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Abstract—Closed-loop stabilization with guaranteed stabil-

ity margin using Proportional+Integral+Derivative (PID) con-

trollers is investigated for a class of linear multi-input multi-

output plants. A sufficient condition for existence of such

PID-controllers is derived. A systematic synthesis procedure

to obtain such PID-controllers is presented with numerical

examples.

Keywords– Simultaneous stabilization and tracking, PID

control, integral action, stability margin.

I. INTRODUCTION

Proportional+Integral+Derivative (PID) controllers are the

simplest integral-action controllers that achieve asymptotic

tracking of step-input references [1]. Although the simplicity

of PID-controllers is desirable due to easy implementation

and from a tuning point-of-view, it also presents a major

restriction that only certain classes of plants can be controlled

by using PID-controllers. Rigorous PID synthesis methods

based on modern control theory are explored recently in

e.g., [2], [3], [4], [5], [6]. Sufficient conditions for PID

stabilizability of multi-input multi-output (MIMO) plants

were given in [6] and several plant classes that admit PID-

controllers were identified.

The systematic controller design method given in [6]

allows freedom in several of the design parameters. Although

these parameters may be chosen appropriately to achieve

various performance goals, these issues were not explored.
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The goal of this paper is to study closed-loop stabiliza-

tion with guaranteed stability margins using PID-controllers.

A sufficient condition is presented for existence of PID-

controllers that stabilize linear, time-invariant, MIMO stable

plants, where the closed-loop poles are guaranteed to have

real-parts less than a pre-specified −h. A systematic design

procedure is proposed and illustrated with several numerical

examples. The choice of the free parameters can be opti-

mized with a chosen cost function. Although stability margin

can be considered as an important performance measure,

there are other factors effecting the performance of the

system and hence, “good” choice for the design parame-

ters for overall performance is case-specific and cannot be

generalized.

The paper is organized as follows: Section II shows the

main result, where a sufficient condition for stabilizability

using a PID-controller with guaranteed stability margin is

given. Section III presents a systematic procedure to synthe-

size PID controllers and gives several illustrative examples.

Section IV gives a short discussion, concluding remarks and

some future directions.

II. MAIN RESULTS

Notation: Let CI , IR, IR+ denote complex, real, positive

real numbers. The extended closed right-half complex plane

is U = {s ∈ CI | Re(s) ≥ 0} ∪ {∞}; Rp denotes real

proper rational functions of s; S ⊂ Rp is the stable subset

with no poles in U ;M(S) is the set of matrices with entries
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in S ; In is the n × n identity matrix. The H∞-norm of

M(s) ∈ M(S) is ‖M‖ := sup
s∈∂U

σ̄(M(s)), where σ̄ is the

maximum singular value and ∂U is the boundary of U . We
drop (s) in transfer-matrices such as G(s) wherever this

causes no confusion. We use coprime factorizations over S ;

i.e., for G ∈ Rp
ny×nu , G = Y −1X denotes a left-coprime-

factorization (LCF), where X, Y ∈M(S), det Y (∞) �= 0.

Consider the linear time-invariant (LTI) MIMO unity-

feedback system Sys(G, C) shown in Fig. 1, where G ∈
Rp

m×m is the plant’s transfer-function and C ∈ Rp
m×m

is the controller’s transfer-function. Assume that Sys(G, C)

is well-posed, G and C have no unstable hidden-modes,

and G ∈ Rp
m×m is full (normal) rank. We consider

the realizable form of proper PID-controllers given by (1),

where Kp, Ki, Kd ∈ IRm×m are the proportional, integral,

derivative constants, respectively, and τ ∈ IR+ [7]:

Cpid = Kp +
Ki

s
+

Kd s

τs + 1
. (1)

For implementation, a (typically fast) pole is added to the

derivative term so that Cpid in (1) is proper. The integral-

action in Cpid is present when Ki �= 0. The subsets of

PID-controllers obtained by setting one or two of the three

constants equal to zero are denoted as follows: (1) becomes a

PI-controller Cpi when Kd = 0, an ID-controller Cid when

Kp = 0, a PD-controller Cpd when Ki = 0, a P-controller

Cp when Kd = Ki = 0, an I-controller Ci when Kp =

Kd = 0, a D-controller Cd when Kp = Ki = 0.

Definition 2.1: a) Sys(G, C) is said to be stable iff the

transfer-function from (r, v) to (y, w) is stable. b) C is said

to stabilize G iff C is proper and Sys(G, C) is stable. 	
The problem addressed here is the following: Suppose

that h ∈ IR+ is a given constant. Can we find a PID-

controller Cpid that stabilizes the system Sys(G, Cpid) with

a guaranteed stability margin, i.e., with real parts of the

closed-loop poles of the system Sys(G, Cpid) less or equal

to −h? It is clear that this goal is not achievable for some

plants. Furthermore, even when it is achievable, it may be

possible to place the closed-loop poles to the left of a shifted-

axis that goes through −h only for certain h ∈ IR+ . We start

our investigation of plant classes for which we can achieve

our goal by considering stable plants. The class of plants

under consideration, denoted by Gh , is described as follows:

Let G ∈ Gh ⊂ Sm×m, i.e., let the given plant be stable.

Furthermore, let G have no poles with real parts in [−h, 0].

Assume that G(s) has no transmission-zeros (or blocking-

zeros) at s = 0, i.e., G(0) is invertible (note that this

condition is necessary for existence of PID-controllers with

nonzero integral-constant Ki [6]). The plant G may have

transmission-zeros (or blocking-zeros) elsewhere in U but

not at s = 0.

Now define

ŝ := s + h, or s =: ŝ− h (2)

and

Ĝ(ŝ) := G(ŝ− h) ; (3)

then Ĝ(ŝ) has no poles in the closed right ŝ-plane. Similarly,

define Ĉpid as

Ĉpid(ŝ) := Kp +
Ki

ŝ− h
+

Kd (ŝ− h)
τ(ŝ− h) + 1

. (4)

Let Sh(G) denote the set of all PID-controllers that

stabilize G ∈ Gh , with real parts of the closed-loop poles of

the system Sys(G, Cpid) less or equal to −h; i.e.,

Sh(G) := {Cpid | Ĉpid stabilizes Ĝ(ŝ) } . (5)

Proposition 2.1: (A sufficient condition):

Let h ∈ IR+ and G ∈ Gh be given. If for some K̂p ∈
IRm×m, K̂d ∈ IRm×m and τ < 1/h, the given h ∈ IR+

satisfies

h <
1
2
γ(h, K̂p, K̂d), (6)

where γ = γ(h, K̂p, K̂d) is defined as

γ(h, K̂p, K̂d)
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:= ‖Ĝ(ŝ)(K̂p+
K̂d(ŝ− h)

τ(ŝ− h) + 1
)+

Ĝ(ŝ)G(0)−1 − I

ŝ− h
‖−1, (7)

then there exists a PID-controller Cpid of the form in (1) that

stabilizes G ∈ Gh , with real parts of the closed-loop poles of

the system Sys(G, Cpid) less or equal to −h. Furthermore,

a PID-controller Cpid ∈ Sh(G) is given by

Cpid = (α+h)K̂p +
(α + h)G(0)−1

s
+

(α + h)K̂d s

τs + 1
, (8)

where K̂p , K̂d ∈ IRm×m are arbitrary, τ < 1/h, and α ∈
IR+ satisfies

h < α < γ(h, K̂p, K̂d)− h . (9)

	
Remark:

Condition (6) is obviously satisfied if h = 0, i.e., there exists

a PID-controller Cpid of the form in (1) that stabilizes a

given stable plant G, where the closed-loop poles of the

system Sys(G, Cpid) may be anywhere in the open left-half

complex plane [6].

Proof of Proposition 2.1:

Write G and Cpid given by (8) as

G = I−1G , (10)

Cpid = (
s

s + α
Cpid)(

s

s + α
I)−1 . (11)

Then Cpid stabilizes G if and only if

M :=
s

s + α
I + G(

s

s + α
Cpid) (12)

is unimodular. Similarly, substitute ŝ = s− h as in (2), (3),

(4) and write Ĝ(ŝ), Ĉpid(ŝ) as

Ĝ = I−1Ĝ , (13)

Ĉpid = (
ŝ− h

ŝ + α
Ĉpid)(

ŝ− h

ŝ + α
I)−1 . (14)

Then Ĉpid stabilizes Ĝ if and only if

M̂ =
ŝ− h

ŝ + α
I + Ĝ(

ŝ− h

ŝ + α
Ĉpid) (15)

is unimodular. Write M̂ as

M̂ = I − α + h

ŝ + α
I + (

ŝ− h

ŝ + α
ĜĈpid) =: I +

ŝ− h

ŝ + α
W, (16)

where Kp = (α + h)K̂p , Kd = (α + h)K̂d , Ki = (α +

h)G(0)−1 = (α + h)Ĝ(h)−1 and

W := − (α + h)
ŝ− h

I + ĜĈpid

= − (α + h)
ŝ− h

I + Ĝ(Kp +
Ki

ŝ− h
+

Kd(ŝ− h)
τ(ŝ− h) + 1

)

= (α + h)[Ĝ(K̂p +
K̂d(ŝ− h)

τ(ŝ− h) + 1
) +

Ĝ(ŝ)G(0)−1 − I

ŝ− h
].

(17)

Note that Ĝ(ŝ)G(0)−1−I
ŝ−h = Ĝ(ŝ)Ĝ(h)−1−I

ŝ−h ∈M(S). If (6) and

(9) hold, then h < α and α + h < γ(h, K̂p, K̂d) imply

‖ (ŝ− h)
ŝ + α

W‖ ≤ ‖W‖ =
α + h

γ(h, K̂p, K̂d)
< 1

and hence, M̂ in (16) is unimodular by the “small-gain

theorem” [8]. Therefore, Ĉpid stabilizes Ĝ and hence, Cpid ∈
Sh(G). 	

III. PID CONTROLLER SYNTHESIS

From the sufficient condition in Proposition 2.1, the fol-

lowing systematic procedure to synthesize a PID controller

is obtained: Given h ∈ IR+ and G ∈ Gh, define

β
Δ= max{x|p = x + jy, where p is a pole of G(s)};

(18)

then −h > β. Choose any K̂p and K̂d and compute

γ(h, K̂p, K̂d) given by (7). If γ(h, K̂p, K̂d) > 2h as in

condition (6), then it is possible to find α ∈ IR+ satisfying

(9). The PID-controller Cpid ∈ Sh(G) is then given by (8). If

(6) is not satisfied, the process can be repeated for a smaller

h value.

The following examples illustrate the PID-controller syn-

thesis procedure and some of its properties.

Example 3.1: Consider the plant transfer-function

G(s) =
(s + 5)(s2 + 8s + 32)

(s + 2)(s + 8)(s2 + 12s + 40)
(19)

By (18), β = −2. Suppose that h = 1. Fig. 2 shows

the constant contour of γ(K̂p, K̂d), where the solid line

represents γ = 2h as the upper-bound for condition (6).
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Each contour is evaluated in one point denoted by ∗, which
is given in Table 1.

Table 1: Evaluated points for contours in Example 3.1

x y γ x y γ x y γ

-2.5 -3.5 0.40 -1 -2 0.70 0 -1 1.41

1 0 2.09 2 0.1 7.80 2.5 0 3.83

Note that any (K̂p, K̂d) inside the solid boundary can be

chosen. Suppose that we choose (K̂p = 2.5, K̂d = 0.2) and

τ = 0.05. We compute γ = 4.7 > 2h = 2, and set α = 0.5γ.

The closed-loop poles are −1.79, −2.66, −4.93 ± j2.53i,

−6.87, −42.58, which all have real-parts less than −h = −1.

For a given (K̂p, K̂d), there may exist a maximum value

hmax such that condition (6) is violated, as indicated by the

intersection point about hmax = 1.81 in Fig. 3. The solid line

represents the γ curve in terms h for the selected (K̂p, K̂d),

and the dash-dotted line represents the straight line 2h. 	

Example 3.2: Consider the same transfer-function as in

(19), except the real zero is now in the right-half complex

plane, i.e.,

G(s) =
(s− 5)(s2 + 8s + 32)

(s + 2)(s + 8)(s2 + 12s + 40)
. (20)

Let h = 1 as in Example 3.1. Fig. 4 shows the constant

contour of γ(K̂p, K̂d). Clearly, the feasible region in this

case is very different from the previous one in Example 3.1.

Suppose that we choose (K̂p = −3, K̂d = −0.2) and τ =

0.05. We compute γ = 3.22 > 2h = 2, and set α = 0.5γ.

The closed-loop poles are −1.32, −2.66 ± j3.31, −7.62,

−4.73±j12.69, which all have real-parts less than −h = −1.

The maximum value hmax can be similarly obtained, which

is about 1.3 and is lower than that in Example 3.1. 	

Example 3.3: Consider the quadruple-tank apparatus in

[9], which consists of four interconnected water tanks and

two pumps. The output variables are the water levels of the

two lower tanks, and they are controlled by the currents

that are manipulating two pumps. The transfer-matrix of the

linearized model at some operating point is given by

G =

⎡
⎣ 3.7b1

62s+1
3.7(1−b2)

(23s+1)(62s+1)

4.7(1−b1)
(30s+1)(90s+1)

4.7b2
90s+1

⎤
⎦ ∈ S2×2. (21)

One of the two transmission-zeros of the linearized system

dynamics can be moved between the positive and negative

real-axis by changing a valve. The adjustable transmission-

zeros depends on parameters γ1 and γ2 (the proportions of

water flow into the tanks adjusted by two valves). For the

values of b1 , b2 chosen as b1 = 0.43 and b2 = 0.34, the

plant G has transmission-zeros at z1 = 0.0229 > 0 and

z2 = −0.0997.

By (18) β = −1/90 = −0.0111. Suppose that h = 0.004,

and choose

K̂p =

⎡
⎣ −22.61 37.61

72.14 −43.96

⎤
⎦ , (22)

K̂d =

⎡
⎣ 5.28 6.21

6.53 7.84

⎤
⎦ , (23)

and τ = 0.05. We can compute γ = 0.0099 > 2h = 0.008,

and set α = 0.5γ. The maximum of the real-parts of the

closed poles can now be computed as −0.0059, which is

less than −h = −0.004. Thus the requirement is fulfilled. In

this example, hmax is very small as shown in Fig. 5, due to

the fact that β is very close to the imaginary-axis. 	

Example 3.4: The PID-synthesis procedure based on

Proposition 2.1 involves free parameter choices. Consider

the same transfer-function as in (19) of Example 3.1. Let

h = 1, choose τ = 0.05, and set α = 0.5γ as before. If

we choose (K̂p = 2.5, K̂d = 0.2), then the the dash line in

Fig. 6 shows the closed-loop step response. However, if we

choose (K̂p = 2, K̂d = −0.1), then we obtain a completely

different step response as shown with the dash-dotted line in

Fig. 6. It is natural to ask then if the free parameters can be

chosen optimally in some sense.
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Consider a prototype second order model plant, with ζ =

0.7 and ωn = 6; i.e.,

Tmodel =
ω2

n

s2 + 2ζω + ω2
n

(24)

We want the closed-loop step response sm(t) using the model

plant Tmodel to be as close as possible to the actual step

response so(t). The step response using Tmodel is shown

with the solid line in Fig. 6. Let us consider the cost function

error =
1
3

∫ 3

0

(sm(t)− so(t))2dt, (25)

where so(t) is the step response for any choice of (K̂p, K̂d).

By plotting the contour of the error in terms of (K̂p, K̂d) in

Fig. 7, we find the global minimum of the error to occur at

(K̂p = 1.47, K̂d = −0.15). The step response corresponding

to this choice of (K̂p , K̂d) is shown with the solid line with

a circle in Fig. 6, which is closer to the model step response

than the other two. 	

Table 2: Evaluated points for contours in Example 3.4

x y error x y error x y error

0.9 -0.1 30.44 1.5 -0.1 3.37 1.9 -0.1 31.38

2 0 15.71 2.15 -0.1 6.90 2.2 -0.19 5.06

2.3 -0.2 6.13 2.5 0.2 14.15

IV. CONCLUSIONS

For stable plants whose poles have negative real-parts less

than a pre-specified −h, we obtained a sufficient condition

for existence of PID-controllers that achieve integral-action

and closed-loop poles with real-parts less than −h. We pro-

posed a systematic design procedure, which allows freedom

in the choice of parameters. We showed in an example how

this freedom can be used to improve a single-input single-

output system’s performance. Extending the optimal parame-

ter selection to MIMO systems would be a challenging goal.

These results are limited to stable plants. Future direc-

tions of this study will involve extension to certain classes

of unstable MIMO plants. In addition, optimal parameter

selections for the MIMO case will be explored.
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Fig. 1. Unity-Feedback System Sys(G , C).
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Fig. 2. Contour of γ(K̂p, K̂d) for Example 3.1

Fig. 3. Finding hmax for Example 3.1

Fig. 4. Contour of γ(K̂p, K̂d) for Example 3.2

Fig. 5. Finding hmax for Example 3.3

Fig. 6. Step responses for Example 3.4

Fig. 7. Contour of error(K̂p, K̂d) for Example 3.4
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