estimation of the Coulomb‘s friction
torque, Γc, a compensation term is introduced in the sys-
tem in order to eliminate the effect of this perturbation
[4]. The compensation term is included in the control
input voltage to the motor, and this is of the form:

Γ̃ =
Γ̂c

k
(−sign(θ̇m)) =

µ · J · n
k

(−sign(θ̇m)) (18)

when θ̇m 6= 0. When θ̇m ≈ 0, the compensation term
is included as done in the previous equation (18) but
changing the function sign(θ̇m) by sign(V ). Fig.8 depicts
the trajectory tracking of the motor with the PD con-
troller with numerical computation of the motor velocity
θtn and with the algebraic computation θt. The two sig-
nals properly track the reference trajectory θ∗t with good
performance. In Fig.9(a) the tracking error of the mo-
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Figure 8: Trajectory tracking of the closed loop system.
θ∗t Command trajectory. θtn system response with nu-
merical PD. θt system response with algebraic PD.

tor position when numerical PD is used is presented. By
comparing such error with that of the Fig.9(b), in which
the tracking error of the motor position with algebraic
PD is depicted, we can observe that the two signals are
the same in phase and magnitude. And it can be observe
the same characteristic in Fig.10(a) and Fig.10(b) where
the control input voltages to the DC motor are depicted.
This accuracy tracking of both control schemes is due
to the gains of the controllers which force the system to
track the command trajectory by minimizing the error in
the feedback. However, in real life we always find noises
and errors which corrupt the measuring data, in this case,
the encoder is not an infinite precisely measure system,
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Figure 9: Tracking errors of the closed loop systems. (a)
Tracking error with numerical PD implementation. (b)
Tracking error with algebraic PD implementation.
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Figure 10: control input voltages to the DC motor. (a)
With numerical PD implementation. (b)With algebraic
PD implementation.

therefore, noises are include the control system due to the
limited precision of the apparatus. We consider a noise
corrupting the data with zero mean and 10−3 standard
deviation as considered in the previous simulations. The
trajectory tracking of the motor position with numeri-
cal PD θtn and with algebraic PD θt with noisy measure
is similar to those of the Fig.8. Both trajectories follow
properly the reference θ∗t . Fig.11(a) and Fig.11(b) depict
the tracking errors of the previous signals respectively.
Note the noise is introducing an aleatory component in
the error. Although the two errors has the same ampli-
tude the control input voltage to the DC motor of the
numerical PD has not a smooth shape, on the contrary,
such a voltage would saturate the amplifier which has
the limits in ±10 (V ) (see Fig.12(a)). In contrast, the
control input voltage, when algebraic PD is used, has a
smoother profile with much less control effort, therefore,
such a signal would never saturate the amplifier. As a
consequence, the amplifier would not suffer overheating.
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Figure 11: Tracking errors of the closed loop systems with
noise in the measure. (a) Tracking error with numerical
PD. (b) Tracking error with algebraic PD.

4 Conclusions

A fast, non-asymptotic algebraic state estimation method
has been successfully applied to estimates the Coulomb
´s friction coefficient. Performance studies show that the
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Figure 12: control input voltages to the DC motor in
the system with noise. (a) With numerical PD. (b)With
algebraic PD.

algebraic method provides satisfactory estimates even in
the presence of significant noise levels. In addition, the
state feedback controller is designed. Closed-loop simu-
lation runs show that the state estimates calculated by
algebraic method can be used efficiently.
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