
 
 

 

  
Abstract— This paper proposes a weight initialization strategy 

for a discrete-time recurrent neural network model. It is based on 
analyzing the recurrent network as a nonlinear system, and 
choosing its initial weights to put this system in the boundaries 
between different dynamics, i.e., its bifurcations. The relationship 
between the change in dynamics and training error evolution is 
studied. Two simple examples of the application of this strategy 
are shown: the detection of a 2-pulse temporal pattern and the 
detection of a physiological signal, a feature of a visual evoked 
potential brain signal. 
 

Index Terms—DTRNN, nonlinear system, training, bifurcation.  
 

I. INTRODUCTION 
In this paper the particular model of network which is 

studied is the Discrete-Time Recurrent Neural Network 
(DTRNN) in [1], also known as the Williams-Zipser 
architecture. Its state evolution equation is 

 
  

 ∑ ∑
= =

++=+
N

n
i

M

m
mimiini wkuwkxfwkx

1

''

1

' )())(()1(   (1) 

 
where 
  

  )(kxi  is the ith neuron output 

 )(kum  is the mth input of the network 
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. 

  imin ww ',  are the weight factors of the neuron outputs, network 

inputs and   iw ''  is a bias weight. 

 )(⋅f  is a continuous, bounded, monotonically increasing 
function such as the hyperbolic tangent. 
 

From the point of view of dynamics theory it is interesting to 
study the invariant sets in state-space. The equilibrium or fixed 
points are the simplest of these invariants. These points are 
those which do not change in time evolution. Their character or 
stability is given by the local behavior of nearby trajectories. A 
fixed point can attract (sink), repel (source) or have both 
directions of attraction and repulsion (saddle) of close 
trajectories [2]. Following in complexity there are periodic 
trajectories, quasi-periodic trajectories or even chaotic sets, 
each with its own stability characterization. All these features 
are similar in a class of so-called “topologically equivalent” 
systems [3]. When a system parameter (such a weight, for 
example) is varied the system can reach a critical point in which 
it is no more topologically equivalent to its previous situation. 
This critical configuration is called a bifurcation [4], and the 
system will exhibit new qualitative behaviors. The study of 
how these multidimensional weight changes can be carried out 
will be another issue in the analysis. In this paper we focus in 
local bifurcations in which the critical situation is determined 
by only one condition, known as codimension 1 bifurcation, in 
a fixed point. There are several bifurcations of this kind (that 
can occur with the variation of only one parameter) in a discrete 
dynamical system: Saddle-Node, Flip and Neimark-Sacker 
bifurcations. The conditions that define the occurrence of these 
bifurcations are determined by the eigenvalues of the Jacobian 
matrix evaluated at the fixed point. For a Saddle-Node, one 
eigenvalue will be 1, for a Flip bifurcation, (-1) and finally, in a 
Neimark-Sacker bifurcation, two eigenvalues (complex 
conjugate) are on the unit circle. 

With respect to recurrent neural networks as nonlinear 
systems studies, several results about their stability are in [5,6]. 
In [7] is given an exhaustive nonlinear dynamic analysis. In the 
other hand, there are some works that analyze the chaotic 
behavior [8,9]. Finally, in [10,11] is studied the 
Neimark-Sacker bifurcation and the quasi-periodic orbit 
apparition. 
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Figure 1. Neural network input (continuous line), output desire (asterisks) and 
real output (points). 

 
This paper is divided into six sections. In Section 2, the 

sample problems are explained: the 2-pulse pattern recognition  
and the visual potential evoked feature detection. In Section 3,  
the neural network dynamic analysis is given considering that 
the network and standard training. In Section 4 is studied the 
relationship between the dynamics and the process training 
error. In the last section, a new initialization weight strategy 
based on the bifurcation theory is proposed and experimental 
results in the sample problems are given. 
 

II. PROBLEMS DESCRIPTION 
 

A. 2-Pulse Problem 
This first problem is based on classifying two pulse shapes, 

positive and negative. The label and position into the sequence  
are given by a random uniform distribution. The desired neural 
network output is to give a positive value at the end of sequence, 
in case of positive pulse or a negative value in the opposite case. 
Fig. 1 shows an example positive pulse with the desired output 
and real output neural network. 

It was obtained good results with only one neuron network in 
the training and generalization process. In fact, increasing the 
sequence length the neural network classifies the pulses 
adequately. This simple problem is a good example because 
one-neuron network allows showing easily the relationship 
between dynamic and training process.  

B. Potential Evoked Problem 
The other test problem selected is the Evoked Potential 

feature detection. The Evoked Potential (EP) is defined as an 
electrical response of the Central Nervous System that holds a 
well-defined temporal relation with the stimulus that 
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Figure 2. Visual evoked Potential. 

 
originated it. In this case the stimuli are of visual type. A flash  
light generates a series of stimuli and the brain responses are  
acquired and averaged to get a waveform that in its first 
components frequently resembles a V letter. The points that 
demarcate this V are of specific diagnostic interest. The 
detection of a particular point (called P100 because often 
appears approximately 100ms after the stimulus), will be the 
problem to tackle. The detection must have into account the 
morphology of the signal (P100 context) and its time of 
occurrence because there are many other parts of the waveform 
with similar aspect [12]. Fig. 2 shows a Visual Evoked 
Potential example. 

Although a dynamic network of this kind can successfully 
represent complex temporal patterns, several drawbacks have 
been pointed out in the literature [1]. There are two main 
problems that appear when training this type of neural 
networks. Firstly, the error hyper surfaces tend to be rather 
complex and it is necessary to consider more sophisticated 
optimization algorithms. In this case, the variable metric 
method Broyden-Fletcher-Goldfard-Shanno (BFGS) [13] was 
used. Secondly, the problem of long-term dependencies arises 
frequently when the error function depends on the final state of 
the network, see for a description of this issue [14]. The 
particular trajectory in state space is irrelevant as far as the error 
function is concerned. Since the objective is to detect the P100 
point, the desired output sequence is zero except at the location 
of this point. The error function will take into account every 
time instant. Incorporating the full trajectories to the error 
function alleviates the problem of long-term dependencies [14]. 
As shown in [15] a good approach is to consider 
simultaneously feeding the network with shifted sections of the 
input sequence of length T (shown in Fig. 3). The shifted 
versions of the input sequence allow for the network to 
perceive at its inputs the relevant temporal context to take a 
decision just when the P100 arises. 
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Figure 3. Structure of the recurrent neural network model with shifted inputs. 
(PE problem). 
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Figure 4. Neural network desire output and real output represent by 
discontinuous line and continuous line respectively (PE problem). 

 
With these settings, the networks could converge to a good 

solution. Fig. 4 shows a close-up view of an evoked potential 
and the response of the network. The response peaks near 
exactly the P100 point. The size of the net was of only four 
neurons, the first of them being the output of the system and the 
initial state was set to zero both during training and testing. 

A total of 44 evoked-potential sequences were used for 
training. A high number of detections (42) are within 
acceptable bounds (10 ms) of the correct point for the training 
sample. In the test sample, the results are slightly worse, but in 
this first test none of several generalization techniques 
available (early stopping, regularization term in error 
function…) or any special tuning were applied. 

 

III. DYNAMIC ANALYSIS 

A. 2-Pulse  Problem 
In the one-neuron dynamic equation two parameters appear 

feedback weight and bias. Considering the network training, 
the feedback weight is greater than one and the bias is next to 
zero. As a consequence, the network dynamics is based on two 
stable fixed points that 
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Figure 5. Neural Network Output without input and zero initial state (2-Pulse 
Problem). 
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Figure 6. Fixed points and saddle unstable manifolds (PE problem). 
 
are symmetric and an unstable fixed point situated in the origin. 
With respect to the phase trajectory, considering positive pulse, 
the state begins in the attraction domain of the positive stable 
fixed point and tends to this fixed point. In the case of the 
negative happens the opposite evolution: it tends towards the 
negative stable fixed point. 

Fig. 5 shows the state going to one stable fixed point. In 
general, the initial state must stay inside the domain of 
attraction of the stable fixed point. In other hand, the evolution 
is slow. In fact, the state tends to another domain attraction with 
a minimal input change. In consequence, when it is present, the 
neural network input must be of a certain value in order to 
produce the transition to the adequate domain of attraction. In 
spite of this, it was obtained good results in generalization with 
varying pulse amplitudes. 

B. Potential Evoked Problem 
In this problem the dynamic is much more complex that in 

above case. In this problem appears a period two stable cycle 
and four saddle fixed points. In this case the unstable manifolds 
of the saddle fixed points (trayectories that diverge from saddle 
fixed points) are of dimension three and they are complex as 
can be appreciated in Fig. 6. 

In other hand, Fig. 7 represents the state evolution with the 
input pattern present. It shows that the output corresponding to 
X1 becomes saturated around the times in which appear the 
P100 pattern. The trajectories are complex, due to saddle fixed 
points and their unstable manifolds, as shown in Fig. 7. 
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Figure 7. State evolution with external input. X1 represents the output of the 
neural network. Iteration is codified by grey scale (PE problem). 
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Figure 8. Feedback weight evolution in 2-Pulse problem. 
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Figure 9. Error evolution in the Evoked Visual Potential problem. The points 
correspond to the analyzed dynamics. 

IV. ERROR VS DYNAMIC 
The significative change in training with respect to the 

feedback weight is shown in fig. 8. In fact, the neuron changes 
dynamics from only stable fixed point to unstable, appearing 
two new stable fixed points, produced by saddle-node 
bifurcation [4]. 

Similarly, in the Evoked Potential problem exists a 
relationship between the network dynamics and error 
evolution. Fig. 8 shows that error abruptly decreasing. It is 
interesting to analyze the dynamics in the three error values 
represented in 
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Figure 10. Greater value error point dynamic (PE problem). 

 
 
Fig. 9. 
Firstly, the greater error value dynamic is composed by three 

fixed points: stable, unstable and saddle, respectively, and three 
two-period orbits, two saddle and one stable (fig. 10). Actually, 
the most important aspect with respect to dynamics is that 
stable fixed point and the stable two-period orbits are situated 
in the saturation. It means that states tend to saturation without 
external inputs. 

In the other hand, in the middle error point, the 
corresponding dynamics is composed by a saddle fixed point 
and a quasiperiodic-orbit. The error value is relatively high 
because quasiperiodic-orbit is near the saturation values, as 
show in fig. 11.  

Finally, the dynamics corresponding to lower error values 
was that described in the previous section. 

In the middle error dynamics appears a quasiperiodic orbit as 
a consequence of crossing a Neimark-Sacker bifurcation. In 
both problems, it is concluded that the error decreases by 
changing the dynamics and crossing a bifurcation of some kind. 
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Figure 11. Middle error point dynamic in PE problem. The saddle fixed point 
and quasiperiodic-orbit are represented by cross and points respectively.  

 

V. INITIALIZATION STRATEGY 
The classical weight initialization strategy is inspired by 

static neural networks; it is based on choosing small initial 
random weights [16]. In fact, this strategy avoids the neural 
network saturation and this situation is desirable because it do 
allow training with backpropagation algorithm in the static 
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neural network or the state derivative along time in the dynamic 
neural network. However, respect to the neural network 
dynamic this strategy is a bit restrictive because the origin is the 
only fixed point and is stable. In fact, the neural network is 
topologically equivalent to a linear stable system. 

In order to design a new initialization strategy, consider the 
transitions produced by one-neuron network training in the 
2-Pulse sample problem. In section 3 is shown that in the 
dynamic transition of a saddle-node bifurcation, the error 
decreases abruptly. It can be interesting to begin the training on 
other critical situations corresponding to other bifurcations (flip 
bifurcation). With respect to the feedback weight parameter 
this bifurcation appears when its value is (-1). Fig. 12 shows the 
relation between the error and feedback weight value. The 
feedback weight value tends to values greater than one, or the 
opposite way the optimal dynamic network is two stable fixed 
points. In other hand, it is hopeful because the dynamic 
network that appears in the flip bifurcation is one stable 
periodic double, in consequent the output network oscillate 
from positive value to negative. In order to classify the input 
pattern this dynamic behavior is not adequate.  

The new strategy is based on starting in the bifurcation 
situations. Indeed, in the case of one-neuron network like the 
2-pulse sample problem, it is compared experimentally a 
random classical initialization, with that beginning in the fold 
bifurcation, (feedback weight value one) and that starting in the 
flip bifurcation (feedback weight value -1). 

In the fig. 13 is sketched the results of this comparison, the 
classical strategy, where the initial weight values come from a 
uniform distribution inside (-0.01, 0.01), fold and flip 
bifurcation initializations. It is shown that the best strategy 
corresponds to fold bifurcation initialization. The second is the 
flip bifurcation initialization that still improves the classical 
initialization. Inside each 3-dimensional histograms appear 
many weights with similar error values. These are caused by 
the local minima in the error surfaces towards which the 
weights converge. 
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Figure 12. 2-Pulse problem training process beginning with feedback weight 
(-1). (a) Error evolution and (b) feedback weight evolution. 
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Figure 13. Error normalized distribution in the 2-pulse problem. (a) classical 
strategy, (b) fold bifurcation initialization, and (c) flip bifurcation initialization. 
 

In the Potential Evoked problem is necessary to redefine the 
new strategy to a multidimensional dynamic neural network 
system. In fact, here appears a new type of bifurcation, the 
Neimark-Sacker. The bifurcation conditions generalized to 
multidimensional systems are: an eigenvalue equal to 1 to 
reflect saddle-node bifurcation, an eigenvalue equal to (-1), in 
the case of a flip bifurcation, and two conjugate complex 
eigenvalues in the unit circle in the Neimark-Sacker 
bifurcation.  

In order to implement this new strategy generalization, the 
initial weight matrix must be particularised. The algorithm of 
matrix initialization consists firstly in generating n random 
weights from a uniform distribution, where n corresponds to 
the number of neurons. Next, the first value is assigned to 1, in 
case to begin on saddle-node bifurcation or (-1) in flip 
bifurcation. The third step consists in a permutation of this 
number and the inclusion of this vector as the diagonal in a 
diagonal matrix D. In the last step it is generated a n x n  
random rotation matrix T, so the definitive initial weight matrix 
is  

 
TDTWOutput

1−=   (2). 
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In order to guarantee that the neural network begins in the 
bifurcation it is necessary also that the bias and input weights 
are zero. The Neimark-Sacker bifurcation initialization is 
similar that above case, except that the matrix D include a 
rotational matrix characterized by two conjugate complex 
eigenvalues in the unit circle: 

 
 

( ) ( )
( ) ( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
=

nv

sen
sen

v

D

00

cos
cos

0
001

LLL

MOM

MM

MM

MO

LLL

θθ
θθ

 (3) 

 
where θ  is random value. 

Fig. 14 is obtained in a similar way as fig. 13. This figure 
shows that the multidimensional bifurcation strategy results are 
much better than that of the classical strategy. 

VI. CONCLUSION 
An algorithm for determining the initial recurrent network 

based on bifurcation theory was successfully developed. This 
new strategy was applied to two problems. The first problem is 
very simple, to allow easier visualization of the relation 
between dynamics and error and it was easy to explain the good 
results of the bifurcation strategy in this problem. The potential 
evoked problem was much more complex to train but it 
obtained similar results and it showed the benefits of inducing 
initial situations of bifurcation in training process. In future 
works this result can be generalized to other problems and add 
in the training process some information constraints in the 
dynamics. 
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Figure 14. Error normalizated distribution in the Potential Evoked problem. (a) 
classical strategy, (b) fold bifurcation initialization,(c) flip bifurcation 
initialization  and (d) Neimark-Sacker bifurcation inicialization. 
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