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ABSTRACT— A simple model presented 
here is to study the effect of linear thickness 
variation on vibration of visco-elastic 
orthotropic parallelogram plate having 
clamped boundary condition on all the four 
edges. Using the separation of variables 
method, the governing differential equation 
has been solved for vibration of visco- elastic 
orthotropic parallelogram plate. An 
approximate but quite convenient frequency 
equation is derived by using Rayleigh-Ritz 
technique with a two-term deflection function. 
Time period and deflection function at 
different point for the first two modes of 
vibration are calculated for various values of 
taper constants, aspect ratio and skew 
angle(asθ  shown figure1(a) ). 
 
Keywords—vibration,visco-elastic orthotropic 
,parallelogram plate, linear thickness. 

1. Introduction 
Sufficient work [1 – 4] is available on 

the vibration of a rectangular plate of variable 
thickness, but none of them done on 
parallelogram plate. Singh and Saxena [5] have 
considered transverse vibration of skew plates 
with variable thickness. Bhatnagar and Gupta[6] 
have studied thermal effect on vibration of visco-
elastic elliptic plate of variable thickness. Nair 
and Durvasul [8] studied vibration of skew plate. 
Sakiyama, Haung, Matuda and Morita [10] 
investigated free vibration of orthotropic square 
plate with a square hole. Li [11] has analyzed 
vibration of rectangular plate with general elastic 
boundary supports. Recently, Gupta and Khanna 
[9] have considered vibration of visco-elastic 
rectangular plate with linearly thickness 
variations in both directions.  

The main object of the present 
investigation is to determine the effect of skew 
angle (θ ) and taper constant on vibration of 
visco-elastic orthotropic parallelogram plate 
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having clamped support on all the four edges. 
The hypothesis of small deflection and linear 
orthotropic visco-elastic properties are made. 
The Rayliegh-Ritz technique has been used to 
obtain the frequency equation of the plate. It is 
assumed that the visco-elastic of the plate are of 
the “Kelvin Type”. Time Period and Deflection 
for the first two mode of vibration are 
evaluated for different values of aspect ratio, 
taper constant and skew angle (θ ) and results 
are presented graphically. 

2. PARALLELOGRAM PLATE AND 
EQUTION OF MOTION 

 
The parallelogram plate R be defined by the 
three number a, b and θ as shown in figure 1(a) 
with ξ=x – y tanθ, η = y secθ. The special case of 
rectangular plate follows by putting θ=0.    

 
For free transverse vibration of the parallelogram 
plate, w(ξ, η, t) can be expressed as 
     w(ξ,η,t)=W(ξ,η)T(t)           (1)                                    
where T(t) is the time function and W is the 
maximum displacement with respect to time t. 
The expressions for the strain energy, Vmax, and 
kinetic energy,Tmax, in the parallelogram plate 
when executing transverse vibration of mode 
shape W(ξ ,η) are [ 7 ] 
 

 
           (2) 

 
 

                                                                                     
and                                                                                           

        
A comma followed by a suffix denotes partial 
differential with respect to that variable.  

(3)    
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Assuming thickness variation of parallelogram 
plate linearly in ξ-direction only, as 
                            h=h0{1+β(ξ/a)}     (4)                                                                                                                                                 
where β is the taper constant in ξ-direction and 
h0=h |ξ  = 0 
The flexural rigidities (Dξ and Dη ) and torsion 
rigidity (Dξη ) of the plate can now be written as 
(Dξ/E1)=(Dη/E2)=(Dξη/G0)/(1-νξνη)=h0

3 
(1+βξ/a)3/12(1-νξνη)andD1=νξDη=νηDξ     (5)                                                       

3. SOLUTIONS AND FREQUENCY 
EQUATION 

The Rayleigh-Ritz technique requires maximum 
strain energy be equal to the maximum kinetic 
energy. So it is necessary 
for the problem consideration that  
                             δ(Vmax-Tmax)=0   (6)                                                                                                                                                   
for arbitrary variations of W satisfying relevant 
geometrical bouandary conditions. 
For a parallelogram plate clamped (c) along all 
the four edges, the boundary conditions are  
  W=W,ξ=0at ξ=0,a & W=W,η=0at η=0,b        (7)                                                                                                                
 and the corresponding two-term deflection 
function is taken as [ 3 ] 
           W=[(ξ/a)(η/b)(1-ξ/a)(1-
η/b)]2[A1+A2(ξ/a)(η/b)(1-ξ/a)(1-η/b)]     (8)                                                                                               
which is satisfied Eq.(13), 
Now assuming the non-dimensional variable as 

       X=ξ/a, Y=η/b, ħ=h/a, Ŵ=W/a           (9)                                                                                                        
E*

1=E1/(1-νξνη),E*
2=E2/(1-νξ νη),E*=νξE*

2 = νηE*
1   

(10)                                                                                                                                                               
and  Component of E1

* , E*
2 , E*  and G0  are  E*

1 
, E*

2secθ ,E*secθ  and  G0secθ  respectively ξ- 
and η- direction . 
Using Eqs.(5) ,(9) and (10) in Eqs.(2) and (3), 
then substituting the values of Tmax & Vmax from 
Eqs.(2) and (3) in Eq(6), one obtains 
          (V1–λ2T1)=0                (11) 

 

 

 
 

 
 

 
and 

 
                                   
Here p2=(E*

1h0
2/12a2ρcos5θ)λ2                       (14)                                                                                                                                   

But equation (11) involves the unknown A1 and 
A2 arising due to the substitution of W(ξ , η) 

from eq (8). These two constants are to be 
determined from eq(11),as follows:  
∂(V1–λ2T1)/∂An=0,                         n=1,2       (15)                                     
Equation (15) simplifies to the form  
  bn1A1+bn2A2=0,                              n=1,2      (16)                                     
where bn1 , bn2 ( n = 1, 2 ) involve parametric 
constants and the frequency parameter . 
For a non-trivial solution,  the determinant of the 
coefficient of equation (16) must be zero. So one 
gets the frequency equation as  

                           2221

1211

bb
bb

            =0            (17)                                    
Form Eq. (17), one can obtains a quadratic 
equation in p2 from which the two values of p2 
can found. After determining A1 & A2 from 
Eq.(16) , one can obtain deflection function W. 
Choosing A1=1, one obtains A2=(-b11/ b12) and 
then W comes out as  

  W=[XY(a/b)(1-X)(1-Ya/b)]2[1+(-b11/b12) 
XY(a/b)(1-X)(1-Ya/b)].                (18) 

                                             
4. DIFFERENTIAL EQUATION OF TIME 

FUNCTION AND ITS SOLUTION 
 

The governing differential equation of time 
function of an orthotropic parallelogram plate of 
variable thickness one direction,  is [11] 
        T,tt+p2(ň/G)T,t+p2T=0        (19)                                                          
Let us take intial conditions as      
          T=1 and T=0 at t=0               (20)                                    
Using intial conditions from Eq.(20) in solution 
of diff.eq.(19),one obtains 
    T(t)=еrt[cos(st)+(-r/s)sin(st)]                   (21)                                         
where r = -(p2ň / 2G)   and    s= p(G2 - p2ň2) /2G . 
Thus , deflection w may be expressed , by using 
Eq.(21) and (18) in Eq.(1), to give  
  w = [ XY(a/b) (1- X ) (1- Ya/b) ]2[1+( - b11/ b12) 
XY(a/b) (1- X ) (1- Ya/b) ]x[е rt{ cos(st) +(- r/s) 
sin(st) }]                                                         (22) 
Time period of vibration of the plate is given by  
                     K=2π/p,                                   (23)                                       
where p is frequency given  by  Eq.(17). 
 

5. RESULT AND DISCUSSION 
 

Time period and deflection are computed for 
viscoelastic orthotropic parallelogram plate 
whose thickness varies linearly   
for different values of angle(θ), taper constant(β) 
and aspect ratio(a/b) at different points for first 
two mode of vibrations. The orthotropic     
material parameters have been taken as [ 7 ]   
E*

2/E1
*=0.01 , E*/E1

*=0.3 , G/E1
*=0.0333 , ň /G 

=0.000069, E1
*/ρ=3.0x105 and h0=0.01   

(12) 

(13) 
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meter. These results are plotted in  fig(1.1) ,(1.2) 
,(1.3) and (1.4). 
Fig(1.1) shows the graph of time period(K) for 
different values of taper constant (β)  and fixed 
aspect ratio (a/b=1.5) for  two values of  
angle (θ)  i.e. θ=0 and θ=45  for  first  two mode 
of vibration. It can be seen  that  the time period 
(K) decrease when taper constant (β) increase for 
two mode of vibration at θ=0 and  the time 
period (K) increase then slightly decease when 
taper constant (β) increase for two mode of 
vibration at θ=45. 
Fig(1.2) shows the graph of time period(K) for 
different values of aspect ratio (a/b)  and fixed 
taper constant (β=0 and β=0.6)  for  two values 
of  angle (θ)  i.e. θ=0 and θ=45  for  first  two 
mode of  vibration. It can be seen that the time 
period (K) increase when aspect ratio (a/b) 
increase for two mode of vibration. 
Fig(1.3) and (1.4) show the graph of 
deflection(w) for different values of X and fixed 
taper constant (β=0and β=0.6) ,Y=0.2, Y=0.4 
and aspect  ratio (a/b=1.5) for  two values of 
angle (θ)  i.e. θ=0 and θ=45  for  first  two  mode 
of  vibration. It can be seen that deflection (w)                       
start from zero to increase and then decrease to 
zero for first two mode of vibration except for 
second mode at Y=0.4 ,β=0 or 0.6. At Y=0.4 and 
β=0 for second mode of vibration deflection (w) 
start from zero to increase and then decrease and  
then increase and then  decrease and finally 
become to                         
zero and at a Y=0.4 and β=0.6 for second mode 
of vibration deflection (w) start zero to  decrease 
and  then increase and finally become to zero for 
different value of X . 
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APPENDIX: LIST OF SYMBOLS 
a                  length of orthotropic parallegram 
plate ,                                  
b                  width of plate , 
ξ ,η            co-ordinate in the plane of plate, 
h(ξ ,η)        plate thickness at the point (ξ ,η) , 
Eξ , Eη        Young,s  moduli in the ξ- and η-
direction, respectively     
νξ , νη           Poisson, s  ratio , 
Dξ , Dη        flexural rigidity in the ξ- and η-
direction, respectively 
Dξ η           torsional rigidity, 
G               shear modulus, 
ň              visco-elastic constant, 
ρ                mass density per uint volume of the 
plate material , 
t                 time, 
p                radian frequency of vibration, 
w(ξ ,η,t)   transverse deflection of the plate, at 
the point (x,y) , 
W(ξ ,η)    deflection fuction, 
T(t)           time fuction, 
 β            taper constant, 
K               Time period . 
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