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Abstract—We are developing an autonomous mo-

bile robotic system to emulate six degree of freedom

relative spacecraft motion during proximity opera-

tions. A mobile omni-directional base robot provides

x, y, and yaw planar motion with moderate accuracy

through six independently driven motors. With a six

degree of freedom micro-positioning Stewart platform

on top of the moving base, six degree of freedom

spacecraft motion can be emulated with high accu-

racy. This paper presents our approach to dynamic

modeling, control, and simulation for the overall sys-

tem. Compared with other simulations that intro-

duced significant simplifications, we believe that our

rigorous modeling approach is crucial for the high fi-

delity hardware in-the-loop emulation.

Keywords: Dynamic Modeling, Non-Linear Control,

System Simulation

1 Introduction

We are developing an autonomous mobile robotic system
to emulate six degree of freedom (DOF) relative space-
craft motion during proximity operations [1], [2], [3]. The
base uses an active split offset castor (ASOC) drive train
to achieve omni-directional planar motion with target
tracking position errors in the ±1cm range and heading
angle error in the ±0.5◦ range. With six independently
controlled wheels, we achieve a nominally uniform mo-
tor torque distribution and reduce the total disturbances
with system control redundancy. A CAD design of our
one-third scale model prototype is shown in Fig. 1.
A micro-positioning Stewart platform is mounted on the
moving base, as shown in Fig. 2. For the Stewart plat-
form, the base plate and top plate are connected by
six extensible legs; the parallel nature provides higher
stiffness, higher loading capacities, and higher frequency
compared with typical serial positioning devices. A com-
plete dynamic model and a robust adaptive controller for
the Stewart platform have been developed using a novel
automatic differentiation method in [4]and[5]. The novel
modeling approach makes it easy to modify the model
assumptions and eliminates complicated derivative cal-
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Figure 1: Base robot prototype

Figure 2: Stewart platform on the base

culations. The robust adaptive control law guarantees
that the tracking errors are asymptotically stable under
even large parameter errors and slow-changing or con-
stant external disturbances.
This paper focuses on modeling and control issues for
the mobile base as well as the overall system simula-
tion. Section 2 presents a dynamic model for the moving
base robot with non-holonomic constraints using the La-
grangian approach through symbolic manipulation. Two
methodologies for the control of the base are compared.
One uses an input-output feedback to design a dynamic
control law and another uses a kinematic control method.
In Section 3, overall system simulation approach is de-
scribed. Conclusions are presented in Section 4.
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2 Dynamics and Control for the Moving
Base

Using ASOCs to provide true omni-directional mobility
was introduced by H.Yu [6]. While kinematics and imple-
mentation have been discussed in [6], no dynamic models
have been studied for mobile robots driven by ASOCs. In
fact, there have been many papers written about solving
the problem of dynamic model formulation under non-
holonomic constraints using the kinematic model, but
only a few papers addressing the integration of the non-
holonomic kinematic controller with the dynamics of the
mobile robot [7]. “Perfect velocity tracking” is always
assumed in the available papers, which may not be the
truth in reality [8]. This paper formulates a rigorous ap-
proach to track the reference path while taking account of
the system dynamics. The mobile base can achieve true
omni-directional motion without wheel reorientation, and
also achieve higher precision control with higher loading
capacity compared with the model discussed in [7], [8], [9].
Furthermore, our modeling and control approaches are
very general and applicable to a significant class of simi-
lar systems.

2.1 Kinematic Analysis

A top view representation of the entire base assembly
with the frame definitions is shown in Fig. 3. The three
vertex points of the triangular base are all pivot points,
each of which is connected to a castor, and the castor
is connected to two wheels through shafts. Each castor
is free to rotate about its pivot point and each wheel is
independently driven by a mounted motor.
Kinematic equations are derived as follows. Knowing the
velocity of the mass center of the triangular base together
with the castor angles, and utilizing non-slippage con-
straints for the six wheels (the wheels roll without slip
and also can not have side slip), the velocity of each wheel
and shaft is uniquely defined. The velocity of the triangu-
lar base includes its translational velocity vb = [ẋ, ẏ, 0]T

and rotational velocity ψ̇ about its center of mass, where
ψ is the rotational angle between the inertial frame and
the base body frame.
The velocity of the ith pivot point is computed by

vpi
= vb + BI[−ψ̇Rsin(φi), ψ̇Rcos(φi), 0]T (1)

where

BI =

⎡
⎣ cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦ (2)

and φ is the angle between b̂1 and the line connecting
base center of mass to the ith pivot point, and for the
symmetric base, φ1 = 0◦, φ2 = 120◦, and φ3 = 240◦; BI
is the direction cosine matrix that transforms components
of a vector in the B frame {b̂1, b̂2, b̂3} to the same vector
with components in the inertial frame; R is the distance
from the base center of the mass to the pivot point. The
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Figure 3: Top view of the base

inertial velocity of this pivot point is expressed in the
castor C frame {ĉ1, ĉ2, ĉ3} as vci

= [vc1 , vc2 , 0] using

vci = ICvpi (3)

where

IC =

⎡
⎣ cos(ψ + θi) sin(ψ + θi) 0
− sin(ψ + θi) cos(ψ + θi) 0

0 0 1

⎤
⎦ (4)

and θi is the rotational angle between the ith castor C
frame and the base B frame. Angular velocity of the
castor with respect to the inertial frame is

ωi = θ̇i + ψ̇ (5)

Using the no side slip constraints, this velocity can also
be expressed as

ω̃i = vc2/ρ; (6)

and the velocities of the two wheels are

vw1 = vc1 − dωi (7)
vw2 = vc1 + dωi (8)

The velocities of the shafts are solved for in the same way.
As shown in Fig. 3, ρ is the distance from the pivot point
to the center of the wheels along ĉ1 direction and d is the
same distance along ĉ2 direction.

2.2 Dynamic Equations

For the mobile base, the system energy includes the
kinetic energy of the triangular base, three castors,
six shafts and six wheels. Since we ignore the vertical
motions in this paper, no potential energy is involved.
The same approach developed below will be used in
the future to derive a three dimensional model, which
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includes the potential energy change because of the floor
irregularities.
Twelve generalized coordinates q =
[x, y, ψ, θ1, θ2, θ3,Π1,Π2,Π3,Π4,Π5,Π6]T are chosen
for the base system, which includes two translational
and one angular position of the triangular base, three
angular positions of the castors, and six angular positions
of the wheels, respectively. The corresponding twelve
generalized velocities are not independent. Firstly, since
Eqs. 5 and 6 describe the same quantity, we have the
first set of constraints

wi − vc2/ρ = 0 (9)

Secondly, using the rolling without slip constraints for
the wheels, we have

RwΠ̇1 − vw1 = 0 (10)
RwΠ̇2 − vw2 = 0 (11)

Eqs. 9, 10, and 11 provide three constraints for each set of
the castors, leading to nine kinematic constraints in total.
Since these non-slippage constraints are non-holonomic,
we need to use Lagrangian multipliers to formulate the
equations of motion (EOM) using twelve coordinates with
nine constraint equations without reducing the system to
minimal order by substituting the constrained relation-
ships.

2.3 Dynamic Control Law

For a general mechanical system with n generalized co-
ordinates, the EOM can be formulated as

M(q)q̈ +N(q, q̇)q̇ +G(q) = B(q)u + CT λ (12)

We consider the case that all the kinematic constraints
are not dependent on time and can be expressed as

Cq̇ = 0 (13)

where q is the generalized coordinate vector, q̇ is the gen-
eralized velocity, M(q) is a n × n symmetric, bounded,
positive definite mass matrix; N(q, q̇)q̇ represents the
centripetal and Coriolis torque, G(q) is the gravity
torque, B(q) is the matrix that transforms the input u
to the generalized force, C is a m × n constraint ma-
trix, λ is the Lagrangian multiplier, and CT λ is the con-
straint force. It has been proven that these kind of non-
holonomic dynamic systems can not achieve asymptotical
stability using smooth time-invariant state feedback [10].
The stabilization methods proposed so far include dis-
continuous time-invariant stabilization, time-varying sta-
bilization, and hybrid feedback [11].
To simplify the controller for real-time application, null
space formulation is used to find a solution. Choose S(q)
to be a n × (n −m) matrix, which is formed by a set of
smooth and linearly independent vector fields spanning
the null space of C, leading to

STCT = 0 (14)

According to Eqs. 13 and 14, since the constrained gen-
eralized velocity is always in the null space of C which
is characterized by Eq. 13, a vector v(t) ∈ Rn−m can be
constructed such that

q̇ = S(q)v (15)

Notice that the choice of S and v is not unique. Under a
certain case, v may not necessarily represent any physical
velocity.
Differentiating Eq. 15, substituting it into Eq. 12, and
pre-multiplying the resulted equation by ST , we get

STMSv̇ + (STMṠ + STNS)v + STG = STBu (16)

The new system state space equation is

ẋ =
[
Sv
0

]
+

[
0
I

]
τ (17)

when the state-space vector is chosen as x = [qT ,vT ]T ,
and the control input is

τ = (STMS)−1(STBu− ((STMṠ + STNS)v + STG)).
(18)

Since for our 6-DOF motion emulation, the requirement
for the mobile base robot is to provide a satisfactory tra-
jectory that can extend the planar workspace of the up-
per high precision Stewart platform, a Lyapunov method
is used to design an input-output feedback control law,
which guarantees that the position and orientation er-
rors of the mobile base are asymptotically stable and also
is simpler to apply than either discontinuous or time-
varying control. Accordingly, the output equation is de-
fined as

Y = h(q) = [x; y;ψ] (19)

Using Eq. 15, the output velocity equation is expressed
as

Ẏ =
∂h

∂q
Sv = JSv = φv (20)

where J = ∂h
∂q , and φ is the decoupling matrix of the sys-

tem. The necessary and sufficient condition for the input-
output linearization is that the decoupling matrix has full
rank. Using symbolic manipulations, we can prove that
the determinant of φ is −1, thus it never becomes sin-
gular. Using the Lyapunov method, we design a control
law for τ to track reference position Yr(t) and reference
velocity Ẏr(t). The Lyapunov function is defined as

V = 1/2(Yr−Y)TK1(Yr−Y)+1/2(Ẏr−Ẏ)TK2(Ẏr−Ẏ)
(21)

It is easy to prove that using the control law in Eq. 22,
the output tracking errors are asymptotically stable with
control robustness

τ = (JS)−1(Ÿr +K1e +K2ė− JṠv +K3ε)
e = Yr − Y
ė = Ẏr − Ẏ

ε̇ = e (22)
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Figure 4: Energy change

The input torques from the six motors are solved for us-
ing Eq. 18. Notice that B is a 12× 6 matrix for this re-
dundantly controlled system. The pseudoinverse is used
for the inverse of STB, yielding a minimal motor control
effort.

2.4 Simulation Results

Firstly, as one of the criteria to validate the dynamic
model, we numerically solve the EOM when there is no
external input and then check whether the system kine-
matic energy remains constant or not. Theoretically, the
energy should be constant. To avoid the constraint drift
during integration, we utilize a constraint stabilization
method which was first proposed in [12]. Dynamic re-
sponse when the center of the base is doing a pure rotat-
ing motion has been validated through the simulation.
The relative errors for the energy change δe, no side slip
constraint δpr and rolling without slip constraint δns, are
calculated as the follows and are shown in Figs. 4, 5, and
6.

δe = (E(t)− E(t0))/E(t0) (23)
δpr = (Cpr(t)− Cpr(t0))/Cpr(t0) (24)
δns = (Cns(t)− Cns(t0))/Cns(t0) (25)

where E(t) is the system energy at time t, Cpr(t) =
θ̇1 + ψ̇ − vc2/ρ is the first castor no side slip constraint
as in Eq. 9, and Cns(t) = RwΠ̇1 − vw1 is the first wheel
rolling without slip constraint as in Eq. 10.
Secondly, the mobile base is commanded to track a con-
stant velocity reference trajectory with initial position
and velocity errors and all the wheels are in a pulling po-
sition initially. We compare the tracking results using the
dynamic controller proposed in Eq. 22 with a kinematic
controller.
For the kinematic controller, knowing the reference tra-
jectory of the mass center of the base, the top level
controller generates a commanded base velocity Vc =
Ẏr − K(Y − Yr), where all the symbols are defined as
in Section 2.3. Through the unique mapping from the
base center velocity to the wheel velocities, the kinematic

Figure 5: No side slip constraint

Figure 6: Rolling without slip constraint

controller commands the motors to track the commanded
wheel velocities.
Parameters of Animatics SmartMotor 2315DT [13] are
utilized in the simulation. For the dynamical controller,
we achieve the commanded torque through command-
ing a corresponding quantized motor input voltage. The
kinematic controller runs through an internal PID loop
to achieve the commanded velocity.
Simulation results are shown in Figs. 7, 8, and 9. We
find that both controllers can achieve satisfactory track-
ing while the dynamic response can be changed through
tuning gains. In addition, the dynamic controller is more
efficient than the kinematic controller in terms of the
control efforts involved, although the dynamic controller
needs more computation time than the kinematic con-
troller. For the kinematic controller, since each wheel
does not have any information about other wheels, it may
fight each other during the motion. We point out that no
friction models are currently implemented.

3 Overall System Simulation

Mobile manipulators have received significantly increased
interest in the industrial, military, and public communi-
ties for their mobility combined with the manipulator’s
dexterous abilities. But most current work treats the
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Figure 7: Tracking errors comparison

Figure 8: Current history comparison

Figure 9: Voltage history comparison

system without considering dynamic interactions, only
copes with holonomic constraints, or just considers the
kinematic interactions [14], [15]. Since our final aim is to
do a high fidelity emulation, the previous simplifications
are not acceptable to us at the dynamic modeling
level. We formulate a complete model of the Stewart
platform and a mobile base which has non-holonomic
constraints separately at first. For each subsystem,
a robust controller is designed which is expected to
account for the dynamic interaction forces. All the
generalized coordinates are solved with the dynamic

interaction forces simultaneously to solve for the true
system dynamic response.
For the 6-DOF Stewart platform system, we choose
the mass center location Rc = [Xm, Ym, Zm]T , three
Euler angles θm = [θ1m

, θ2m
, θ3m

] of the top plate,
and the position and orientation of the base plate
qbm = [x, y, ψ]T as the generalized coordinates. We
denote qm = [Xm, Ym, Zm, θ1m

, θ2m
, θ3m

]T . Note that all
of these coordinates are expressed with respect to the
inertial frame. As we mentioned earlier, for the moving
base we need to choose twelve generalized coordinates
qb = [xb, yb, ψb, θ1, θ2, θ3,Π1,Π2,Π3,Π4,Π5,Π6]T .
We denote qb̄ = [xb, yb, ψb]T and qō =
[θ1, θ2, θ3,Π1,Π2,Π3,Π4,Π5,Π6]T . Since the base
plate of the Stewart platform and the triangular base of
the mobile robot are rigidly connected, we assume that
qb̄ = qbm . Thus for the Stewart platform, the dynamic
equations are expressed as
[
M1m M12m

M12m
M2m

] (
q̈m

q̈b̄

)
+

[
N1

N2

]
=

[
Q1l

Q2l

]
+

[
06×6

Qd

]

(26)
where Mm is the mass matrix for the Stewart platform
with

Mm =
[
M1m M12m

M12m
M2m

]
(27)

Q1l
and Q2l

are the generalized forces from the Stew-
art platform actuator motors and projected on the gen-
eralized coordinates qm and qb̄, Qd is the interaction
forces/torques projected on the qb̄ coordinates, and N1

and N2 are other nonlinear terms. Details about solving
for the compact form of the mass matrix M can be found
in [4], [5], and [16].
For the mobile moving base, the final organized dynamic
equations, which have eliminated the Lagrangian multi-
pliers by taking the derivatives of Eq. 13 and substituting
Eq. 12 into them, are

[
M1b

M12b

M12b
M2b

] (
q̈b̄

q̈ō

)
+

[
N1b

N2b

]
=

[
Q1b

Q2b

]

+
[
CT (CMb

−1CT )−1CMb
−1Qd

09×9

]
(28)

where Mb is the mass matrix for the mobile base

Mb =
[
M1b

M12b

M12b
M2b

]
(29)

Q1b
= [0, 0, 0]T and Q2b

= [0, 0, 0, u1, u2, u3, u4, u5, u6]
are the generalized forces from the motors; N1b

and N2b

are the left nonlinear terms.
Equations 26 and 28 can be reformulated as

Mt

⎡
⎢⎢⎣

q̈m

q̈b̄

q̈ō

Qd

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

N1

N2

N1b

N2b

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Q1l

Q12

Q1b

Q2b

⎤
⎥⎥⎦
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where

Mt =

⎡
⎢⎢⎣

M1b
M12b

06×9 06×3

M12b
M2b

03×9 −I3×3

09×6 M1b
M12b

−CT (CMb
−1CT )−1CMb

−1

03×6 M12b
M2b

03×3

⎤
⎥⎥⎦

(30)
Equation 30 is the final form to use for the overall system
dynamic response.

4 Conclusions and Future Work

We have presented a high fidelity dynamic model for a
mobile robotic system. Complete dynamic equations of
motion for each subsystem are developed and the dy-
namic interactions between the manipulator and the mov-
ing base are included in the system dynamic equations.
The rigorous approach we undertake in this paper is indis-
pensable to do high fidelity system analysis, control law
verifications, and hardware in the loop emulation. Future
work will look for a simplified dynamic controller that in-
cludes some extent of the system dynamic characteristics
while needing less computation time than the current dy-
namic control law. We will also include the bearing fric-
tions and scrubbing torques in the mobile base dynamic
models, and combine the overall dynamic models with
the sensor models and actuator models to complete the
simulation.
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