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Abstract—This paper studies a borrower’s optimal
decision, when he has the choice to make early pay-
ment, to close a fixed rate mortgage. Mathematically
we use several integral identities to design an effec-
tive Newton algorithm to solve for the optimal pre-
payment curve iteratively. Numerical evidence shows
that the algorithm is fast and stable.
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1 Introduction

Many option pricing problems are formulated as free
boundary problems [7]. The classical example is the
valuation of American put option. These free bound-
ary problems usually don’t have closed form solutions.
Rather, efforts have been focused on finding a fast and
effective numerical scheme as well as the asymptotic ex-
pansions of the free boundary [1]. Here we consider a
mortgage contract with a given duration T (years) and
a fixed mortgage interest rate c (year−1). At any time t
during the term of the mortgage, the outstanding balance
owed, M(t), is decreased in the time interval [t, t+dt) by

dM(t) = cM(t)dt−mdt ∀t ≤ T

where cM(t)dt is the interest accrued on the balance and
mdt is the payment resulting from a constant continuous
rate of payment of m ($/year). Since the contract expires
at t = T , the condition M(T ) = 0 applies. Solving this
ODE we have

M(t) =
m

c

{
1− ec(t−T )

}
.

In this contract, the borrower is allowed to terminate the
contract at any time t (t < T ) of his choice by paying off
the outstanding balance of M(t) to the contract issuer.

We assume that the borrower always has sufficient funds
to pay back the outstanding balance at any time. Then
at any moment while the contact is in effect, the decision
of the borrower on whether to terminate the contract de-
pends on the rate of (short term) return that an invest-
ment can yield on the financial market. In this paper, we
shall use the Vasicek model [6] for this short term mar-
ket return rate, rt, described by the stochastic differential
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equation

drt = k(θ − rt)dt + σ dWt (1)

where k, θ, and σ are assumed to be positive known con-
stants and Wt is the standard Brownian motion. Here
the units for k, θ, σ, and Wt are year−1, year−1, year−3/2

and year1/2 respectively.

Intuitively if an overall market return rate is expected to
be low (relative to c) for a certain amount of time, one
should choose to terminate the contract early. On the
other hand, if the market return rate is strictly larger
than c or if an overall market return rate is expected to
be higher than c for a certain amount of time, one should
choose to defer the closing date by an investment in the
market of the capital M(t) less the obligatory payment
of m per unit time.

To find such a strategy, we introduce a function V (r, t)
being the (expected) value of the contract at time t and
current market return rate rt = r. This value can be re-
garded as an asset that the contract issuer (the mortgage
company) possesses, or a fair price that a buyer would of-
fer to the contract issuer in taking over the contract, say,
in an issuer’s restructuring or liquidation process. The
value V is calculated according to the borrower’s optimal
decision; and the optimal decision for the borrower is to
terminate the mortgage contract at the first time that
the short term market return rate rt is below R(t), the
unknown optimal prepayment boundary. Since the bor-
rower can terminate the contract by paying M(t) at any
time t, we have

0 ≤ V (r, t) ≤ M(t) ∀r ∈ R, t ≤ T.

This automatically implies that V (r, T ) = 0 for all r.

Similar problems have been discussed from option-pricing
viewpoint by Buser & Hendershott [2], Epperson, Kau,
Keenan, & Muller [3], etc. To address the fact that
the Vasicek model is not sufficient to describe the whole
term structure, here we assume for simplicity that in this
model the market price of risk has been incorporated into
the drift k(θ − r); that is to say, the probability associ-
ated with the Brownian motion {Wt} is the risk-neutral
probability. According to the standard mathematical fi-
nance theory [7], the problem can be formulated as a free
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boundary problem. Assuming the necessary regularity of
V , what we need to find is a (R, V ) such that





Vt +
σ2

2
Vrr + k(θ − r)Vr − rV + m = 0,

if r > R(t), t < T,
V (r, t) < M(t),

if r > R(t), t < T,
V ((R(t), t) = M(t), ∀ t ≤ T,
Vr(R(t), t) = 0, ∀ t ≤ T,
V (r, T ) = 0, ∀ r ≥ R(T ) = c.

(2)

The mathematical formulation for problem and the well-
posedness (2) have been carried out by Bian, Jiang, and
Yi [5]. Here we are interested in the numerical solution
to the problem. Because the original system is rather
complicated, we first transform the PDE into a standard
heat equation, hence the solution of the problem can be
easily written as a function of the well-known heat ker-
nel. We then derive several integral identities. Based on
these integral identities, we are able to design a fast and
effective Newton scheme to solve the free boundary iter-
atively. Numerical examples and the performance of our
numerical program has been provided.

2 Integration Equations

The main purpose of this section is to make certain
transformations to simplify the mathematical analysis
of the equation for V ; namely, we transfer the original
Black–Scholes type equation into a heat equation. After
the transformation, one can devise an effective Newton
scheme to solve the optimal prepayment curve iteratively.

We shall use the following new variables

τ := T − t, (3)

ψ(r, τ) :=
c

m

{
M(t)− V (r, t)

}
. (4)

First note that τ is the time to expiry. This is convenient
because we always know the value of the contract, early
terminated or not, must have value zero at expiry. Sec-
ondly, note that ψ is a dimensionless quantity measuring
the advantage of deferring termination. M(t) − V (r, t)
represents the amount of premium loss if the contract is
closed at the current time t and market rate r and if,
according to our theoretical result, it is actually not opti-
mal to do so. Multiplying by the ratio c/m is nonessential
in terms of financial interpretation, but is convenient for
mathematical analysis.

In the new variables, (2) is equivalent to




ψτ − σ22ψrr − k(θ − r)ψr + rψ = (r − c)(1− e−cτ ),
if ψ(r, τ) > 0, τ > 0,

0 ≤ ψ(r, τ) ≤ 1− e−cτ , ∀ τ ≥ 0, r ∈ R.

We remark that the constraint ψ(r, τ)1− e−cτ on the up-
per bound, which corresponds to the original constraint
V 0, is not needed, since one can show that 1− e−cτ is a
super-solution so that by comparison

ψ(r, τ) < 1− e−cτ ∀ r ∈ R, τ > 0.

Also, differentiating in r one sees that
{ ∂

∂τ
− σ2

2
∂2

∂r2
− k(θ − r)

∂

∂r
+ (r + k)

}
ψr = 1− e−cτ − ψ

is greater or equal 0 for ψ > 0. The maximum principle
then implies that ψr(r, t) ≥ 0 for all r ∈ R, τ ≥ 0. There-
fore, there exists a function R : (−∞, T ) → [−∞,∞)
such that for each τ > 0,

ψ(r, τ) > 0 ⇐⇒ r > R(T − τ).

Let h = h(r, τ) be a function to be determined shortly.
We make the change of variables for the unknown func-
tion ψ by

φ(r, τ) := e−h(r,τ)ψ(r, τ).

Then the constraint for ψ becomes the constraint φ ≥ 0
for φ. When φ > 0 we have ψ > 0 and the differential
equation for ψ is transformed to the following differential
equation for φ:

φτ − σ22φrr − [σ2hr + k(θ − r)]φr + qφ

= (r − c)(1− e−cτ )e−h

where

q := hτ − σ22hrr − hr{σ22hr + k(θ − r)}+ r.

We want to find a special h such that q ≡ 0. To this end
we choose

h(r, τ) =
k

σ2

(
r +

σ2

2k2
− θ

)2

+
(
k +

σ2

2k2
− θ

)
τ.

The equation for φ becomes




φτ − σ22φrr − {kr + σ2

k − kθ}φr = (r − c)(1− e−cτ )e−h,
if φ > 0,

φ(r, τ) ≥ 0 = φ(r, 0) ∀ r ∈ R, τ > 0.

Finally, we make the change of variables

x = k1/2ekτ [r +
σ2

k2
− θ]/σ,

s = e2kτ ,

u(x, s) =
2
√

πk3/2

σ
φ(r, τ).

Then the system for φ becomes




us − 1/4uxx = f(x, s),
if u(x, s) > 0, s > 1,

u(x, s) ≥ 0 = u(x, 1),
∀ s > 1, x ∈ R

(5)
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where

f(x, s) =
√

πk1/2(r − c)(1− e−cτ )e−2kτ−h/σ.

Note that f can be written as

f(x, s) =
√

π(sγ − 1)s−ν−1(x− β
√

s)e−( x√
s
−α)2

,

where α, β, γ, and ν are dimensionless constants given by

α :=
σ

2k3/2
, γ :=

c

2k
, β :=

√
k

σ

(
c− θ +

σ2

k2

)
,

ν := 1 +
σ2

4k3
+

c− θ

2k
.

Once we find the free boundary x = X(s) such that for
each s > 1,

u(x, s) > 0 ⇐⇒ x > X(s),

the optimal boundary r = R(t) for terminating the mort-
gage is given by

R(t) = c + σ
[X(s)√

s
− β

]
/
√

k. (6)

Using a standard theory of variational inequalities (e.g.
[4]), one can show (c.f. [5]) that there exists X such that





us − 14uxx = f(x, s)1[X(s),∞)(x)
in R× (1,∞),

u(x, s) > 0 ∀x > X(s), s > 1,

u(x, 1) = 0 ∀x ∈ R,
u(x, s) = 0 ∀s > 1, x ≤ X(s)

(7)

where

1[z,∞)(x) = 1 if x ≥ z, 1[z,∞)(x) = 0 if x < z.

Here the differential equation for u is in the Lp sense, i.e.,
both us and uxx are in Lp

loc(R×[0,∞)) for any p ∈ (1,∞).
Denote by

Γ(x, s) :=
e−x2/s

√
πs

the fundamental solution associated with the heat oper-
ator ∂s − 1/4∂2

xx. Using Green’s identity, the solution u
to the differential equation in (7) can be expressed as

u(x, s) =
∫ s

1

dς

∫ ∞

X(ς)

Γ(x− y, s− ς)f(y, ς) dy (8)

for ∀x ∈ R, s ≥ 1.

Using the facts

u(X(s), s) = 0, (9)

ux(X(s), s) = 0, (10)

uxx(X(s)+, s)− uxx(X(s)−, s) = −4f(X(s), s). (11)

one can derive the following three integral identities for
the unknown free boundary function X(·) defined on
(1,∞):

0 =
∫ s

1

dς

∫ ∞

X(ς)

Γ(X(s)− y, s− ς)f(y, ς) dy = 0, (12)

0 =
∫ s

1

dς

∫ ∞

X(ς)

Γx(X(s)− y, s− ς)f(y, ς) dy = 0, (13)

2f(X(s), s) = −
∫ s

1

Γx(X(s)−X(ς), s− ς)f(X(ς), ς)dς

+
∫ 1

s

∫ ∞

X(ς)

Γx(X(s)− y, s− ς)fy(y, ς) dydς. (14)

Once these integral identities are established, we can try
to design a Newton scheme to solve for the free bound-
ary iteratively. First of all, we can verify that X(1) = β.
Financially this means that as time approaches to expiry
date, the optimal prepayment boundary must approach
to the mortgage rate c, otherwise an arbitrage opportu-
nity will be possible. The initial value of the free bound-
ary X(1) is known, and at each moment s > 1, the value
of the free boundary X(s) must be chosen such that each
of the above integral identities hold. This provides the
theoretical foundation for our numerical schemes.

3 Numerical Algorithm and Results

Recall the original optimal prepayment curve R is trans-
formed into X in the new system, we now seek to numer-
ically solve X from the integral equation (13). For this,
we define an operator Q from ρ ∈ C1((1,∞)) to Q[ρ] by

Q[ρ](s) :=
∫ 1

s

∫ ∞

ρ(ς)

Γx(ρ(s)− y, s− ς)f(y, ς) dydς.

Thus, our problem is to find X ∈ C([1,∞))∩C∞((0,∞))
such that Q[X] ≡ 0. For this, we use Newton’s method.

Now we use Newton’s method to devise an iteration
scheme for the unknown function X. Suppose we have
already found X in [1, s − ∆s] and want to find X
on (s − ∆s, s]. Picking an initial guess Xold(s), say
Xold ≡ X(s−∆s) on [s−∆s, s]. We can find an iterative
update scheme from Xold to Xnew according the follow-
ing rationale. Let ζ = X(s) − Xold(s) be the amount
of unknown correction needed. Then Xold = X − ζ and
using Q[X](s) = 0 we have

Q[Xold](s) = Q[X − ζ](s)−Q[X](s) ≈ 2f(X(s), s)ζ(s).
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This gives us the approximation formula for the correc-
tion ζ in Xnew = Xold + ζ:

ζ(s) ≈ Q[Xold](s)
2f(X(s), s)

.

Thus, we have the following Newton scheme, in a contin-
uous setting,

Xnew(ς) = Xold(ς) +
Q[Xold](ς)

2f(Xold(ς), ς)
∀ ς ∈ (s−∆s, s].

We remark that in the interval (1, 1+∆s], one could pick
the very first initial guess Xold ≡ β.

We propose the following scheme for the existence of a
solution X to (13). Let 1 = s0 < s1 < s2 < · · · be mesh
points in the sense that ∆sn = sn − sn−1 is not large (so
that o(1) is indeed small). Our objective is to find the a
solution X to

Q[X] ≡ 0

starting with X(0) = β. We find iteratively the function
X on (sn−1, sn], for n = 1, 2, · · ·, via the following





X0(ς) = X(sn−1), ∀ς ∈ (sn−1, sn],
Xq+1(ς) = Xq(ς) + Q[Xq ](ς)

2f(Xq(ς),ς) ,

∀ ς ∈ (sn−1, sn], q = 0, 1, · · · ,
X(ς) = limq→∞Xq(ς) ∀ς ∈ (sn−1, sn].

. (15)

Setting X0 = β and a “ghost” value X−1 = β +
0.334

√
s1 − 1, we can calculate {Xn} iteratively for n =

1, 2, · · · by the following scheme




z0 = Xn−1 + Xn−1−Xn−2
sn−1−sn−2

(sn − sn−1),

zq+1 = zq +
Q̄n(zq)

2f(zq, sn)
, q = 0, 1, 2, · · · ,

Xn = zq+1 if |zq+1 − zq| ≤ ε.

(16)

where ε is a given tolerance level.

When ε is set to be 5×10−7, the average number of itera-
tion needed is about 0.2, i.e., in most of the calculation, q
in (16) is equal to 0. The rate of convergence is observed
by numerical experimentation to be about O((∆s)3/2):

X(sn)−Xn = O(∆s)3/2).

That is, when the mesh size ∆s is halved, the error re-
duces by a factor 2

√
2 = 2.8.

The above claim is indeed supported by our numerical
experiments. To make our numerical results convincing
enough, we have tested the whole range of all the param-
eters appearing in the Vasicek model, which have been
obtained via maximum likelihood method. Of course we
cannot cover continuously all the values of the parame-
ters, but we tried with reasonable discrete values. We did

numerical experiments by changing only one parameter,
say c, for instance, at one time, and kept the three oth-
ers fixed. Since historically c varies from 0.01 to 0.08, we
simulated all cases for c=0.01, 0.02, ..., 0.08. Then we did
the same for θ, and so on. It is based on a large amount
of numerical experimentation we made claims about our
numerical convergence.

The following table is the convergence rates of our numer-
ical method. Here we keep θ = 0.05, k = 0.15, σ = 0.015,
and we change the values of c. Similar results have been
achieved for other possible cases. One can see that al-
though the convergence rate may start at very different
values, its stationary value is always around 2.83.

c N = 128 N = 256 N = 512 N = 1024
0.01 2.7705 2.8835 2.9062 2.8998
0.02 2.6989 2.7929 2.8253 2.8355
0.03 2.6111 2.7127 2.7620 2.7882
0.04 2.5097 2.6399 2.7105 2.7521
0.05 2.3260 2.5309 2.6419 2.7063
0.06 1.0619 1.9848 2.3489 2.5317
0.07 3.6402 3.5464 3.4403 3.3336
0.08 3.1452 3.0838 3.0249 2.9758
0.09 3.0215 2.9882 2.9522 2.9211
0.10 2.9568 2.9420 2.9187 2.8969

c N = 2048 N = 4096 N = 8192
0.01 2.8869 2.8729 2.8521
0.02 2.8361 2.8377 2.8342
0.03 2.8017 2.8128 2.8164
0.04 2.7766 2.7948 2.8041
0.05 2.7475 2.7730 2.7899
0.06 2.6373 2.7002 2.7413
0.07 3.2331 3.1451 3.0704
0.08 2.9368 2.9073 2.8854
0.09 2.8964 2.8778 2.8639
0.10 2.8789 2.8652 2.8549

4 Conclusion

Assuming the short term rate of market return follows
the Vasicek Model, we formulate the mortgage valuation
problem as a free boundary problem. The main PDE is
transformed into a heat equation after a series of change
of variables. Several integral equations are derived and
then used to design an effective and efficient numerical
scheme for computing the free boundary. Our method is
demonstrated to be stable and fast, and the convergence
rate is about 3.
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