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ABSTRACT
This paper describes Parallel Grammatical Evolution (PGE) that

can evolve complete programs using a variable length linear genome
to govern the mapping of a Backus Naur Form grammar definition.
To increase the efficiency of Grammatical Evolution (GE) the
influence of backward processing was tested. The significance of
backward coding (BC) and the comparison with standard coding of
GEs is presented. BC can speed up Grammatical Evolution with high
quality features. The adaptive significance of Parallel Grammatical
Evolution with “male” and “female” populations has been studied.

Categories and Subject Descriptors
D.2.2 Delphi

Index Terms
Algorithms, Experimentation, Theory.

Keywords
grammatical evolution, backward processing, parallel evolution.

I. INTRODUCTION
Grammatical Evolution (GE) [1] can be considered a form of
grammar-based genetic programming (GP). In particular, Koza’s
genetic programming has enjoyed considerable popularity and
widespread use. Unlike a Koza-style approach, there is no distinction
made at this stage between what he describes as function (operator in
this case) and terminals (variables). Koza originally employed Lisp as
his target language. This distinction is more of an implementation
detail than a design issue. Grammatical evolution can be used to
generate programs in any language, using Backus Naur Form (BNF).
BNF grammars consist of terminals, which are items that can appear
in the language, i.e. +, -, sin, log etc. and non-terminal, which can be
expanded into one or more terminals and non-terminals. A non-
terminal symbol is any symbol that can be rewritten to another string,
and conversely a terminal symbol is one that cannot be rewritten. The
major strength of GE with respect to GP is its ability to generate
multi-line functions in any language. Rather than representing the
programs as parse tree, as in GP, a linear genome representing is used
[1]-[3]. A genotype-phenotype mapping is employed such that each
individual’s variable length byte strings, contains the information to
select production rules from a BNF grammar. The grammar allows
the generation of programs, in an arbitrary language that are
guaranteed to be syntactically correct. The user can tailor the

grammar to produce solutions that are purely syntactically
constrained, or they may incorporate domain knowledge by biasing
the grammar to produce very specific form of sentences.

Because, GE mapping technique employs a BNF definition, the
system is language independent, and theoretically can generate
arbitrarily complex functions. There is quite an unusual approach in
GEs, as it is possible for certain genes to be used two or more times if
the wrapping operator is used. BNF is a notation that represents a
language in the form of production rules. It is possible to generate
programs using the Grammatical Swarm Optimization (GSO)
technique [2] with a performance similar to the GE. The relative
simplicity, the small population sizes, and the complete absence of a
crossover operator synonymous with program evolution in GP or GE
are main advantages of GSO. Grammatical evolution was one of the
first approaches to distinguish between the genotype and phenotype.
GE evolves a sequence of rule numbers that are translated, using a
predetermined grammar set into a phenotypic tree.

Our approach uses a parallel structure of GE (PGE). A population is
divided into several sub-populations that are arranged in the
hierarchical structure [4]. Every sub-population has two separate
parts: a “male” group and a “female” group. Every group uses quite a
different type of selection. In the first group a classical type of GA
selection is used. To the second group only different individuals can
be added. This strategy was inspired by harem system in Nature that
solves problem of adaptation complex organisms to microorganisms
[8], [9]. The biologically inspired strategy increases an inner
adaptation of PGE. This analogy would lead us one step further,
namely, to the belief that the combination of GE with 2 different
selections that are simultaneously used can improve an adaptive
behavior of GE [5] - [7]. On the principle of two selections we can
create a parallel GE with a hierarchical structure (see Fig. 9).

II. PARALLEL GRAMMATICAL
EVOLUTION

The PGE is based on the grammatical evolution GE [1], where BNF
grammars consist of terminals and non-terminals. Terminals are
items, which can appear in the language. Non-terminals can be
expanded into one or more terminals and non-terminals. Grammar is
represented by the tuple {N,T,P,S}, where N is the set of non-
terminals, T the set of terminals, P a set of production rules which
map the elements of N to T, and S is a start symbol which is a
member of N. For example, below is the BNF used for our problem:
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N = {expr, fnc}
T = {sin, cos, +, -, /, *, X, 1, 2, 3, 4, 5, 6, 7, 8, 9}
S = <expr>
and P can be represented as 4 production rules:
1. <expr> := <fnc><expr>

<fnc><expr><expr>
<fnc><num><expr>
<var>

2. <fnc> := sin
cos
+
*
-
U-

3. <var> := X
4. <num> := 0,1,2,3,4,5,6,7,8,9

The production rules and the number of choices associated with each
are in Table 1. The symbol U- denotes an unary minus operation.

    Table 1: The number of available choices for an  each
production rule

rule no choices
1 4
2 6
3 1
4 10

There are notable differences when compared with [1]. We don’t use
two elements <pre_op> and  <op>, but only one element <fnc> for all
functions with n arguments. There are not rules for parentheses; they
are substituted by a tree representation of the function. The element
<num> and the rule <fnc><num><expr> were added to cover
generating numbers. The rule <fnc><num><expr> is derived from the
rule <fnc><expr><expr>. Using this approach we can generate the
expressions more easily. For example when one argument is a
number, then +(4,x) can be produced, which is equivalent to (4 + x)
in an infix notation. The same result can be received if one of <expr>
in the rule <fnc><expr><expr> is substituted with <var> and then
with a number, but it would need more genes.

There are not any rules with parentheses because all information is
included in the tree representation of an individual. Parentheses are
automatically added during the creation of the text output.

If in the GE is not restricted anyhow, the search space can have
infinite number of solutions. For example the function cos(2x), can
be expressed as cos(x+x); cos(x+x+1-1); cos(x+x+x-x);
cos(x+x+0+0+0...) etc. It is desired to limit the number of elements in
the expression and the number of repetitions of the same terminals
and non-terminals.

III. BACKWARD PROCESSING OF THE GE
The chromosome is represented by a set of integers filled with
random values in the initial population. Gene values are used during
chromosome translation to decide which terminal or nonterminal to
pick from the set. When selecting a production rule there are four

possibilities, we use gene_value mod 4 to select a rule. However the
list of variables has only one member (variable X) and gene_value
mod 1 always returns 0. A gene is always read; no matter if a decision
is to be made, this approach makes some genes in the chromosome
somehow redundant. Values of such genes can be randomly created,
but genes must be present.

The figure Fig. 1 shows the genotype-phenotype translation scheme.
Body of the individual is shown as a linear structure, but in fact it is
stored as a one-way tree (child objects have no links to parent
objects). In the diagram we use abbreviated notations for nonterminal
symbols: f - <fnc>, e - <expr>, n - <num>, v - <var>.

Figure 1. Relations between genotype (column B) and phenotype
(column A)

The column description in Fig. 1:

A. Objects of the individual’s body (resulting trigonometric
function),

B. Genes used to translate the chromosome into the phenotype,
C. Modulo operation, divisor is the number of possible choices

determined by the gene context,
D. Result of the modulo operation,
E. State of the individual’s body after processing a gene on the

corresponding line,
F. Blocks in the chromosome and corresponding production

rules,
G. Block marks added to the chromosome.
Since operation modulo takes two operands, the resulting number is
influenced by gene value and by gene context (Fig. 1C = see Fig. 1
column C). Gene context is the number of choices, determined by the
currently used list (rules, functions, variables). Therefore genes with
same values might give different results of modulo operation
depending on what object they code. On the other hand one terminal
symbol can be coded by many different gene values as long as the
result of modulo operation is the same (31 mod 3) = (34 mod 3) = 1.
In the example (Fig. 1A) given the variables set has only one member
X. Therefore, modulo divider is always 1 and the result is always 0, a
gene which codes a variable is redundant in that context (Fig. 1D). If
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the system runs out of genes during phenotype-genotype translation
then the chromosome is wrapped and genes at the beginning are
reused.

IV. PROCESSING THE GRAMMAR
The processing of the production rules is done backwards – from the
end of the rule to the beginning (Fig. 2). E.g. production rule
<fnc><expr1><expr2> is processed as <expr2><expr1><fnc>. We
use <expr1> and <expr2> at this point to denote which expression
will be the first argument of <fnc>.

Figure 2.  Proposed backward notation of a function tree structure

The main difference between <fnc> and <expr> nonterminals is in
the number of real objects they produce in the individual’s body.
Nonterminal <fnc> always generates one and only one terminal; on
the contrary <expr> generates an unknown number of nonterminal
and terminal symbols. If the phenotype is represented as a tree
structure then a product of the <fnc> nonterminal is the parent object
for handling all objects generated by <expr> nonterminals contained
in the same rule. Therefore the rule <fnc><expr1><expr2> can be
represented as a tree (Fig. 3).

Figure 3.  Production rule shown as a tree

To select a production rule (selection of a tree structure) only one
gene is needed. To process the selected rule a number of n genes are
needed and finally to select a specific nonterminal symbol again one
gene is needed. If the processing is done backwards the first
processed terminals are leafs of the tree and the last processed
terminal in a rule is the root of a subtree. The very last terminal is the
root of the whole tree. Note that in a forward processing
(<fnc><expr1><expr2>) the first processed gene codes the rule, the
second gene codes the root of the subtree and the last are leafs.

When using the forward processing and coding of the rules described
in [1] it’s not possible to easily recover the tree structure from
genotype. This is caused with <expr> nonterminals using an
unknown number of successive genes. The last processed terminal
being just a leaf of the tree. The proposed backward processing is
shown in Fig. 1E.

4.1  Phenotype to genotype projection
Using the proposed backward processing system the translation to a
phenotype subtree has a certain scheme. It begins with a production
rule (selecting the type of the subtree) and ends with the root of the
subtree (in our case with a function) (Fig. 1F). In the genotype this
means that one gene used to select a production rule is followed by n
genes with different contexts which are followed by one gene used to
translate <fnc>. Therefore a gene coding a production rule forms a
pair with a gene coding terminal symbol for <fnc> (root of the rule).
Those genes can be marked when processing the individual. This is
an example of a simple marking system:

BB – Begin block (a gene coding a production rule)
IB – Inside block
EB – End block (a gene coding a root of a subtree)

The EB and BB marks are pair marks and in the chromosome they
define a block (Fig. 1G). Such blocks can be nested but they don’t
overlap (the same way as parentheses). The IB mark is not a pair
mark, but it is always contained in a block (IB marks are presently
generated by <num> nonterminals). Given a BB gene a
corresponding EB gene can be found using a simple LIFO method.

A block of chromosome enclosed in a BB-EB gene pair then codes a
subtree of the phenotype. Such block is fully autonomous and can be
exchanged with any other block or it can serve as completely new
individual.

Only BB genes code the tree of individual’s body, while EB and IB
genes code the terminal symbols in the resulting phenotype. The BB
genes code the structure of the individual, changing their values can
cause change of the applied production rule. Therefore change (e.g.
by mutation) in the value of a structural gene may trigger change of
context of many, or all following genes.

This simple marking system introduces a phenotype feedback to
phenotype; however it doesn’t affect the universality of the algorithm.
It’s not dependent on the used terminal or nonterminal symbols; it
only requires the result to be a tree structure. Using this system it’s
possible to introduce a progressive crossover and mutation.

4.2  Crossover
When using grammatical evolution the resulting phenotype coded by
one gene depends on the value of the gene and on its context. If a
chromosome is crossed at random point, it is very probable that the
context of the genes in second part will change. This way crossover
causes destruction of the phenotype, because the newly added parts
code different phenotype than in the original individual.

This behavior can be eliminated using a block marking system.
Crossover is then performed as an exchange of blocks. The crossover
is made always in an even number of genes, where the odd gene must
be BB gene and even must be EB gene. Starting BB gene is presently
chosen randomly; the first gene is excluded because it encapsulates
(together with the last used gene) the whole individual.

The operation takes two parent chromosomes and the result is always
two child chromosomes. It is also possible to combine the same
individuals, while the resulting child chromosomes can be entirely
different.

Given the parents:
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1) cos( x + 2 ) + sin( x * 3 )
2) cos( x + 2 ) + sin( x * 3 )
The operation can produce children:
3) cos( sin( x * 3 ) + 2 ) + sin( x * 3 )
4) cos( x + 2 ) + x

This crossover method works similar to direct combining of
phenotype trees, however this method works purely on the
chromosome. Therefore phenotype and genotype are still separated.
The result is a chromosome, which will generate an individual with a
structure combined from its parents. This way we receive the
encoding of an individual without backward analysis of his
phenotype. To perform a crossover the phenotype has to be evaluated
(to mark the genes), but it is neither used nor know in the crossover
operation (also it doesn’t have to exist).

4.3  Mutation
Mutation can be divided into mutation of structural (BB) genes and
mutation of other genes. Mutation of one structural gene can affect
other genes by changing their context therefore structural mutation
amount should be very low. On the other hand the amount of
mutation of other genes can be set very high and it can speed up
searching an approximate solution.

Given an individual:
sin( 2 + x ) + cos( 3 * x )
and using only mutation of non-structural genes, it is

possible to get:
cos( 5 – x ) * sin( 1 * x )

Therefore the structure doesn’t change, but we can get a lot of new
combinations of terminal symbols. The divided mutation allows using
the benefits of high mutation while eliminating the risk of damaging
the structure of an individual.

4.4  Population model
The system uses three populations forming a simple tree structure
(Fig. 4). There is a Master population and two slave populations,
which simulate different genders. The links among the populations
lead only one way - from bottom to top.

Figure 4.  The population model

4.5 Female population
When a new individual is to be inserted in a population a check is
preformed whether it should be inserted. If a same or similar
individual already exists in the population then the new individual is
not inserted. In a female population every genotype and phenotype
occurs only once. The population maintains a very high diversity;
therefore the mutation operation is not applied to this population.
Removing the individuals is based on two criterions. The first
criterion is the age of an individual - length of stay in the population.
The second criterion is the fitness of an individual. Using the second
criterion a maximum population size is maintained. Parents are
chosen using the tournament system selection.

4.6  Male population
New individuals are not checked so duplicate phenotypes and
genotypes can occur, also the mutation is enabled for this population.
Mutation rate can be safely set very high (30%) provided that the
structural mutation is set very low (less then 2%). For a couple of
best individuals the mutations are nondestructive. If a protected
individual is to be mutated a clone is created and added to the
population. If the system stagnates in a local solution the mutation
rate is raised using a linear function depending on the number of
cycles for which the solution wasn’t improved. Parents are chosen
using a logarithmic function depending on the position of an
individual in a population sorted by fitness. For every selected male
parent a new selection of female parent is made.

4.7  Master population
The master population is superior to the male and female populations.
Periodically the subpopulations send over their best solutions.
Moreover the master population performs another evolution on its
own. Parents are selected using the tournament system. The master
population uses the same system of mutations as the male population,
but for removing individuals from the population only the fitness
criterion is used. Therefore master population also serves as an
archive of best solutions of the whole system.

4.8  Fitness function
Around the searched function there is defined an equidistant area of a
given size. Fitness of an individual’s phenotype is computed as the
number of points inside this area divided by the number of all
checked points (a value in <0,1>). This fitness function forms a
strong selection pressure; therefore the system finds an approximate
solution very quickly.

4.9  Results
Given sample of 100 points in the interval [0,2π] and using the block
marking system described in 4.1, PGE has successfully found the
searched function sin (2*x)*cos (2+x) on the majority of runs. The
system also found a function with fitness better then 0.8 during less
than 40 generations using merely 3 populations (M, F, MR) with size
= 100 individuals in each (Fig. 5).

The graph (Fig 6.) shows maximum fitness in the system for ten runs
and an average (bold). On the other hand the same system with
phenotype to genotype projection disabled (Fig. 6). The majority of
runs didn’t find the searched function within 120 generations.

We have simplified the generation of numbers by adding a new
production rule, thus allowing the generation of functions containing
integer constants. The described parallel system together with
phenotype to genotype projection improved the speed of the system.
The progressive crossover and mutation eliminates destroying partial
results and allowed us to generate more complicated functions (e.g.
sin(2 * x)*cos(2 + x)).

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



Figure 5.  A generated function with fitness 0.81 -sin(sin(-9 + x)) *
cos(-11 + 2*x) (light) and searched function sin(2 * x)*cos(2
+ x) (bold)

We have described a parallel system, Parallel Grammatical Evolution
(PGE) that can map an integer genotype onto a phenotype with the
backward coding. PGE has proved successful for creating
trigonometric identities.

Parallel GEs with the sexual reproduction can increase the efficiency
and robustness of systems, and thus they can track better optimal
parameters in a changing environment. From the experimental
session it can be concluded that modified standard GEs with two sub-
populations can design PGE much better than classical versions of
GEs.
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Figure 6.  Convergence of the PGE using backward processing
(average in bold)
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Figure 7.  Convergence of the PGE using forward processing
(average in bold)

Figure 8.  Convergence of the PGE with 5 PC using backward
processing (average in bold)

The PGE algorithm was tested with the group of 6
computers in the computer network (see Fig. 9). Five
computers calculated in the structure of five subsystems MR1,
MR2, MR3, MR4, and MR5 and one master MR. The male
subpopulation M of MR in the higher level follows the
convergence of the subsystem. In Fig. 8 is presented 10 runs of
the PGE- program. The shortest time of computation is only 10
generation. All calculation were finished before 40 generation.
This is better to compare with backward processing on one
computer (see Fig. 6). The forward processing on one
computer was the slowest (see Fig. 7).
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Figure 9.  The parallel structure of PGE with 6 computers

4.10   Logical function XOR
Input values are two integer numbers a and b; a, b 2< 0, 1 >.

Output number c is the value of logical function XOR.
Training data is a set of triples (a, b, c):

P = {(0, 0, 0); (0, 1, 1); (1, 0, 1); (1, 1,0)}.
Thus the training set represents the truth table of the XOR

function. The function can be expressed using _, ^, ¬
functions:

a + b = (a ^ ¬b) _ (¬a ^ b) = (a _ b) ^ (¬a _ ¬b) = (a _ b) ^
¬(a ^ b)

The grammar was simplified so that it does not contain
conditional statement and numeric constants, on the other hand
three new terminals were added to generate functions _, ^, ¬.
Thus the grammar generates representations of the XOR
functions using other logical functions.

1)
function xxor($a,$b) {
$result = "no_value";
$result = ($result) |
((((~(~(~(~(~($result)))))) | (($a) & (($a) & (~($b))))) &

($a))
| ((~($a)) & ($b)));
return $result;
}
Number of generations: 32
2)
function xxor($a,$b) {
$result = "no_value";
$result = ($result) | (((~$b & ($a & ($a & ~$b))) & $a) |
(~$a & $b));
return $result;
Number of generations: 53

V. CONCLUSION
We have simplified the generation of numbers by adding a new
production rule, thus allowing the generation of functions containing

integer constants. The described parallel system together with
phenotype to genotype projection improved the speed of the system.
The progressive crossover and mutation eliminates destroying partial
results and allowed us to generate more complicated functions (e.g.
sin(2 * x)*cos(2 + x)).

We have described the Parallel Grammatical Evolution (PGE) that
can map an integer genotype onto a phenotype with the backward
processing. PGE has proved successful for creating trigonometric
functions.

Parallel GEs with hierarchical structure can increase the efficiency
and robustness of systems, and thus they can track better optimal
parameters in a changing environment. From the experimental
session it can be concluded that modified standard GEs with only two
sub-populations can create PGE much better than classical versions
of GEs.

The parallel grammatical evolution can be used for the automatic
generation of programs. We are far from supposing that all
difficulties are removed but first results with PGEs are very
promising.
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