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Abstract—This contribution is deliberately
application-oriented. Conversely, the considered
application introduces new circumstances and helpful
designs for the graph techniques and interpreta-
tions. This study seeks to improve the knowledge
of the the cyclical structure of macro-econometric
models. The retained application is a recent aca-
demic model from Fair ’94 for the United States.
This empirical economic model of 130 equations is
highly interdependent with exactly 7930 elementary
circuits.
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1 Introduction

This contribution is mainly application-oriented.
Conversely, the considered application with macro-
econometric models introduces new circumstances and
helpful designs for graph theoretical treatments [13][11].
This study seeks to improve the knowledge of the cycle
structure of macro-econometric models. This is essential
for various well-known purposes such as model building,
economic analysis and simulation of economic policies .
Given the matching of economic model builders (a non-
unique standardization of the system which associates
each equation to the determination of one and only one
endogenous variable [12]), the causal structure of the
associated digraph is studied. The retained application
is a recent model of Fair [5] ′94 for the United States.
The associated graph G = (130, 396), with 130 vertices
and 396 arcs, consists of 53 strong connected components
(one of them has a maximum of 77 vertices). This model
is highly interdependent with exactly 7930 circuits, of
which 8 include a maximum of 42 vertices. Moreover, a
maximum list of 13 edge-disjoint circuits has been found
for this model. The computations have been carried out
using the computer software Mathematica� 5.1 [25], its
extension Combinatorica [17] and other source programs
[20], [15].
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2 Elementary Circuit theory

2.1 Preliminaries and notations

Simple graphs, without self-loops and parallel edges, will
be mainly considered in this study. A digraph of order
n and size m is a pair G = (V,E), where V is a finite
set of vertices (with |V (G)| = n) and a set of ordered
pairs from V (with |E(G)| = m). The oriented edges
ek ∈ E, k = 1 . . . , m are arcs. A forward arc is such as
ek = (xk−1, xk), ek = (xk, xk−1) denoting a backward
arc. A chain c of G is an alternating sequence of vertices
and arcs c = (v0, e1, v1, e2, . . . , vn−1, en, vn), such that
tail(ei) = vi−1 and head (ei) = vi for i = 1, . . . , n. The
chain is elementary if each vertex v appears only once. A
directed graph G is the triple (V,E, f) where V is a finite
set of vertices, E a finite set of oriented edges and f a
function to be defined. More precisely, a directed graph is
defined when f : E �→ V × V 1. Thus for f(e) = (v1, v2),
the edge e is incident out of the vertex v1 and incident
into the vertex v2. The out-degree denotes the number
of edges incident out of the vertex v, whereas the in-
degree is the number of edges incident into the vertex v.
The directed distance d(u, v) is the length of the shortest
path between the two vertices u and v 2. The underlying
undirected graph G0 = (V,E0) of G(V,E) is obtained
by ignoring the direction of the arcs. The connectivity
of such an underlying graph introduces the concept of
weakly connectivity. Deleting an edge e yields [18] G′ =
(V,E′, f ′) where E′ = E − {e}, f ′ being a restriction of
f on E′. Deleting a vertex v renders G′ = (V ′, E′, f ′),
where V ′ = V − {v}, E′ = {e ∈ E|f(e) �= (v, u) or (u, v),
for u ∈ V } and f ′ : E′ �→ V ′ × V ′ is a restriction of f to
E′. The n×m-incidence matrix H of G has entries

Hev :=

⎧⎪⎨
⎪⎩

+1 if v is the terminal vertex of the arc e,

−1 if v is the initial vertex of the arc e,

0 otherwise.

1The function f for an undirected graph is defined by
f : E �→ {{u, v}|u, v ∈ V }.

2The distance d(u, v) satisfies the three properties (i) d(u, v) =
∞ if no path exists from u to v, (ii) d(u, v) = 0 ⇒ u = v, and (iii)
the directed triangle inequality d(u, v) + d(v, w) ≤ d(u, w).
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2.2 Circuit definitions and Properties

Definitions A chain c is closed if its initial and ter-
minal vertices coincide (v0 = vn). A cycle is a
closed simple chain. An elementary circuit is an ele-
mentary path with identical extremal vertices, such as
(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1). A circuit is iso-
metric if for any two vertices u and v, it contains a short-
est path from u to v and a shortest path from v to u. A
short circuit has only one of the two last properties. A
circuit is relevant if and only if it cannot be expressed as
a linear combination of shorter circuits.

Circuit basis A collection of circuits is vertex-
independent (or vertex-disjoint) if no two of the circuits
have a vertex in common. It is edge-independent (or
edge-disjoint)if no two of the circuits have an edge in
common. A representing set for the circuits consists of
a set of vertices, through which every circuit passes at
least ones. The cycle space C of graph G = (V,E) is the
subspace of R

|E| that is generated by the cycles of G. A
circuit basis is a basis of the cycle space C of G consisting
exclusively of elementary circuits. Berge [1] points out
the conditions under which the circuits will generate a
cycle space 3[6][3].

2.3 Enumeration problems

There are two orientations for enumerating problems on
sets of objects. Indeed, one can either estimate how many
objects are in the set or look for an exhaustive finding of
the present objects. Both orientations will be considered
here.

Counting problem In a complete directed graph Kn

the number of elementary circuits is given by
n−1∑
i=1

(
n

n− i + 1

)
(n− i)!

For the complete graph K3 we find
2∑

i=1

(
n

4− i

)
(3− i)! = 5.

We have 3 circuits of length 2 {(1, 2, 1), (2, 3, 2), (3, 1, 3)}
and 2 circuits of length 3 {(1, 2, 3, 1), (1, 3, 2, 1)}. The
number of elementary circuits in increased complete
graphs from K3 to K9 will grow faster than the expo-
nential 2n. Let us determinate the number of circuits for
each length l, 2 ≤ l ≤ n − 1 in a given complete graph
G = (V,E). The estimation of the number of circuits
may be estimated (see Appendix A) to

n

l
(n− 1)!
(n− l)!

(
k

n− 1
)l.

3Proposition: a strongly connected digraph G = (V, E) has a
circuit basis.

Figure 1: Estimated number of the circuits of length l

The Fig.1 shows an example of an almost-complete di-
graph G = (6, 24). The discrepancies between the es-
timated and the true number of circuits have been com-
puted and show close results. However, the errors become
extremely high with larger graphs 4.

Enumeration problem Following Prabhaker and
Narsingh [18], every circuit enumeration algorithm can
be put into four classes of methods : firstly search algo-
rithms, secondly power of the adjacency matrix, thirdly
edge-digraph and finally circuit vector space algorithms.
The search algorithms look for circuits in a set containing
all the circuits 5. In the depth-first search (DFS) proce-
dure, the vertices are numbered in the order of the visit
and this numbering is stored . While visiting vertex u,
the procedure DFS(u) is called for each discovered v → u.
All vertices of G−u that reachable from v will be visited.

Breadth-first traversal The breadth-first search
(BFS) algorithm visits the vertices in layers. The Fig.2
shows an application of this searching procedure to the
Petersen graph. Such spanning trees tend to have more
but shorter branches than with the DFS procedure. The
algorithm uses a queue to maintain a list of subtrees to
be explored. Then we have the sequence
visited vertex queue contents

6 6
1 1 7 10
7 7 10 3 4
10 10 3 4 2 8
3 3 4 2 8 5 9
4 4 2 8 5 9
2 2 8 5 9
8 8 5 9
5 5 9
9 9

In the Fig.2, the vertices are shaded according to their
distance from the root vertex 6 of the Petersen graph.

4Bermond and Thomassen [2] survey the required conditions to a
cycle of length k or at least k, in terms of number of arcs, degrees or
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Figure 2: BFS search with Petersen graph

Figure 3: Backtracking procedure

The thick edges show the shortest paths found by the
algorithm. Kocay and Kreher [15] indicate that the com-
plexity of the BFS(.) is at most O(m).

2.4 Backtracking procedure

Suppose that someone is facing with the search of a True
option. The options False and True are organized as with
the tree of Fig.3. The procedure consists of starting at
the root of the decision-tree, continuing until an option is
found, and backtracking if necessary until the True option
is found. A simple example illustrates this procedure.
The visited nodes have been highlighted. The procedure
may be simply
1. Start at root 1. The decisions are nodes 2 and 7.
Choose node 2
2. At node 2, the decisions are nodes 3 and 4

chromatic number. Schrijver [19] also presents complexity surveys.
5The problem of counting cycles is treated by Harary and Palmer

′73 [7].

3. Option 3 is False. Then go back to node 2
4. At node 2 choose node 4 (since node 3 was already
tried)
5. At node 4, try option 5. It is False. Then go back
to node 4
6. At node 4, try option 6. It is False. Then go back
to node 4
7. Go back to node 2. It has been already visited. Then
go back to root
8. At the root, choose node 7
9. At node 7, try option 8. It is True. Then stop.
In pseudo-code, the algorithm is described by the boolean
function6.

Algorithm : BACKTRACKING PROCEDURE
input: an undirected graph G(V,E) and any arbitrary
vertex s
The tree consists of root s, leaves and a goal vertex
output: a path to a goal vertex
boolean solve(vertex s){

if s is a leaf vertex{
if the leaf is a goal vertex then{

print s
return True

}
else return False

} else{
for each vertex-child c of vertex s{

if solve(c) succeeds then{
print s
return True

}
}
return False

}
}

If solve(s) is True, vertex s is solvable. It is on a path
from the root to some goal vertex and is a part of the
solution. If solve(s) is False, then no path will include
the vertex s to any goal vertex.

2.5 Tarjan’s algorithm

The Tarjan’s algorithm for enumerating all the elemen-
tary circuits of a digraph is produced in Tarjan [22] in
ALGOL-like notation. It is based on a backtracking pro-
cedure using lookahead and marking technique. This al-
gorithm has a running-time of O(n.m(c + 1)) where c
denotes the number of elementary circuits and requires
has a O(n + m + S) space, where S is the sum of the
lengths of all the elementary circuits 7.

6Adapted from http://www.cis.upenn.edu/ matuszek/cit594-
2002/Pages/backtracking.html. See also [4] [15].

7On algorithms for enumerating all circuits of a graph, see
[18][16][8][21][9].
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Author Time bound Space bound Ref.
Johnson ′75 (n + m)c n + m [10]
Tarjan ′73 n.m.c n + m [22]
Tiernan ′70 n(const)n n + m [23]

Weinblatt ′72 n(const)n n.c [24]

Table 1: Complexity of backtrack algorithms to circuits

2.6 Upper bounds on time and space

Prabhaker and Narsingh ′76[18] survey all known algo-
rithms for enumerating all circuits in the 70’s. The Table
?? shows the running-time and storage performances of
some algorithms using the backtrack method. The John-
son’s algorithm is the fastest algorithm, since the running
time between two consecutive circuits never exceeds the
size of the graph (n + m). The elementary circuits are
constructed from a root vertex u in the subgraph G − u
and vertices larger than u8.To avoid duplicate circuits, a
vertex v is blocked when it is added to some elementary
path beginning by u. This vertex stays blocked as long as
every path from v to u intersects the current elementary
path at a vertex other than u.

3 Structure of a Macro-econometric
model

3.1 Graph properties of the model

The circular embedding is drawn with one giant circuit
(the last of the 8 longest circuits) : big white points are
those of the giant circuit, the set of the remaining vertices
of the giant strongly connected component (SCC), and
the remaining vertices of the graph 9. The model has a
maximum of 143 circuits with length of 23. The acyclic
directed graph (DAG) clarifies the whole structure and
classifies the variables between those which stay upwards
or downwards the graph and the interdependent vertices
of the giant SCC 10. Both graph embeddings are shown
in Fig.4 and Fig.5. The initial graph G = (130, 396),
with 130 vertices and 396 arcs, is shown in Fig.4. The
acyclic DAG H = (53, 170) in Fig.5 has been achieved
by contracting the vertices each SCC of G. This function
runs in linear time by mapping the vertices of each SCC to
one vertex of H. Let G = (V,E) be an n-vertex graph and
L a subset with k vertices to contract [17]. Contracting G
gives a graph H with n− k + 1 vertices. Each vertex v in
L is mapped to vertex n−k+1 in H. Every other vertex v
in G is mapped to vertex v− i in H, if there are i vertices
in L smaller than v. This mapping is constructed in O(n)

8According to the Tiernan’s principle [23].
9This embedding has been obtained by P T AP , combining two

permutation matrices P and the adjacency matrix A. The resulting
digraph is isomorphic to the initial one.

10The resolution and the analysis of the model will take advan-
tages from this information.

Figure 4: Digraph of Fair’s model

time and creates the edges of H, in time proportional to
the number of edges in G.

Several graph properties derive from the all-pairs
shortest-path matrix. The ij -th entry is the length of
a shortest path in G or more frequently in a giant SCC
of G between vertices i and j. Indeed the eccentricity of
a vertex v is the length of the longest shortest path from
v to other vertices. The radius is the smallest eccentric-
ity of any vertex, while the center is the set of vertices
whose eccentricity is the radius. Conversely, the diame-
ter is the maximum eccentricity of any vertex. The set
of peripheral vertices denotes the vertices whose eccen-
tricity is the diameter. Those structural properties have
been determined for the graph of the Fair’s model : the
radius is 5 and the diameter 11. The articulation vertices
also play a crucial role. Indeed, an articulation vertex is
a vertex whose deletion will disconnect the graph. In a k-
connected graph, there does not exist a set of k−1 vertices
whose deletion disconnects the graph. The properties of
the Fair’s model are shown by representing those partic-
ular vertices of the giant SCC in Fig.6(a). The Fig.6(b)
also shows the maximum clique of the graph. Indeed, the
largest clique induces a complete graph. The maximum
clique has been highlighted and the economic meaning is
given.

4 Circuits of the digraph

The model is highly interdependent with 7930 circuits, of
which 8 include a maximum of 42 vertices. In this appli-
cation, all the circuits are listed in an lexicographic order
with increasing length. The Figs.7 show the number of
circuits in the graph of the Fair’s model with respect to
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Figure 5: Acyclic digraph of Fair’s model

their length.

5 Edge-disjoint circuits

A maximal list of edge-disjoint circuits is shown for the
Fair’s model. It consists of 13 edge-independent circuits,
whose four of them are of length 2, one of a maximum
length of 15.

6 Concluding remarks

This study aimed at improving the knowledge of the cycli-
cal structure of macro-econometric models, using associ-
ated digraphs. This is essential for various purposes such
as model building, economic analysis and simulation of
economic policies. The highly interdependence is proved
when finding all the 7930 circuits. The graph properties
underline the great vulnerability of such an instrument.
These kind of results with associated digraphs and the
possibility to consider weighted graphs for such applica-
tion [14] helpfully contribute to the model building pro-
cess.

References

[1] Berge, C., Graphs, North Holland, 1985.

[2] Bermond, J.C., Thomassen, C.,“Cycles in Digraphs
– A Survey”, J. Graph Theory,V5, pp.1–43, /81.
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A Appendix. Estimated number of cir-
cuits of length l

Let G = (V,E) be an almost-complete digraph of order n
and size m. The average number of arcs is the integer part
of k = m/n. Starting from one vertex i, the total paths of
length 1 is n−1

n−1k, where the numerator states the number
of extremal vertices other than i and the denominator
the total number of possible extremal vertices. At an
another vertex j, j �= i, there are n− 2 extremal vertices
left. Hence, the number of paths of length 1 starting from
j is n−2

n−1k. The number of paths of length 2 from vertex
i is then

n− 1
n− 1

k × n− 2
n− 1

k =
(n− 1)(n− 2)

(n− 1)2
k2.

Hence, we have (n−1)(n−2)...(n(l−1))
(n−1)l−1 kl−1 paths of length

l− 1 starting from vertex i. The average number of arcs
joining a vertex other than i to i being k

n−1 , the total
circuits of length l is firstly estimated to

k

n− 1
(n− 1)(n− 2) . . . (n(l− 1))

(n− 1)l−1
kl−1 =

(n− 1)!
(n− l)!

(
k

n− 1
)l.

However for n vertices each circuit will be counted l times.
Therefore the number of circuits of length l may be esti-
mated to

n

l
(n− 1)!
(n− l)!

(
k

n− 1
)l.
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