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Abstract—We study globalization influences on

forecasting inflation in an aggregate perspective us-

ing the Phillips curve for Hong Kong, Japan, Taiwan

and the US by artificial neural network-based thin

and thick models. Our empirical results support the

hypothesis that globalization influences do generate

the downward tendency in inflation through time in

all cases with different levels. Moreover, the artificial

neural network-based thin and thick models that have

been developed upon the best linear model for each

country have shown significant superiority over the

naive model in the most cases and over the best lin-

ear model in some cases. Finding optimal values of all

the parameters for so many artificial neural network

models is a difficult task because of the large number

of parameters involved. Thus we do not make any

claim on the optimality of the artificial neural network

models in this study. As a consequence, even though

our empirical results are not overwhelmingly satis-

factory, building the artificial neural network model

based upon the best linear model is a good compro-

mise between practicality and optimality.
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1 Introduction

Inflation is widely taken as one of the main economic
problems, because it involves in the allocation efficiency
of the economy by means of changing the relative prices
among commodities. A dramatic acceleration of inflation
results in large costs to the public and business commu-
nity. The mechanism of how the relative-price adjust-
ments among commodities affect (or cost) the economy
is very complicated and not yet well understood. Pur-
suing stable prices is the primary goal of a central bank
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while creating and maintaining an independent and ef-
ficient monetary system. However, the acceleration in
the pace of international trade in good, service and fi-
nancial assets relative to the growth rate of the domestic
trade, broadly defined as globalization, has attracted a
lot of attentions [1]. This is because globalization has
broken some macro rules such as a decrease in the corre-
lations between the labor cost and inflation and a decline
in the elasticities between import prices and core infla-
tion. During the past decade, the acceleration in the
pace of the world trade growth is well above the accel-
eration in the pace of the world economic growth with
a disparity from 2.99 percent in 1990 to 3.16 percent in
2006, specially in recent years, but the annual inflation
in the advanced countries has been decreasing since 1990
and it is even well below the world economic growth rate.
In other words, strong economic growth does not result
in high inflation in the most advanced economies since
1990. Even for the developing countries, the annual in-
flation has started to decelerate since 1995. The global
trade (exports and imports of goods and services) stood
38 percent of the total world GDP in 1990 and hit 61 per-
cent in 2006. Hence, it is hard to consider the domestic
factors only while conducting the monetary policy when
the domestic commodity and financial markets becomes
increasingly open (and integrated to the world markets).
As a result, globalization seems to become more and more
important to this issue.

Inflation is a major issue for the central bank when decid-
ing the monetary policy, but forecasting inflation is intu-
itively not an easy task for any economy, in which there
are many mechanisms operating simultaneously, espe-
cially as the influence of globalization becomes stronger.
In economics, the Phillips curve theory conveys that there
is a tradeoff relationship between inflation and unemploy-
ment rate. Empirically, it seems like the Phillips curve is
nonlinear [2]. There is an increasing body of research
[3, 4, 5, 6, 7] using artificial neural networks (ANNs)
that provide evidence of the existence of nonlinear and
complex relationships among (or within) economic time
series. Consequently, an ANN can be used as an alter-
native approach to empirically analyze the Phillips curve
theory. Atkeson and Ohanian [8] conclude that their lin-
ear models based on the non-accelerating inflation rate of

Proceedings of the World Congress on Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San Francisco, USA

ISBN:978-988-98671-6-4 WCECS 2007



unemployment (NAIRU) can not provide more accurate
forecasts than the naive forecasts. Therefore, to a cer-
tain extent, the modern Phillips curve-based models are
not as useful as expected. However, based on the study
of McNelis and McAdam [6], the trimmed ANN-based
thick model [9] outperforms the linear model for real-time
and bootstrap forecasts in the Euro area as well as in
some other countries considered in their study using the
Phillips-Curve framework. Basically, they remove the 5
percent largest and smallest forecasts from several ANNs,
and then use the average of the remaining forecasts as
combined forecasts. It is practical to use a thick model
on several neural networks in the first several forecasting
periods, because there is no theoretical basis to select the
best ANN among many ANNs that have different num-
bers of neurons in the hidden layer, or different network
architectures, but have same input variables. Even after
some periods of forecasting, the forecasting performances
of different ANNs might be still too close to determine
which one is the best. Therefore a thick model can be ac-
cordingly applied. However, the removals of the largest
and smallest forecasts from several ANNs do not guaran-
tee the best forecasting performance, insomuch as either
the largest or the smallest forecast does not necessarily
generate the largest forecasting error. To a certain ex-
tent, the range for forecasts should be known a priori
when using the trimming method. Moreover, an ANN-
based thick (ANN thick) model might not always be a
better choice over an ANN-based thin (single ANN; ANN
thin) model, so we should consider the ANN thin model
as well. Besides, the globalization factor, an increasingly
important factor, is absent in their study.

The contribution of this paper is two-fold. First, we con-
sider globalization influences while forecasting inflation
in an aggregate perspective using the Phillips curve by
artificial neural network-based thin and thick models for
Hong Kong, Japan, Taiwan and the US that have data
available for the globalization factor. Second, we compare
the forecasting performances of ANN thin and thick mod-
els with the forecasting performances of a simple naive
and the best linear models. The paper is organized as
follows. Section 2 describes the theoretical underpinnings
and methodology. In Section 3, we discuss and compare
the empirical results. The paper ends with some conclud-
ing remarks.

2 Methodology

2.1 Theoretical Underpinnings of Artificial
Neural Networks

Artificial Neural Networks (ANNs) are one of the most
frequently used techniques in the field of machine learn-
ing. The field of machine learning focuses on the study of
algorithms that improve their performance at some task
automatically through experience [10].

Suppose we are given training data as a set of n ob-
servations. Each observation is a pair (xi, yi) where
xi ∈ �d and yi ∈ �. Assume that the training data
has been drawn independently from some unknown cu-
mulative probability distribution P (x, y). The goal is to
find a function f : �d �→ � that implements the optimal
mapping. In order to make learning feasible, we have to
specify a function space F from which the function is to
be chosen. In particular, a set of n pairs of training data,
denoted by {(xi, yi)}

n
1 , are given for the purpose of a bi-

nary classification task, where xi ∈ �
d and yi ∈ {1,−1}

is the class label. Assume that the data is linearly sep-
arable and let F be the set of linear decision boundaries
of the form

f(x) = sign(w · x + b)

where w ∈ �d and b ∈ � are the adjustable parameters.
Thus, choosing particular values for w and b results in
a trained classifier. For any trained classifier, the hy-
perplane corresponding to w · x + b = 0 is the decision
boundary. A linear decision boundary is a simple classi-
fier that can be learned very efficiently. However, due to
its small complexity it can correctly classify data that is
linearly separable only.

In general, one way to measure the performance of a
trained classifier f ∈ F is to look at the mean error
computed from the training data. This is known as
the empirical risk (or training error). Minimizing the
empirical risk is one of the most commonly used opti-
mization procedures. However, even when there is no
error on the training data, the classifier may not gener-
ate correct classifications on unseen data (See Figure 1).
This problem is known as overfitting. The ability of a
classifier to correctly classify new data that is not in
the training set is known as generalization. Having a
classifier with good generalization is, of course, a much
harder problem. There is a competition of terms. As
the complexity of the classifier increases, the empirical
risk tends to decrease. However, the generalization er-
ror usually increases with increasing complexity. Thus,
for such models with broad approximation abilities and
few specific assumptions (e.g., ANNs), the distinction be-
tween memorization and generalization becomes impor-
tant [11]. A validation set (disjoint from the training set)
is commonly used to assess generalization performance.
Cross-validation is a technique that reduces overfitting.
For instance, in a κ-fold cross-validation, the collected
data is divided into κ partitions. Each partition in turn
is left out and the remaining κ − 1 partitions are used
for training. The left out partition is then used to test
generalization performance. The value reported is then
the average of the κ tests.

Basically, ANNs are a class of non-linear, non-parametric
models that can be trained to approximate general non-
linear, multivariate functions. They are massively paral-
lel systems comprised of many interconnected processing
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(a)      (b)

Figure 1: Generalization performance: a) an overly com-
plex classifier that results in zero error on the training
data, but may not generalize well to unseen data; b) a
classifier that might represent the optimal tradeoff be-
tween error in the classification of training data and com-
plexity of the classifier, thus capable of generalizing well
on unseen data.

elements (known as nodes or neurons) based on neurobio-
logical models of the brain. One of their main advantages
in comparison to other models is that they have very
few domain-specific assumptions and are highly adapt-
able (e.g., they learn from experience). Thus, they need
no a priori assumption of a model and are capable of in-
ferring complex non-linear input-output transformations.
In addition to their typical use in (nonlinear) regression,
they are commonly used in pattern recognition, where
the ANNs assign a set of input features to one or more
classes.

In the late 1950s, Rosenblatt [12] introduced the percep-
tron learning rule, the first iterative algorithm for train-
ing a simple ANN: the perceptron (see Figure 2), which
is a linear classifier. After initializing w and b randomly,
each training point xi is presented and the output value
of y is compared against yi. If y and yi are different (i.e.,
xi is misclassified) the values of w and b are adapted by
moving them either towards or away from xi. Rosen-
blatt proved that, assuming the classes are linearly sepa-
rable, the algorithm will always converge and find values
for w and b that solve the classification problem. That
is, the algorithm finds a hyperplane that divides the d-
dimensional space into two decision regions. A linear de-
cision boundary (e.g., a single-layer perceptron) is a sim-
ple classifier that can be learned very efficiently. However,
due to its small complexity it can correctly classify data
that is linearly separable only. On the other hand, a more
complex decision boundary can correctly classify general
data that may not be linearly separable.

The key idea responsible for the power, potential, and
popularity of ANNs is the insertion of one or more lay-
ers of nonlinear hidden units (between the inputs and
output) [11]. These kinds of nonlinearity allow for inter-
actions between the inputs (e.g., products between input
variables). As a result, the network can fit more compli-
cated functions [11]. A multilayer perceptron consists of

x1

x2

xd

 w1

y

  w2

 wd

b

  1 

Figure 2: One neuron single-layer d-input perceptron
with threshold activation function. The output y =
sign(w · x + b) = sign(

∑
wixi + b)

an input layer, at least one middle or hidden layer, and
an output layer of computational neurons (see Figure 3).
The input signals are propagated in a forward direction
on a layer-by-layer basis.

Figure 3: Multilayer d-input perceptron with two hidden
layers.

Learning in a multilayer network is similar to learning
with a perceptron. That is, each training point xi is pre-
sented to the network as input. The network computes
the corresponding output y. If y and yi are different,
the network weights are adjusted to reduce this error. In
a perceptron, there is only one weight for each of the d

inputs and only one output. However, in a multilayer
network, how can we update the weights to the hidden
units that do not have a target value? The revolutionary
(and somewhat obvious) idea that solved this problem
is the chain rule of differentiation [11]. This idea of er-
ror backpropagation was first proposed in 1969 [13] but
was ignored due to its computational requirements. The
backpropagation algorithm was rediscovered in 1986 [14]
at a time when computers were powerful enough to allow
for its successful implementation. In the backpropaga-
tion algorithm, the error (i.e., the difference between the
network output and the desired output) is calculated and
then propagated backwards through the network from the
output to the input layer. The weights are modified as
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the error is propagated. The sum of squared errors (over
all training data) is the performance measure that the
backpropagation algorithm attempts to minimize. When
the value of this measure in an entire pass through all
training data is sufficiently small, it is considered that
the network has converged. The following section is go-
ing to present the ANN models, inflation function, and
data.

2.2 ANN thin and thick Models, Inflation
Function, and Data

In contrast to traditional models that are “theory-rich”
and “data-poor”, ANNs are “data-rich” and “theory-poor”
in a way that little or no a priori knowledge of the problem
is present [11]. Thus, they need no a priori assumption of
a model and are capable of inferring complex non-linear
input-output transformations. In spite of its easy ap-
plication, there is no theoretical basis to select the best
ANN among several ANNs that have different parameter
values such as the numbers of neurons in the hidden layer
(different network architectures) at the beginning of fore-
casting periods, although they may have same input vari-
ables. Moreover, the following situation could also pos-
sibly occur: ANNs have no significant difference in their
out-of-sample forecasting performances after a period of
time. Usually there is a method, called thick model, that
could be used under these circumstances. A thick model
combines several forecasts from different ANNs. In the
combination of several forecasts, the weights for the fore-
casts can be equal or different. Alternatively, we can trim
the outliers from the forecasts if we have prior informa-
tion about the reasonable range of forecasts. Therefore,
it is reasonable to use a thick model on several neural net-
works in the first several periods of forecasting or when it
is still hard to decide which ANN is the best after some
periods.

In our study, ANN thin and ANN thick models are both
considered. For the ANN thick model, we implement two
different kinds. One is ANN thick with equal weight (i.e.,
average value) model, and the other one is ANN thick
with unequal weight model that gives greater weight to
the relatively better ANNs and less weight to the rela-
tively worse ANNs by nonlinearly optimizing (minimiz-
ing) the forecast error statistics from the first several out-
of-sample test periods. In this study, we repeatedly esti-
mate and update both the linear and several ANN models
to obtain a one-step-ahead forecast (the real time fore-
cast) while the sample period rolls forward a quarter at a
time. For the purpose of avoiding obsolete information,
we keep the sample size fixed by getting rid of the old-
est data while the estimation is rolling over to the next
period.

The Phillips curve framework with a globalization factor
can be described as the following function for both the

linear and ANN models.

π4
t+1 − π4

t = f(Δπ4
t , ...,Δπ4

t−i, Δπt, ...,Δπt−j ,

Δut, ...,Δut−m, Δgt, ...,Δgt−n)

where π4
t is the the 4-quarter change consumer price in-

dex (CPI) between quarters t and t − 4 in an aggre-
gate perspective at an annualized value as measured by
100[ln(Pt) − ln(Pt−4)], πt is quarterly inflation as mea-
sured by 400[ln(Pt) − ln(Pt−1)], ut is the quarterly em-
ployment rate in quarter t, gt is the quarterly globaliza-
tion factor (the ratio of exports plus imports to the overall
GDP for a country) in quarter t, and i, m, and n are the
lag lengths. The left side term is the difference between
the 4-quarter change inflation in the current quarter and
the next quarter. We have to avoid forecasting long hori-
zons such as the difference between the inflation over the
next 4 quarters and inflation over the previous 4 quar-
ters, although some research does not avoid forecasting
long horizons [8, 6]. The reason is that a long forecasting
horizon does not cohere with the Phillips curve theory
that only exists in the short or medium run. In other
words, there is no permanent tradeoff between inflation
and unemployment in the long run, because the long-run
inflation is determined by the central bank, i.e., the re-
lationship in the Phillips cure does not exist in the long
run. In addition, we also try different forms of informa-
tion from the past such as the 4-quarter change employ-
ment rate and 4-quarter change globalization factor to
check if they also generate significant influences on Δπ4

t

in each country. As a result, only the 4-quarter change
globalization factor is more significant than the quarterly
globalization factor in the case of the US.

In the inflation function, we focus on the influences run-
ning from the growth paces of the input variables to the
growth pace of the output variable. Usually, the central
bank is more concerned with 12-month change in CPI
so that the comfort zone of the CPI changes can be ob-
served easily. Due to the unavailability of monthly data
for the globalization factor, we can only investigate four
countries, which are Hong Kong, Japan, Taiwan and the
United States in this study with quarterly data. It will
still mean the same for the central bank if we use the
4-quarter change in CPI. The whole sample period runs
from the fourth quarter of 1982 to the third quarter of
2006, and the dataset is obtained from the database of
the International Monetary Fund (IMF). For each sample
country, around three fourths of each dataset is used to
estimate or train the forecasting models. Afterward, the
remaining one fourth dataset (i.e., 20 periods as test pe-
riods starting from the first quarter of 2002 till the third
quarter of 2006) is used to evaluate real time forecast
performances among different forecasting approaches.
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3 Empirical Results and Analysis

As mentioned previously, we repeatedly estimate and up-
date both the linear and several neural network mod-
els to get a one-step-ahead forecast (the real time fore-
cast) from these different forecasting models. Since the
economy evolves through time, it is not appropriate to
keep obsolete information in our forecasting models, so
we get rid of the earliest period while the estimation is
rolling over to the next period. Thus, the sample size is
fixed. The derived benefit to do so is that we can exam-
ine the model’s evolution (model stability) through time,
insomuch as it is not quite appropriate to use the same
model while repeatedly estimating the forecasting models
for a growing economy. As a result, the explainable vari-
ables in each period might be different through time, and
we can also obtain the time-varying coefficients for every
input in the linear model and their relative importance
through time. The linear model is a multivariate time se-
ries model. To ensure that the residuals from the linear
models are white noise, we perform the Breusch-Godfrey
Lagrange multiplier test, Ljung-Box Q-statistics and cor-
relogram of squared residuals while building the linear
model in each period. Selecting the variables for the ANN
models is based on the best linear model. The reason is
that it is a very time-consuming and complex process
to obtain all the optimal parameters (e.g., learning rate,
number of neurons in each layer, number of training cy-
cles, etc.) for so many candidate ANN models. Note
that this is only a compromise between practicality and
optimality. Nevertheless, our previous work does indicate
great advantages when applying this method [7, 15].

The inverse relationship between unemployment rate and
inflation (Phillips curve) exists in all cases, and the his-
torical inflation significantly affects the current inflation
as well in all cases. It is not surprising that the global-
ization factor is very significant in the linear model for
each sample country, and it does generate the downward
tendency in inflation through time with different levels.
Table 1 presents all the summary forecast error statis-
tics, root-mean-squared error (RMSE) and mean abso-
lute error (MAE), for each sample country. As previ-
ously discussed, in the first few out-of-sample test pe-
riods, we might be able to decide which ANN performs
best, but some ANNs still have similar performances after
some test periods. If this situation happens, thick mod-
els (ANN thick with equal weight and ANN thick with
unequal weight models) can be accordingly applied. Ex-
cept for the linear, ANN thin and thick models, a simple
naive model producing the benchmark forecast is also in-
cluded. Basically, there are five different forecasting mod-
els, which are naive, linear, ANN thin, ANN thick with
equal weight (ANN-Thick-WE), and ANN thick with un-
equal weight (ANN-Thick-WO) models.

Some significant observations emerge from our empirical
results in Table 1. First, there are two (Hong Kong and

Table 1: Forecast Accuracy for Inflation of Sample Coun-
tries

the US) out of four cases, in which either ANN thin or
thick models outperforms the naive and best linear mod-
els. This result is very encouraging because we do not
make any claim on the optimality of the ANN models
that are merely based upon these repeatedly-updated and
well-specified linear models. As previously mentioned, al-
though the ANNs have the same inputs as the best linear
model, the variations on learning rates, number of neu-
rons in each layer, and number of training cycles could
generate a lot of different ANN models that might lead
to different forecasting performances. Nevertheless, ob-
taining optimal values for so many ANN models is rather
time-consuming and complex. In the case of Hong Kong
(and all other cases indeed), we use the average of all
forecasts from the different ANNs in the first 10 out-
of-sample test periods, because we could not determine
which ANN is the best without any performance history.
Afterward, we use the forecasting performances from the
first 10 test periods to obtain the weights in order to com-
bine weighted forecasts for the next test period, and we
update the weights before each test period. Actually, the
weights vary just a little each time as the new information
rolls in. This indicates that weights could become stable
after some test periods in the case of Hong Kong if we
have more data available. However, due to the constraint
of data availability, we do not expect to get the optimal
weights within some test periods, which could be possibly
improved by using longer test periods with more experi-
ences. Hong Kong is the only case in which the ANN
thick with unequal weight (ANN-Thick-WO) model out-
performs all other models in this study with substantially
lower RMSE and MAE. In the case of the US, the ANN
thin model outperforms all other models. Thirdly, in the
cases of Taiwan, the ANN thin model performs as well as
the best linear model, and it significantly outperforms the
naive model. Fourthly, in the case of Japan, the linear
model has the best forecasting performance, and neither
the ANN thin nor the ANN thick model can outperform
the naive model. Lastly, the ANN thick with unequal
weight model in all cases do outperform the ANN thick
with equal weight model despite the fact that they are
not the best in some cases.

In short, our empirical results are not the most satisfac-
tory but due to the application flexibility of ANNs, it
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is very hard to obtain all the optimal parameters (e.g.,
learning rate, number of neurons in each layer, number of
training cycles, etc.) for so many ANN candidate mod-
els through a very time-consuming and complex process.
The focus of this study was on a real time forecasting with
many repeated estimations and sample countries, so se-
lecting the variables for the ANN based upon the best
linear model is only a compromise between practicality
and optimality. However, our results are very encourag-
ing.

4 Conclusions

In this paper, we study the globalization influences on
forecasting inflation in an aggregate perspective using the
Phillips curve for Hong Kong, Japan, Taiwan and the US
by artificial neural network-based thin and thick mod-
els. Our empirical results support that globalization in-
fluences do generate the downward tendency in inflation
through time in all cases. Either the ANN thin or the
ANN thick model that has been developed upon the best
linear model for each country in this study has shown
significant superiority over the naive model in most cases
and over the best linear model in some cases. In fact,
finding optimal values for the large number of parameters
involved in the ANN models is rather difficult, and thus
we do not make any claim on the optimality of our ANN
models. Even though our empirical results are not over-
whelmingly satisfactory, building the ANN model based
upon the best linear model is a good compromise between
practicality and optimality, which sheds strong light for
future work such as cross-validations and sensitivity anal-
ysis for selecting variables to enhance the ANN’s perfor-
mances. In addition, whether or not obtaining the op-
timal parameter values (time-consuming and unpractical
task) is essential to conspicuously enhance the ANN’s
performances to a very satisfactory level could be an is-
sue to study as well.
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