
 
 

 

  
Abstract— In this paper the use of orthogonal polynomials for 

obtaining an analytical approximate solution to optimal control 
problems with a weighed quadratic cost function, is proposed. The 
method consists of using the Orthogonal Polynomials for the 
expansion of the state variables and the control signal. This 
expansion results in a set of linear equations, from which the 
solution is obtained. A numerical example is provided to 
demonstrate the applicability and effectiveness of the proposed 
method.. 
 

Index Terms— Optimal control, Orthogonal Polynomials, 
Spectral Method, Legendre Polynomials, Riccati Method.  
 

I. INTRODUCTION 
 The goal of an optimal controller is the determination of the 
control signal such that a specified performance criterion is 
optimized, while at the same time specific physical constraints 
are satisfied. Many different methods have been introduced to 
solve such a problem for a system with given state equations. 
The most popular is the Riccati method for quadratic cost 
functions however this method results in a set of usually 
complicated differential equations which must be solved 
recursively [1]. In the last few decades orthogonal functions 
have been extensively used in obtaining an approximate 
solution of problems described by differential equations [2-4]. 
The approach, also known as the spectral method [5], is based 
on converting the differential equations into an integral 
equation through integration. The state and/or control involved 
in the equation are approximated by finite terms of orthogonal 
series and using an operational matrix of integration to 
eliminate the integral operations. The form of the operational 
matrix of integration depends on the particular choice of the 
orthogonal functions like Walsh functions [6], block-pulse 
functions [7], Laguerre series [8], Jacobi series [9-10], Fourier 
series [11], Bessel series [12], Taylor series [13], shifted 
Legendre [14], Chebyshev polynomials [15], and Hermite 
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polynomials [16] and Wavelet functions [17]. In this paper 
apart from the shifted Legendre Polynomials, new set of 
Orthogonal Polynomials are considered based on the 
requirement of the problem. This method proves to be fairly 
precise from simulation results and may be expanded to a vast 
range of cost functions. 

Since only linear systems are considered in this paper, the 
state space equations and the cost function are considered in the 
following formats: 

)()()( tButAXtX +=
•

                              (1) 

In which A and B are constant matrices. )(tX is the state 
vector and )(tu is the control signal. 
And the cost function: 

∫ +=
ft

Tk dttrutQXtXtJ
0

2 )]()()([
2
1

           (2) 

In which Q  is a positive definite matrix, and r and k are 

constant values. ft is the final time and specified. 

As it can be seen in equation (2) the finite horizon cost 
function consists of the weighting function kt for the state 
vector. In the presented method here, )(tX  and )(tu  are 
expanded based on orthogonal polynomials .The main reason 
for the use of such an expansion is that it results in the 
simplification of the cost function J , this is due to the fact that 
the integral of the multiplication of non-identical orthogonal 
terms is zero. One reasonable approach is expansion based on 
shifted Legendre polynomials, however because of the 
presence of the term kt in J new weighed orthogonal 
polynomials must be obtained in order to be useful for solving 
such a problem.  

In this paper first some useful properties of orthogonal 
polynomials and means of obtaining them based on these 
properties are presented in section 2. In section 3, a method of 
obtaining an analytical approximate answer to the optimal 
control problem defined by equations 1 and 2  is presented 
based on the spectral method. The results of the presented 
method are provided for a numerical example and compared 
with those of the classical Riccati method in section 4 and 
finally a conclusion of the overall work is given in section 5. 
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II. SOLVING OPTIMAL CONTROL PROBLEMS BY THE USE OF 
ORTHOGONAL POLYNOMIALS 

 
In the presented method, )(tu and )(tX must be expanded 

based on orthogonal polynomials in order to solve the optimal 
control problem. However due to the presence of the term kt in 
J , )(tX  may not be presented by the shifted Legendre 
Polynomials. In order to solve this problem, weighed 
orthogonal polynomials with the weighting function kt , are 
defined which will be represented with )(tiϕ . Then )(tX is 
expanded based on these new orthogonal polynomials 

)}({ tiϕ . Some of the characteristics of orthogonal functions 
are recapitulated next. 
 

A. Orthogonal polynomials 

The definition of orthogonal polynomials )(tnψ  and some 
of their features are presented below: 

∫
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=
b
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ji dttttW

0
)()()(

χ
ψψ      

ji
ji

≠
=

            (3) 

 
In which )(tW is the weight function. 
The expansion of an arbitrary function )(tf  on the 

],0[ ft region is as follows: 

∑ =
=
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i ii tCtf
0

)()( ψ                                                           (4) 

 In which: 

∫=
ft

i
k

i
i dtttftC

0

)()(1 ψ
χ

                                                   (5) 

One property of orthogonal polynomials is [ 19]: 
 

∫ = )()( tt κψψ                                                                    (6)

   
Now for a weight function 1)( =tW , we have the shifted 
Legendre polynomials: 
 

)}({)}({ ttP ii ψ=                                                                  (7) 
  
And: 

∫ =
ft

T dtPP
0

γ                                                                  (8) 

In which: 
T

n tPtPtPtP )](),...,(),([)( 10=                                            (9) 

],...,,[ 10 ndiag γγγγ =                                                         (10) 

∫=
ft

ii dttP
0

2 )(γ                                                                            (11) 

Now for a weight function kttW =)( , we define the 

polynomials )}({ tiϕ  shown below: 

)}({)}({ tt ii ψϕ =  

∫ =
ft

Tk dtt
0

αϕϕ                         (12) 

In which: 
T

n ttt )](),...,(),([ 10 ϕϕϕϕ =                                              (13) 

],...,,[ 10 ndiag αααα =                                                    (14) 

∫=
ft

i
k

i dttt
0

2 )(ϕα                                                               (15) 

The integral expansion of the weighed orthogonal polynomials 
)(tiϕ  based on the set )}({ tiϕ is as follows: 

∫ ≅
t

Ddt
0

ϕϕ                                                                        (16) 

   The method for obtaining D is explained in the appendix.  
   It is worth noting that when dealing with functions and their 
derivatives, the property mentioned in equation (16) is of major 
importance. 
   

B. Obtaining orthogonal polynomials 
   Different methods may be used to obtain orthogonal 
polynomials, namely, most commonly, the Graham-Schmidt 
method [18].However this method is computationally 
cumbersome for large sets and may produce inaccurate results. 
Here, another method is introduced which is based on the 
properties of orthogonal polynomials, for kttW =)( . The 
presented method is computationally effective and precise 
compared to the Graham Schmidt method due to the fact that 
approximations in numerical integration needed for the 
Graham Schmidt method are not required for the presented 
method. It is assumed that: 
 

ST=ϕ                                                                                 (17) 
 
Hence: 
 

∫ ∫ ∫==
f f ft t t

TTkTkTk SdtTTtSdtSTTtdtt
0 0 0

)(ϕϕ

= TSYS                    (18) 
 
In which: 
 

TntttT ],...,,[ 10=   
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Now because Y is real symmetrical and positive definite it can 
be transformed to the form below by the Cholesky method: 

TLLY =                     (20) 
   Now based on the definition of orthogonal polynomials, we 
can assume that : 

ISYST =                                                                           (21) 
   In which I  is an )1()1( +×+ nn  identity matrix. This 
would mean that: 

1−= LS                                                                                (22) 

   So we can now obtain S , and finally ST=ϕ . 

III. FORMULATION OF AN OPTIMAL CONTROL PROBLEM USING 
WEIGHED ORTHOGONAL POLYNOMIALS 

   Now the optimal control problem described in equations (1) 
and (2) are formulized by the use of the orthogonal polynomials 

described in section 2. First )(txi

•

will be expanded based on 

the set )}({ tiϕ  up to degree n : 
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In which: 
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   Where m  is the order of the system. It must be noted that 
E is unknown and will be obtained later on. 
And )(tu  the control signal will be expanded based on the set 

)}({ tPi  up to degree n : 

Pu Tβ=                                                                              (25) 
In which: 

T
nn )1(110 ],...,,[ +×= ββββ  

   Note that each of the functions )(tPi may be expanded based 

on the set )}({ tiϕ or vice versa in equation (24). Therefore we 
have: 

ϕTcP =                                                                               (26) 
In which c is a )1()1( +×+ nn  square matrix. 
Substituting into equation (25) we have: 

ϕβ TT cu =                                                                          (27) 
β is also unknown and will be obtained later on. Now by the 
use of equations (16) , (23) and (27) we can write: 

ϕϕ )( TVcEDXVPEDX +=⇒+=                        (28) 
In which: 
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   Where 0ix in equation (29) is the initial condition for the 

state variable )(txi . By replacing equations (23), (27) and (28) 
in to the state equation (1) we have: 

ϕβϕϕ TTT cBVcEDAE ++= )(                                   (30) 
Therefore the following equation holds for all values of t : 

0)( =−+− TT cBVcEDAE β                                        (31) 
And the matrix I  may be defined as: 

]))([( TTT cBVcEDAEVecI β−+−=
Δ

                             (32) 

So 0=I . 
   By replacing the expansions for u  and X as formulated in 
equations (31) and (32) respectively, in the expression for J in 
equation (2) we have: 

dtVcEDQVcEDtJ TTT
t

Tk
f

ϕϕ )()(
2
1

0

++= ∫  

                                       ∫+
ft

T dtr
02

1 γββ                                 (33) 

   By the use of the properties of orthogonal functions 
)(tPi and )(tiϕ , the functional J takes the simpler form of: 

    )](]([{
2
1 TT VcEDQVcEDtraceJ ++= α    

                                        }γββ Tr+                                     (34) 

   For minimizing J with the restriction in equation (32) or (30) 
we can use the Lagrange coefficients and minimize the 
following expression instead: 

),(.),(),,( βλβλβη EIEJE T+=                               (35) 
In which λ is the Lagrange coefficient and: 

T
nm ],...,,[ 10 ×= λλλλ                                                       (36) 

   Now ),,( λβη E  must be minimized, which is done by 
solving the following equations: 
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   After performing the above differentiations and 
simplification [19], the following important equations are 
obtained: 

)(2
)(

)( T
T

TT

DDQ
Evec

QEDEDtrace αα
⊗=

∂
∂

                    (38) 

λλ )(
)(

)(. DA
Evec

AEDvec T
T

TTTT

⊗=
∂

∂
                              (39) 

)(
)(

)( QcVDvec
Evec

QVcEDtrace T
T

TTT

αα
=

∂
∂

                   (40)  

)()(. TTT
TTTT

AEDvecAEDvec
=

∂
∂

λ
λ

                        (41) 
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And the set of linear equations are finally obtained: 
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   In which ⊗ is the symbol of Kronecker multiplication and by 
Vec (matrix) we mean placing the columns of the matrix in 
consecutive order in one vector. 
   The unknown variables iλ , iβ and ije  in (37) are of first 

order and hence are easily obtainable from solving the linear set 
of equations in (43). By Solving the set of linear equations in 
(43) the coefficients ije and iβ which were used in the 

expansions represented in equations (25) and (28) are obtained. 
Therefore we have now obtained the following solution to our 
original problem: 
 

Pu Tβ=             ,        VPEDX += ϕ                         (44) 

IV. NUMERICAL EXAMPLE 
    In this section the result formulated in equation (43) is 
applied and compared with the result of the classical Riccati 
method for a specific system with the following specifications: 
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And we wish to minimize the cost function: 

∫ +=
ft

Tk dttrutXtQtXtJ
0

2 )]()()()([
2
1

                           (46) 

   The problem is solved for 0=k and 3=k , with 
9=n .The results are shown in Figures 1 and 2 respectively. 

For 5=ft , 0=k and 9=n the following solutions are 

obtained: 
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For 5=ft , 3=k and 9=n the following solutions are 

obtained: 
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   As it can be seen from the simulation of the results presented 
method and the classical Riccati method, The results of both 
have fallen upon one another when plotted as shown in Figure 1 
and Figure 2. 
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V. CONCLUSION 
   In this paper we have presented an alternative method for 
obtaining an analytical approximate solution to optimal control 
problems with time variant weight in the cost function. The 
presented method makes use of the properties of orthogonal 
polynomials and transforms the problem into a linear set of 
equations. The results of the presented method proved to be 
accurate by comparison with that of the classical Riccati 
method. 
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Fig.1. Depicted numerical results for k=0,n=9, of both the 

presented method and that of the Riccati method. 
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 Fig.2. Depicted numerical results for k=3,n=9, of both the 
presented method and that of the Riccati method. 
 

APPENDIX 
In this Appendix a numerically efficient method is introduced 
for obtaining the D matrix required in equation 16. 
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We know that: 
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And we know that: 
ϕ1−= ST                      A-7  

Therefore: 
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