
 
 

 

  
Abstract — This paper introduces a novel improved 

evolutionary algorithm, which combines genetic algorithms and 
hill climbing. Genetic Algorithms (GA) belong to a class of well 
established optimization meta-heuristics and their behavior are 
studied and analyzed in great detail. Various modifications were 
proposed by different researchers, for example modifications to 
the mutation operator. These modifications usually change the 
overall behavior of the algorithm. This paper presents a binary 
GA with a modified mutation operator, which is based on the 
well-known Hill Climbing Algorithm (HCA). The resulting 
algorithm, referred to as GAHC, also uses an elite tournament 
selection operator. This selection operator preserves the best 
individual from the GA population during the selection process 
while maintaining the positive characteristics of the standard 
tournament selection. This paper discusses the GAHC algorithm 
and compares its performance with standard GA. 
 

Index Terms — Elite tournament selection, HC mutation, Hill 
climbing Algorithm, Genetic Algorithm.  
 

I. INTRODUCTION 
In mathematic, the term optimization refers to the study of 

problems in which one seeks to minimize or maximize an 
objective function f by systematically choosing the values of 
the independent real or integer variables from within a given set 
X. The variables are the parameters x to be optimized for a 
given optimization task. The goal of an optimization algorithm 
is to find xopt which fulfills equation 1: 

 

 opt arg opt ( )f
∈

=
x X

x x , (1) 
 

where argopt returns the value (or values) of x in the set X that 
minimize (or maximize) the objective function f.  

If the objective function is convex over the region of interest, 
any local extreme value of the function will also be a global 
extreme. For this class of problems, fast and robust numerical 
optimization techniques exist. However, if the objective 
function is nonlinear and/or multi-modal, deriving at the global 
solution can be difficult. In such a case, soft computing 
methods can offer a solution. 
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Examples of these methods are Genetic Algorithm (GA) and 

Hill-climbing Algorithm (HCA). A common feature of GA and 
HCA is the binary representation of the vector x. In general [1], 
GA is a global search method, whereas HCA is a local 
optimization method [6]. By combining a local search 
technique, in this case HCA, with a global search method, i.e. 
GA, the resulting algorithm could be more powerful than the 
individual algorithms. In this case, HCA is incorporated into 
GA by using it as a mutation operator. Also, an innovated 
version of tournament selection denoted as an elite tournament 
is used in this work. Further, a proper design of the HCA can 
increase an optimization property of the HCA.  

II. PARAMETER ENCODING  

A. Binary representation of the task 
The coding representation of a problem is based on the binary 
vectors of length n. 
 

 { } { }1 2, , , 0,1 n
na a a= ∈a …  (2) 

 
In the context of genetic algorithms, these vectors called 
individuals. A set of individuals is denoted as a population P. 
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The real or integer parameters x are derived from the binary 
vector (2), respective (3), by means of a specific transformation 
Γ (equation 4). 

 ( ) = Γx a  (4) 
 

 
Fig. 1: Parameters encoding scheme. 
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B. Hamming metric 
A distance function ρ is a function which is used as a metric 

that defines a distance between elements of a set and fulfills the 
ground axioms of the metric (positive definiteness, symmetry, 
triangle inequality). A set with a metric is called a metric space, 
which is a binary metric space in case of binary representation. 
The Hamming distance ρH between two binary vectors of equal 
length is the number of positions for which the corresponding 
symbols are different. Let a, b are binary vectors of length n 
and a, b its elements, then the Hamming distance can be 
calculated as follows: 

 
1

( , )
n

H i i
i

a bρ
=

= −∑a b . (5) 

C. Domain of definition 
The domain of interval D of the encoded real or integer 

vectors x (4) is given by (6) and it represent the feasible area of 
the possible solution(1).  
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In case of binary representation, the D area can be 
approximated using an orthogonal grid (Fig. 2). 
 
 
 
 
 
 
 
 
 
 
Fig. 2: The solution space sampling and its effect 
 
Each individual in the population P is evaluated using an 
objective function f on the domain definition D. 
 

 :f D → ℜ  (7) 

III. IMPLEMENTED HCA 
Hill climbing is an optimization technique which belongs to 

the class of local search methods [2, 4]. The algorithm is started 
with an initial solution to the problem, and subsequently makes 
small changes to the solution, each time improving it a little bit. 
At some point the algorithm arrives at a point where it cannot 
find any improvement anymore, which is when the algorithm 
terminates. Ideally, at that point the solution found should be 
close to optimal solution, but it is not guaranteed that hill 
climbing will ever come close to this optimal solution. 

A. Basic concept 
The most important step of HCA is to generate a close 

neighborhood of an initial (previous) solution. This solution 

can be denoted as a kernel of the HC transformation. The next 
solution, i.e. kernel, is chosen as the best from the set of 
neighborhood solutions.  

Fig. 3: An example of neighborhood generating. 
 
The Hamming metric is used for measuring the distances 

between the previous solution and the newly generated solution 
from the neighborhood. All solutions must belong in discrete 
area D. The area D ∈ ℜ is given by the relation 

 { }: 0,1 n DΓ → . (8) 

Because ( )= Γx a  we can find the optimal solution of a task as  

 ( )
{0,1}

arg min ( )
lopt f

∈
= Γ

a
a a  (9) 

Below the neighborhood is defined, which makes it possible 
for every acceptable kernel akernel to determine its neighborhood 
aneighbor ∈ S(akernel). The choice of the transfer function S will 
determine the behavior of HCA.  

An example of HCA pseudo-code is following  
 

 
 
 
 
 
 
 

As the close neighborhood is mean  
 

Fig. 4: Pseudo-code of the Hill-climbing algorithm. 

B. Transfer function 
The HCA used in this work is based on an arbitrary but fixed 

given set of transformations of binary vectors. 
 { }0,1 ,       ( ...length of a binary string)n n n∈ ∈a `  (10) 
Let H be a set of designed transformations and t be a given 

transformation. 
 { }0 1, ,..., nH t t t=  (11) 
For the mapping of a binary vector akernel on the 

aneighbor ∈ Aneighbor the a transformation t ∈ H is used, as is 
shown in the following equations 
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% binary HCA (minimization) 
aopt = the first iteration (random generated vector) 
repeat 

akernel = aopt 
∀aneighbor = S(akernel) 
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 { } { }( )kernel: ,     i.e. : 0,1 0,1
cn n

neighbourt A t→ →a , (13) 

 
where c is the cardinality of the set Aneighbor. The cardinality 

depends on the chosen transformation t and the length n of the 
binary vector akernel. 

 ( ), ,   for {0,1, , }k k neighbour

n
c t n A k n

k
⎛ ⎞

= = ∈⎜ ⎟
⎝ ⎠

… , (14) 

where index k denotes the relation to the concrete element 
from the set H according (11). 

For the realization of the set of transformation H, a set of 
matrices M is introduced. For every given transformation tk 
there exists a corresponding matrix M, which is of the order k 
and is denoted by Mk. Please note that in this case the order has 
a different meaning from the standard square matrix order. 

 
 , ,   for {0,1, , }k kt n k n⇔ ∈M …  (15) 
 

Definition: The matrix M of order k, shortly Mk, is a matrix 
where the rows represent all the points of the Hamming spaces 

n with the distances k from the origin (i.e. the zero vectors of 
length n) in the sense of metrics measurement ρH.    
 
Possible examples of matrix M are outlined in the following 
equations (16). 
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For the calculation of the Aneghbour matrix, it is necessary to 
introduce the operation for the so-called vector replication of a 
binary vector akernel. An operation matrix Akernel is formed and 
contains identical copies of the binary vector ajadro in rows. The 
number of rows in the matrix Akernel is equal to the number of 
rows in the given matrix M.  
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Applying the principle of addition in modular arithmetic 

(mod 2) to (14), respectively (15), leads to the following 
transformation t (13)  

 
 : 0,1,...,k neighbor kernel k kt   ,    for t H  a k n= ⊕ ∈ =A A M (18) 
 
The transformation tk generates the complete set of vectors, 

which have the distance k from the origin in terms of the 
metrics ρH.  

 
 ( , )k H kernel neighbor neighbor neighbort k ,   for Aρ⇒ = ∀ ∈a a a  (19) 
 
The generalization of equation (18) for a arbitrary but fixed 

choice of the elements from the set of H is evident. The set of 
chosen, and for HCA fixed, transformation is denoted as Hv.  

 vH H⊆  (20) 
 
The set Hv definitely determines the transformation S, which 

is linked with transformation from this set. 
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Where ki ∈ I and I is the index set of the chosen elements 

from H, which is defined by the choice Hv. The cardinality 
cNEIGHBOR of the set ANEIGHBOR, which is arrived at by means of 
the set of transformations Hv, is determined by sum of all partial 
cardinalities in equation (14), i.e. 

 , i

i
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Remark 1: The equation for the sum of binomial coefficients is 
obtained for the limited case. This equation states that the 
whole space of n + 1 transformations by (11) represents a full 
search of the Hamming metrics space. 

 
0

2n n
i

n
i=
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Remark 2: One consequence of the previous remark is rather 
theoretic; algorithms that carry out an exhaustive space 
searching are guaranteed to find the global solution in a given 
universe, but at the price of uncontrollable combinatorial 
expansion. 
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C. Implementation of the proposed Hill Climbing Algorithm 
For the practical implementation of the mutation operator in 

GAHC a variant of HCA denoted as HC12 (conjunction of the 
HC1 and HC2 algorithms) was used [4]. This HCA uses the set 
of transformations Hv = {t0, t1, t2}.  

 
name HC1 HC2 HC12 
set of transformations  t0, t1 t0, t2 t0, t1, t2 
M matrices M0, M1 M0, M2 M0, M1, M2 
cardinality of 
neighborhood  1+n 1

2
n⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

 1
2
n

n ⎛ ⎞
+ + ⎜ ⎟

⎝ ⎠
 

( , )H kernel neighboura aρ ∀  1 2 1 and 2 
 
The designed variants of HCA prevent a decrease of the 

objective function value because the t0 transformation is always 
contained. Examples of Aneighbor vector coverage of the solution 
space can bee seen in the figure below.  

Fig. 5: Examples of coverage of a solution space for different 
transformations Hv and selected encoding methods, where BC 
denotes a direct binary encoding, whereas GC represents a 
Gray binary encoding. 
 
Examples of stand-alone HCA search runs for the well-known 
Rosenbrock’s test function, also known as F2 or banana valley 
function, are shown in figure 6 (standard variant HC1) and in 
figure 7 (advanced variant HC12). 
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Fig. 6: Example of a search run using the stand-alone HCA 

variant HC1. 
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Fig. 7: Example of a search run using the stand-alone HCA 

variant HC12. 
 
In these examples, each parameter was encoded using 15-bit 

Gray code representation. The standard HC1 variant needed 
1527 iteration steps and found the solution F2min(x1=1.0375, 
x2=1.0764) = 0.0014. The advanced HC12 variant needed, 
starting at the same initial conditions, only 46 iteration steps 
and found a better solution F2min(x1=0.9999, 
x2=0.9998) = 0.0000.  

IV.  ELITE TOURNAMENT SELECTION. 
Tournament selection is one of many methods for selecting 

offspring in genetic algorithms. It runs a "tournament" among a 
number of randomly chosen individuals from the population 
and selects the winner, i.e. the one with the best fitness, for 
crossover. This chapter introduces briefly an enhanced version 
of tournament selection, called elite tournament [4, 5]. This 
improved selection method overcomes the main problem of the 
standard tournament selection, which is that it does not 
guarantee the reproduction of the best solution contained in the 
current generation.  

A. Background  
The selection operator is intended to improve the average 

quality of the population P (3) by giving individuals of higher 
quality a higher probability to be copied into the next 
generation, i.e. selection operator s: PBS → PAS. Here, PBS 

refers to the population before selection and PAS refers to the 
population after selection. In other words, the selection 
operator focuses the search on promising regions in search 
space. 

The tournament selection operator is very popular because of 
its properties [GD91]. It is probably the best selection method 
in many respects. However, one shortcoming of this selection 
mechanism is that it does not guarantee the survival of the best 
individual through the selection process s: PBS → PAS. In the 
case of elite tournament selection, this disadvantage of the 
classical tournament selection operator is eliminated, while 
preserving all the advantages of the classical tournament 
selection. 

Tournament selection works as follows: Choose randomly t 
individuals from the population PBS and copy the best 
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individual from this tournament group into the population PAS. 
This step is repeated l times. The probability of selecting ps of 
the best individual is 

 1( , ) 1
t l

s
tp t l

l

⋅−⎛ ⎞= − ⎜ ⎟
⎝ ⎠

. (26) 

Elite tournament selection is the same as tournament 
selection; it copies l times the best individual from a group to 
population PAS, but the tournament groups are formed 
differently: the first individual in group i, where i∈(1, 2, …, l), 
is the ith individual from population PBS, the rest of group is 
selected randomly. The time complexity of this algorithm is the 
same as tournament selection, i.e. O(n). The probability of 
selection of the best individual is 

 ( , ) 1sp t l =  (27) 

B. Evaluation and analysis 
For the analysis of the proposed algorithms the takeover time 

test was used. In the experiments a population size n=100 was 
used. The following empirical results (Fig. 8) were obtained 
from 1000 independent runs during selection processes only. 

Fig. 8: Average takeover times over 1000 runs with 
tournament selection (tournament) and elite tournament 
selection (tournamentE) for different tournament sizes 
t={2,3,5,5} using populations of 100 individuals. The graphs 

represent the proportion of the population consisting of the best 
individual as a function of generation. 

V. GAHC 
Exploration versus exploitation is a well-known issue in 

Evolutionary Algorithms. An unbalanced search may waste many 
iteration steps, i.e. computational expensive fitness evaluations, or 
lead to premature convergence. A very successful strategy is to 
combining global and local search methods to improve global 
optimization capabilities. However, HCA, in the version HC12, is 
strictly speaking not a local search technique. 

A. Background 
The following primary requirements for GAHC design were 
identified: 

• The global search capability of the GA must be 
preserved or improved. Premature convergence of the 
GA should not occur. 

• The local search feature of the GA should only require 
a few iteration steps, i.e. fitness evaluations, during 
the search for the optimum. 

• The computation time for solving the optimization 
task should be less than for the stand-alone GA.  

 

GAHC, an improve Genetic Algorithm, addresses this 
requirements by using an intelligent mutation technique, which can 
replace or supplement the standard GA mutation operator. 

In this work, HCA is used as mutation operator: 
1. chose an individual Ii, 
2. determining the kernel position, 
3. applying of the HCA on the kernel, using the entire 

individual for objective function evaluation. 
 

The individual, kernel position and kernel size can be chosen 
randomly or based on some heuristic, that could exploit some 
existing inside into the optimization problem at hand. The 
number of HCA kernels and their sizes are determined by the 
standard GA mutation operator. For example, if 10 HCA 
kernels of length 5 bits would be used, this would result into a 
standard bit mutation of 50bits. The HCA kernel is chosen to 
contain 10 bits for the GAHC in order to reduce computation 
time and to improving the global search behavior.  

The size of the HCA kernel is depended on the bit length of 
an individual. The basic principle of the application of the HCA 
mutation operators can be seen from the figure (Fig. 9). 

 

Fig. 9: The principle application of HCA as mutation operator 
for GAHC. 
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B. Evaluation and analysis 
In order to evaluate the new GAHC algorithm, Ratrigin’s 

function F6 (equation 28) was chosen for the experiments. 
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π
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∑x
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 (28) 

Rastrigin's function F6 is based on the power function with 
the addition of cosine modulation to introduce many local 
minima. Thus, the test function is highly multimodal. However, 
the locations of the minima are equally distributed. 

Fig. 10: Visualization of Rastrigin's function F6 in the range 
from -5 to 5. The global optimum is positioned at point  
[0, 0]. 

 
Results of the test runs [5] for the GA and GAHC variant are 

presents in figure 11. The number of runs which were carried 
out in each tests was 1000. The population size was chosen to 
be 50 individual and each individual had a length of 50 bits. 

 
The GA parameters chosen were the followings: 
 

parameter value 
GA test suite F6, 5 optimized variables 
GA selection  Elite tournament selection, 3 
GA crossover 80% of individual in 3cat 
GA mutation mutation probability 0.02 
GAHC 10 HCA kernel of size 5 bits 

 

VI. CONCLUSION 
This paper introduced GAHC, a novel improved 

evolutionary algorithm, which combines genetic algorithms 
and hill climbing.  

The main principles of the Hill-Climbing algorithm were 
explained and a powerful variant, referred to as HC12, was 
introduced. These algorithms can be used as stand-alone 
optimization algorithms or they can be used as an effective and 
efficient mutation algorithm within a Genetic Algorithm. 

Experiments, using the well-known test functions F6 for 
GAHC and F2 for the HCA and HC12 variants, have shown 

that if the Hill-Climbing method is used as a mutation operator, 
it improves the local search capabilities of Genetic Algorithms 
while preserving their global search capabilities.  

Finally, was also demonstrated that a new tournament 
selection operator, referred to as elite tournament selection, 
further improved the performance of the new hybrid algorithm. 
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Fig. 11: A visualization of the GA and GAHC test runs. The 

second and third graphs represent the number of optima 
founded per generation for 1000runs. 
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