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Abstract–In this paper a robust design process is in-
troduced for a scalar model reference adaptive control
(MRAC) algorithm. Three different types of MRAC
control rules are reviewed and analysed in the fre-
quency domain. A design process for MRAC is given
within the range of plant settling times 0.01-100 sec-
onds which is relevant for a wide range of mechanical
systems. By using this design method the MRAC
system stability can be made robust in the presence
of a range of disturbances or plant uncertainties. An
example of applying this method to hydraulic shaking
table model with unmodelled oil column resonance is
given at the end.
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1 Introduction

In this paper a robust design process is introduced for
a scalar MRAC algorithm, which can ensure a robust
control system within a large frequency range. Our in-
tention is to provide a series of control design guidelines
for the scalar MRAC system so that robust design can be
achieved for a range of mechanical plants. Detailed dis-
cussions on MRAC are given by [1, 2, 3]. This work builds
on the previous work on modifying the MRAC algorithm
to improve robustness [4, 5]. The formulations of MRAC
will be reviewed in section 2. Five different MRAC adap-
tive gain rules will be studied in section 3. In section 4
the robust design process will be explained step by step,
and finally an example by applying this design process
will be given in section 5.

2 MRAC brief review

In this section a brief review of the MRAC method is
given for a single input single output (SISO) system. For
more detailed discussions of MRAC see [1, 2, 3].

The system studied in this paper is based on a first-order
linear plant approximation given by

ẋ(t) = −ax(t) + bu(t), (1)
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Figure 1: Schematic block diagram of the model reference
adaptive control system. K and Kr are the gains from
adaptive algorithm.

where x(t) is the plant state, u(t) is the control signal
and a and b are the plant parameters. The control signal
is generated from both the state variable and the refer-
ence (or demand) signal r(t), multiplied by the adaptive
control gains K and Kr, such that

u(t) = K(t)x(t) + Kr(t)r(t), (2)

where, K(t) is the feedback adaptive gain and Kr(t) the
feed forward adaptive gain. The plant is controlled to
follow the output from a reference model

ẋm(t) = −amxm(t) + bmr(t), (3)

where xm is the state of the reference model and am and
bm are the reference model parameters which are specified
by the controller designer. The block diagram of MRAC
is illustrated by Fig. 1.

The object of the MRAC algorithm is for xe → 0 as
t → ∞, where xe = xm − x is the error signal. The
dynamics of the system can be rewritten in terms of the
error such that

ẋe = (−a + bK)xe + b(KE
−K)xm + b(KE

r −Kr)r, (4)

where KE and KE
r are Erzberger gains. The Erzberger

gains are defined as the linear gains which results in the
plant response matching the reference model response [6]:

KE =
a − am

b
, KE

r =
bm

b
. (5)
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3 Different MRAC adaptive gain rules

In this section three different MRAC adaptive gain rules,
MIT, Hyperstability and ρ φ modified MRAC version,
i.e., will be reviewed, and all the control rules will be
illustrated and explained based on their Bode plots.

3.1 MRAC by using the MIT rule

A basic method of MRAC adaptive gain is known as MIT
rule [1], which is using an integral control in the adaptive
gains, and designed by using Lyapunov stability theory.
The formulation can be described as

K(t) = α
∫ t

0
Cexex(τ)dτ + K0,

Kr(t) = α
∫ t

0
Cexer(τ)dτ + Kr0,

(6)

where α is adaptive control weight representing the adap-
tive effort and K0 and Kr0 are the initial gain values and
Ce can be chosen to ensure the stability of the feed for-
ward block [2]. In the case of a first-order implementa-
tion, Ce is a scalar and therefore may be incorporated
into the α adaptive control weight.

In general the initial gain values, K0 and Kr0, can be set
to zero such that the controller requires no knowledge of
the plant parameters a and b [7] — although this gener-
ally leads to slower convergence to final gain values, or the
Erzberger gains estimated based on a first-order system
identification of the plant. The adaptive weight, α need
to be selected in advance, and clearly have a significant
influence on the rate of adaptation.

By using Laplace transform given zero initial conditions,
Eq. 6 becomes,

(K(s) − K0)/P1(s) = α/s,
(Kr(s) − Kr0)/P2(s) = α/s,

(7)

where s is the Laplace transform variable and

P1(s) = CeXe(s)X(s),
P2(s) = CeXe(s)R(s).

(8)

If P1 or P2 is considered as overall input signal, Eq. 8
describes the relationship between output, the adaptive
gains, and input P1 and P2. As we can see the transfer
function on the right hand side are identical. A point to
be noted from the transfer function is that when s = α
the output/input = 1. In the Bode plot since s represents
frequency (s = jw), at frequency of ω = α rad/sec the
magnitude is 0dB. We also noticed there is a zero pole,
which makes the transfer function marginally stable.

Transfer function Eq. 8 is illustrated as a Bode plot by
Fig. 2. An example of α = 1 is given in this figure. As we
can see at frequency of α = 1 rad/sec the magnitude is
0dB, and the input with frequency higher than 1 rad/sec
is minimised in the output signal — the adaptive control
gains. This 0dB frequency can be adjusted by choosing
different α values.
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Figure 2: Transfer function of adaptive control gain by
using MIT rule (integral control), adaptive weighting
α = 1. The vertical dot line indicates at α rad/sec the
magnitude is 0 dB.

3.2 MRAC by using the hyperstability rule

In most of MRAC applications, the adaptive gains defined
by using Hyperstability rule are considered as a standard
case. The Hyperstability rule defines the adaptive gains
with a proportional plus integral formulation as

K(t) = α
∫ t

0
Cexex(τ)dτ + βCexex(t) + K0,

Kr(t) = α
∫ t

0
Cexer(τ)dτ + βCexer(t) + Kr0,

(9)

where α and β are adaptive weights. In a first-order
implementation Ce can be incorporated into the α and
β. The adaptive gain K(t) can be written in the s-plane
by using Laplace transform as

K(s) − K0

P1(s)
=

β(s + α/β)

s
. (10)

The Laplace transform result of Kr(t) is identical as the
right hand side of Eq. 10. To keep the description simple
we only analyse the adaptive gain K. In Eq. 10 the
break frequency ω = α/β rad/sec need to be noted, since
a steady-state β exists in the frequency higher than this
value.

Eq. 10 is illustrated by Bode plot Fig. 3. An example
of α = 1, β = 0.1 is given in this figure. As we can see
after the break frequency α/β = 10 rad/sec the magni-
tude becomes a steady state gain of 20log10(β) = −20.
Comparing with MIT rule, the Hyperstability rule allows
the designer to adjust the break frequency by using α/β
ratio, and set the output/input to a fixed magnified ratio
β in the frequency higher than α/β rad/sec.

3.3 MRAC with ρ φ modification

MRAC with ρ φ modification is based on Hyperstability
rule, and a combination of ρ and φ modified MRAC al-
gorithm. The purpose of developing this strategy is to
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Figure 3: Transfer function of adaptive control gain by
using Hyperstability rule (proportional plus integral).
The vertical dot-line indicates the frequency α/β rad/sec.
The adaptive weights are α = 1, β = 0.1.

create an ‘adaptive window’ such that adaptive gain con-
trol power can be focused within this frequency window.
It can eliminate the adaptive control gain wind-up prob-
lem caused by disturbance [8, 5] and instability problem
caused by unexpected high frequency dynamics in control
plant [4]. MRAC with ρ φ modification can be described
by equations as

Km(s) = φ2s
(s+ρ2)(s+φ2)K(s) + ρ2

s+ρ2 K∗(s)

+ s2

(s+ρ2)(s+φ2)K
∗(s),

Krm(s) = φ2s
(s+ρ2)(s+φ2)Kr(s) + ρ2

s+ρ2 K∗

r (s)

+ s2

(s+ρ2)(s+φ2)K
∗

r (s),

(11)

where ()m denotes modified MRAC. ρ and φ are constants
needed to be selected by the designer, and K∗(s) and
K∗

r (s) are steady state gains, which ideally are equal to
the Erzberger Gains. K(t) and Kr(t) are Hyperstability
MRAC control gains described by Eq. 9.

It can be noticed from Eq. 11 that the first term on the
right hand side with K(s) is the adaptive gain control
part, and the second and third terms are steady-state
gain control based on K∗(s). The whole structure can
be illustrated by Fig 4. An adaptive window is created
between ρ2 and φ2 rad/sec. The steady-state gain control
is used outside the window. The ρ term cuts off the
adaptive power to low frequency, and term φ cuts off the
adaptive power to high frequency. The same situation
can be found from modified gain Krm. The following
research is concerned with the adaptive gain control part.
The transfer function of adaptive gain control part can
be derived by substituting Eq. 10 into Km in Eq. 11

Km(s) − K0

P1(s)
=

φ2β(s + α/β)

(s + ρ2)(s + φ2)
. (12)

It can be noticed from Eq. 12 that both poles −ρ2 and
−φ2 are negative given ρ φ are non-zero. Hence the adap-
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separately.
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Figure 5: Transfer function of the adaptive gain control
part of MRAC by using ρ and φ modification. Vertical
dash line on left and right illustrate the frequency of ρ2

and φ2 rad/sec correspondingly, and vertical dot line is
the frequency of α/β rad/sec. The adaptive weights are
α = 1, β = 0.1, ρ2 = 1 rad/sec and φ2 = 103 rad/sec.

tive gain is asymptotically stable rather than marginally
stable in the Hyperstability MRAC. The MRAC with ρ φ
modification has three break frequencies ρ2, α/β and φ2

rad/sec. Two stead-states α/ρ2 and β are corresponding
to the frequency ranges of (0, ρ2) and (α/β, φ2). The
transfer function Eq. 12 can be illustrated by Bode plot
Fig. 5. Fig. 5 shows the example of ρ2 = 1, α/β = 10
and φ2 = 103 rad/sec. In the frequency lower than ρ2 = 1
rad/sec the adaptive gain control part can be set to a
steady-state of α/ρ2 = 1(0dB), and in frequency between
α/β = 10 and φ2 = 103 rad/sec the adaptive gain con-
trol part can be set to the steady-state β = 0.1(-20dB).
In frequency higher than φ2 = 103 rad/sec the adaptive
power is cut off.

Comparing with the standard MRAC strategy, the ρ φ
modified version gives the designer more options to spec-
ify the behaviour of the controller in the frequency do-
main. Depending on the desired performance, the de-
signer can select the parameters α, β, ρ and φ to obtain
a robust adaptive window — detailed below.
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4 MRAC robust design process

In this section a robust design process will be introduced
by using MRAC strategy. The study here is mainly con-
cerned on the plants that can be estimated by using first
order transfer function, but could be combined with dis-
turbance and unmodelled higher order dynamics. The
design process can be taken in four steps, concerning
on the plant parameter, the reference model, adaptive
weights and adaptive window.

4.1 Step1: Find out the plant break fre-
quency a by doing system ID within the
operation frequency

The robust MRAC design process needs to know a limited
amount knowledge of the plant. This is the normal trade
off between robustness and aprior knowledge.

The break frequency a or settling time tsp, i.e.,first order
plant, needs to be known or estimated. (The relationship
of a = 4/tsp can be used to convert tsp to a.) Given
the operation frequency range is known, a or tsp can be
found out by using chirp signal to do system identifica-
tion. Then the model of the first order plant can be given
as X(s)/R(s) = b/(s + a).

4.2 Step2: Decide the reference model
break frequency am

The key parameter in the reference model is the break
frequency am or settling time ts. It is possible to have
reference model settling time ts slightly faster than plant
settling time tsp, so that the control system can be forced
to settle faster than it’s open loop response. But if ts is
set too fast, the control system will become unstable [1].
The relationship between ts and tsp is studied against a
range of plant settling time 0.01-100 seconds, or plant
break frequency 0.04-400 rad/sec. To make the results
clearer in frequency domain, the ratio between tsp and
ts has been convert to the ratio of am and a, by using
relationship tsp/ts = am/a.

All tests in section 4 is processed using the conditions: 1)
input frequency is equal to plant break frequency, 2) sam-
pling time for control system is smaller than 10% plant
settling time, 3) disturbance is included in the testing
plant, i.e., 5% white Gaussion noise, 4) stability checked
by control gains and error converge within two times
plant settling time. Fig. 6 shows the relationship be-
tween am/a and a. It can be noticed from Fig. 6 that
as plant break frequency a increases, am/a ratio for the
stable system decrease. The recommended values in each
frequency ranges are

• am/a = 4.5e−log10(a) is recommended when a ∈

(0.04 0.4)rad/sec or tsp ∈ (10 100)sec.
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Figure 6: The relationship between am/a and plant break
frequency a. The dash-line with + marks shows the orig-
inal data of am/a for stable MRAC against a rad/sec,
and area below it is stable. The dot-line illustrates the
exponential curve fitting. The black lines illustrate the
recommended values in each frequency ranges.

• am/a = 4 is recommended when a ∈ (0.4 40)rad/sec
or tsp ∈ (0.1 10)sec.

• am/a = 2 is recommended when a ∈ (40 400)rad/sec
or tsp ∈ (0.01 0.1)sec.

The Erzberger gains can be calculated now as by Eq. 5,
and K∗ and K∗

r are set to Erzberger gains.

4.3 Step3: Select adaptive weights α, β.

In this step we first select α/β value and then α. β value
can be calculated by using α/β and α. The relationship
between α/β and a is tested in the range of plant break
frequency 0.04-400 rad/sec by fixing α = 1 and checking
α/β stability value. In different frequency ranges the
corresponding recommended am values are used. Fig. 7
illustrates the results. As a increases in frequency α/β
becomes large. Since α is fixed the β value decreases
and the effective adaptive power decreases. It can to be
noticed in Fig. 7 that the exponential equation fit well
in the high frequency range of (40 400)rad/sec but not
the low frequency part. Experiment results show that the
following recommended values are effective to ensure the
system robustness as well as small error.

• α/β = a is recommended when a ∈ (0.04 40)rad/sec
or tsp ∈ (0.1 100)sec.

• α/β = 0.2e2log10(a) is recommended when a ∈

(40 400)rad/sec or tsp ∈ (0.01 0.1)sec.

Now we find the relationship between α and a by using
the recommended α/β values. The result is illustrated
by Fig. 8. Here the whole frequency range is divided
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into three sections, 0.04-0.4, 0.4-40 and 40-400 rad/sec,
and in each section the corresponding recommended am

and α/β values are used. In each section as a increases
the maximal α for stable system decreases. In general
as the adaptive weight α increases control system settles
fast and error decreases, but too large α will cause the
system instability. One way to choose the α value is to use
the value which gives the minimal error, as recommended
here

• α = 10 is recommended when a ∈ (0.04 0.4)rad/sec
or tsp ∈ (10 100)sec.

• α = −0.15a + 10 is recommended when a ∈

(0.4 40)rad/sec or tsp ∈ (0.1 10)sec.

• α = −0.03a + 12 is recommended when a ∈

(40 400)rad/sec or tsp ∈ (0.01 0.1)sec.

Some other factors could also affect choosing the adaptive
weights, the input frequency ωr, i.e. With ωr close to the
plant break frequency a the maximum adaptive weights
that can be chosen for a stable system increases. But the
effect was not found to be significant.

4.4 Step4: Designing the adaptive window

In this step an adaptive window will be selected, and by
using this window the designer can limit the adaptive
power only to the interesting frequency range, and cut
off the adaptive power in both low and high frequency
disturbance or unexpected dynamics, and the robustness
of overall control system is ensured [4]. The principal
rule of setting the adaptive window is that a, am, α/β,
and input frequency ωr should be included in the window
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Figure 8: The relationship between α and plant break
frequency a. Two vertical lines divide the whole plot
into three frequency sections. In each sections different
am/a and α/β are chosen by following the previous rec-
ommended values. The dash-line with + marks shows
maximal α for stable MRAC. The dot-line illustrates the
α values which gives minimal error. The dark-solid lines
show the recommended α values.

defined by ρ2, φ2. The key results of this design process
are summarized in table 1.

5 Experiment by using MRAC design

process

In this section an example will be given by applying the
MRAC design process on a reconfigurable electrical cir-
cuit, a Quansar analog plant simulator. By using it an
hydraulic shaking table model is created as

G(s) =
2.108

(s + 1.147)

229.521

(s2 + 2.895s + 231.516)
, (13)

where the nominal first order plant is 2.108/(s + 1.147),
and high order dynamics part is 229.521/(s2 + 2.895s +
231.516) which represents the oil column resonance in
the hydraulic shaking table. By carrying out system
identification to operation frequency range 0-10 Hz, the
break frequency of the nominal plant a = 1.147 can
be found. The input signal is sinusoid wave given as
r(t) = 0.3 + 1.85 sin(0.8t).

Since this plant has unmodelled high frequency dynamics
and electronic noise, by using standard MRAC the con-
trol system become unstable within 15 sec, Fig. 9. Using
the MRAC design process, since a ∈ (0.4 40)rad/sec the
following parameters can be chosen by following the de-
sign process as

• am = 4a = 4,

• α/β = a = 1,

• α = −0.15a + 10 = 9.85,
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Table 1: MRAC parameter design table

Parameters Recommend values
a system ID

a ∈ (0.04 0.4)rad/sec
am 4.5e−log10(a)

∗ a
α/β a
α 10

a ∈ (0.4 40)rad/sec
am 4a
α/β a
α −0.15a + 10

a ∈ (40 400)rad/sec
am 2a
α/β 0.2e2log10(a)

∗ a
α −0.03a + 12

Steady-state gains K∗ = a−am

b
, K∗

r = bm

b

ρ2,φ2 ρ2 <(a,am,rw,α/β)< φ2
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Figure 9: Plant with unmodelled high frequency dynam-
ics, damping ratio 0.1, standard MRAC. Input signal
r(t)=0.3+1.85sin(1t), α = β = 0.5. System is unstable.

• K∗ = (a − am)/b = −0.879, K∗

r = bm/b = 1.423,

• ρ2 = 0.5, φ2 = 5.

Fig. 10 shows the control result by following the design
process. In this case the system is stable and robust,
related examples are discussed by [4, 5].

6 Conclusions

In this paper we have introduced a robust design process
for a scalar model reference adaptive control (MRAC)
algorithm. Different types of MRAC control rules have
been reviewed and analysed in the frequency domain by
using Bode plot analysis. Then a design process for
MRAC has been developed for systems with plant settling
times in the range 0.01-100 seconds which is relevant to
a wide range of mechanical systems. By using this design
method a robust adaptive window is obtained meaning
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Figure 10: Plant with unmodelled high frequency dynam-
ics, damping ratio 0.1, controlled by ρ φ modified MRAC.
Input signal r(t)=0.3+1.85sin(0.8t), α = β = 9.85,
ρ2 = 0.5, φ2 = 5. System is unstable, and error and
gains settle within around 10 seconds.

that the system is robust in the presence of noise or un-
modelled dynamics. An example of applying this method
to hydraulic shaking table model with unmodelled oil col-
umn resonance is given to demonstrate the usefulness of
the design process.
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