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ABSTRACT— A mathematical model 

is developed with an aim that scientists and 
design engineers can make a use of it with a 
practical approach, for the welfare of the 
human beings. Effect of thermal gradient is 
studied on   vibration of      non-homogeneous 
orthotropic rectangular plate having bi-
directional parabolically varying thickness. 
Using Rayleigh- Ritz procedure, frequency 
and deflection function are calculated for first 
mode of vibration for different values of 
thermal gradient, taper constants and non-
homogeneity parameter. 
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1. INTRODUCTION 
 

Study of effect of vibration is of immense 
importance. They can’t be restricted only in the 
field of science but our day-to-day life is also 
affected by it. Whether it be a constructive aspect 
e.g. aircraft, space shuttle, satellite or design 
engineering to the destructive aspect, e.g. 
tsunami, earthquake etc., none of these are 
remained untouched with the effect of vibrations. 
Study of vibration responses of an orthotropic 
rectangular plate with thickness variation under 
the effect of temperature is of great importance 
for design officers, engineers and also to industry  
peoples, as rectangular plates may be regarded as  
an approximation to the wings, blades and 
variation in thickness may also lead to reduction 
in weight of structure. 
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The monograph written by Leissa [1] is the 
ample source for the study of plate vibration. His 
subsequent review articles [2,3] are best source  

for an extensive bibliography on the subject of  
plate vibration. Fauconneau and Marangoni [4] 
evaluated the natural frequency of a rectangular 
plate of uniform thickness under the effect of 
temperature.  

Tomar and Gupta [5,6] studied the 
effect of temperature on the vibration of an 
orthotropic rectangular plate of variable 
thickness. Bhardwaj, Gupta and Choong [7] 
carried out vibration analysis for rectangular 
orthotropic quarter elliptic plate with thickness 
varying linearly along both the principal axes. 
Gupta, Lal and Sharma [8] studied the vibration 
responses for a non-homogeneous circular plate 
with non-linearly varying thickness. 
 

Present study is dedicated to evaluate 
the thermal effect on the vibrations of non-
homogeneous orthotropic rectangular plate with 
parabolically varying thickness in both 
directions. Frequency and deflection function are 
calculated for the first mode of vibration, for 
different values of temperature gradient, taper 
constants and non-homogeneity constant, using 
Rayleigh-Ritz procedure. 
 

2. METHOD OF ANALYSIS 
 
Let the rectangular plate, which is orthotropic in 
nature, is subjected to a steady one dimensional 
temperature distribution T along the x-axis, i.e. 

        0 1 xT T
a

⎛ ⎞= −⎜ ⎟
⎝ ⎠

      (1)                                                     

where T0 is the excess temperatures above the 
reference temperature at x=a . 
For most orthotropic materials, moduli of 
elasticity (as a function of temperature) are 
described as, [6]:                
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where α is thermal gradient parameter.                                                  
The governing differential eqn   of transverse 
motion of an orthotropic rectangular plate of 
variable thickness in Cartesian coordinate is [6] 

, , , , ,

, , , , , ,

, , , , 1, ,

1, , , , ,

2 2

2 2 2

4 0

x xxxx y yyyy xxyy x xyy

y xxy x x xxx y y yyy

x xx xx y yy yy xx yy

yy xx xy xy xy tt

D W D W HW H W

H W D W D W

D W D W D W

D W D W hWρ

+ + +

+ + +

+ + +

+ + + =

    

A comma followed by a suffix denotes partial 
differential with respect to that variable. 
Deflection function for free transverse vibrations 
of the plate can be written as, in the form of 
Levy type solution, 
                 ( ), , ( , ) iptW x y t W x y e=                                                              
Assuming density ‘ρ’ to be linearly varying in x-
direction, i.e, 

0 11 x
a

ρ ρ α⎛ ⎞= +⎜ ⎟
⎝ ⎠

                       (4)                     

where ( )0 0x
ρ ρ

=
=                                                                                                       

where α1 is non-homogeneity constant. 
Plate under consideration is assumed to have 
parabolically varying thickness in both the 
directions, i.e. 
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where β1 & β2 are taper constants. 
For plate executing transverse vibration of mode 
shape W(x, y), the Strain and Kinetic energies 
[6] are, respectively 
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In order to apply Rayleigh-Ritz procedure, max 
Strain energy must be equal to max Kinetic 
energy i.e. 
                              ( )1 0V Tδ − =  
The two term deflection function is taken as, 
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where  A1 and  A2 are constants. a & b are length 
and width of the plate, respectively.   
  
For this problem i.e. for clamped plate, the 
boundary conditions are, 

, 0xW W= =  at x=0,a       and            
, 0yW W= =     at y=0, b                                                                 

 Using eqn (2), (4),(5),&(8) in eqn (9), after 
calculating V and T1 from eqn (6) &(7),one has, 

( )2
1 2 0V Tδ λ− =                 (9)                                                                   

where 
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frequency parameter                                    
Eqn (9) contains two unknown parameters A1 and 
A2, that may be evaluated as, 
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           and one get,        
              1 1 2 2 0q qc A c A+ =             q=1, 2     (10)                                      

where 1qc  and 2qc  (q=1,2) involves parametric 
constants and frequency parameter.  
For a non- zero solution, it is desired that 
coefficient of equation (10) must vanish. 
In this way the frequency equation comes out to 
be,  

                   11 12

21 22

0
c c

c c
=                               (11) 

3. RESULT AND DISCUSSION 
         Frequency equation (11) is quadratic in 2λ , 
so it will give two roots. But it had already been 
observed that Rayleigh Ritz method gives best 
approximation for first mode of vibration as 
compared to further higher modes of vibrations 
[6], if two term deflection function is used. So 
the frequency parameter and deflection function, 
both are calculated for the first mode of vibration 
of the plate. The parameters for orthotropic 
material have been taken as [6] 
 2 1E E =0.32, 2 1( )x E Eν =0.04, 

( ) ( )0 1 1 x yG E ν ν−   =0.09 
Results are plotted in fig 1,2,3,4,&5. In fig.1, 
shows the variation of frequency 
parameter‘λ’with the thermal gradient parameter 
‘α’ for the following two cases: 

1 1 2=0.0, =0.0, =0.0α β β   and   

1 1 2=0.0, =0.2, =0.6α β β  

(3)

(6)

(8)
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Clearly, when β1&β2 increases, λ increases but 
with an overall decrease with respect to α. 
Fig. 2, shows an overall decrease in frequency 
parameter λ with respect to non-homogeneity 
constant but with increase in α, β1 &β2 , 
frequency is found to increase, for the following 
two cases: 

1 2=0.0, =0.0, =0.0α β β     and   

1 2=0.4, =0.2, =0.6α β β  
From Figs 3& 4, it is clear that as taper constants 
increases frequency parameter λ increases but in 
case of β1 this increase is more as compared to 
β2,for the following cases: 

1 2 10 .0 , 0 .0 , 0 .0orα α β β= = = ;   

1 2 10.0, 0.0, 0.6orα α β β= = = ;   

1 2 10.0, 0.4, 0.0orα α β β= = = ;    

1 2 10.0, 0.4, 0.6orα α β β= = = ;   

1 2 10.8, 0.0, 0.0orα α β β= = = ;  

1 2 10.8, 0.0, 0.6orα α β β= = = ;                               

1 2 10.8, 0.4, 0.0orα α β β= = = ;                              

1 2 10.8, 0.4, 0.6orα α β β= = = ;  
In Fig. 5, shows the variation of ‘λ’ with ‘X’, for 
the following cases,            

1 2 10.0, 0.0, 0.0, 0.0, 1.5a bα β β α= = = = =               
for Y= 0.2 and 0.4 

1 2 10.4, 0.2, 0.6, 0.8, 1.5a bα β β α= = = = =               
for Y= 0.2 and 0.4 
From figs it is clear that when ‘X’ increases from 
0 to1, ‘W’ firstly increases from 0 to some max 
value and than decreases to 0. Here X= x/a & Y= 
y/b. 
 The genuineness of above results are confirmed 
by comparing them with those of Leisaa [1] and 
Tomar and Gupta [6], under following 
conditions, for the following cases:  
       1 1 20.0, 0.0, 0.0 0.0α α β β= = = =  
                           & 
       1 1 20.0, 0.2, 0.0 0.0α α β β= = = =  

4. CONCLUSION 
 
From the above results it is clear that 

increase in thermal gradient and non-
homogeneity, reduces the frequency of vibration, 
whereas increase in taper constants increases the 
frequency of vibration.  

When a comparison is done between plates, 
one having linearly varying bi-directional and 
other having parabolically varying bi-directional 
thickness, a similar pattern of result is found but 

on viewing microscopically, it is found that for 
plate having parabolically varying bi-directional 
thickness, all the effects are occurring for lesser 
values of frequency parameter. Hence it is 
concluded that plates with parabolic variation in 
thickness are more stable as compared to those 
of linearly varying thickness, for bearing up of 
thermally induced vibration effects. 
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