
An Algorithm for the Pricing of Path-Dependent
American Options using Malliavin Calculus

Henry Schellhorn and Hedley Morris ∗

Abstract–We propose a recursive scheme to calcu-
late backward the values of conditional expectations
of functions of path values of Brownian motion. This
schemes is based on the Clark-Ocone formula in dis-
crete time. We construct an algorithm based our
scheme to effectively calculate the price of Ameri-
can options on securities with path-dependent pay-
offs. Our algorithm remedies the decrease of perfor-
mance experienced by regression-based Monte Carlo
when the dimensionality of the necessary regressands
becomes large due to path-dependence.

Keywords: Malliavin calculus, Monte Carlo methods,

optimal stopping.

1 Introduction

We consider a finite horizon optimal stopping problem.
The uncertainty is described by the filtered probability
space (Ω,F , {F t}, P ), where {F t} is the filtration gen-
erated by one-dimensional1 Brownian motion W , and
P is the risk-neutral measure. An American (more ac-
curately a Bermudan) option can be exercised at time
steps Δ, ..., MΔ. When exercised at time mΔ, the option
holder receives the FmΔ-adapted payoff h(mΔ) which is
a function of values taken by Brownian motion along its
path:

h(mΔ) = F (W (Δ), ..., W (mΔ),m) (1)

Without loss of generality we assume the interest rate is
zero. By standard arguments, the price at time mΔ of
the option, which we call V (mΔ) is obtained by backward
induction:

V (MΔ) = h(MΔ) (2)
V (mΔ) = max{h(mΔ), E[V ((m + 1)Δ)|FmΔ]} (3)

0 ≤ m ≤ M − 1

This simple overall strategy has been plagued numerically
by what many authors call the “curse of dimensionality”,
namely that in most models, the dimension of the state
variables generating the information is too large to cal-
culate an approximation Ĉ of the continuation value:

Ĉ(mΔ) � E[V ((m + 1)Δ)|FmΔ]
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1All the results carry to higher dimension, with higher notational
cost.

Optimal stopping problems are usually analyzed as
Markov decision problems. In that formulation, the value
of the state variables at time t is sufficient to deter-
mine the continuation value of the option at time t. By
augmenting the state space with lagged values of the
state variables if necessary, the information contained
in the (augmented) state variables at time t contains
all the previous information, thus resulting often in a
very large state space. This curse of dimensionality af-
fects not only Markov chain implementations but also
direct applications (“Monte Carlo on Monte Carlo”) of
the Monte Carlo method to calculate conditional expec-
tations. Thus several techniques have been devised to
improve Monte Carlo. Currently, practitioners seem to
favor “regression-based” methods, such as the Tsitsik-
lis and Van Roy [3] algorithm (TVR) or the Longstaff
and Schwartz [4] algorithm. Apparently, regression al-
gorithms solve the “curse of dimensionality” problem:
the number of scenarios does not increase exponentially
with the number of time steps as in the “Monte Carlo
on Monte Carlo” method. However, like in other meth-
ods, it re-enters the scene in disguise because the number
of approximating functions required increases with the
dimensionality of the state, as has been documented by
Glasserman and Yu [5] and Egloff [6].

In [7] Schellhorn developed a “backward Taylor expan-
sion” using the Clark-Ocone formula, which allowed us to
calculate backward recursively conditional expectations
of functionals based on the expected value of the Malli-
avin derivatives of all orders of the same functional at the
next time step. We propose in this article a numerical
scheme that allows to calculate the latter without hav-
ing an explicit analytical representation. We still need to
add scenarios to numerically calculate derivatives. How-
ever the key observation is that our algorithm bypasses
the “curse of dimensionality” because of its use of deriva-
tion instead of integration. More specifically we need
(J + 1)M times (M=number of time steps,J=order) as
many random numbers. This is an improvement as run-
ning (J + 1)MΩ scenarios beats running ΩM scenarios
(the benchmark in all these algorithms), especially since
as we shall see these scenarios are almost identical, and
almost no calculation is needed in the scenarios 2.

2To calculate all the (first) derivatives of a function of 3 vari-
ables, one needs only 4 point evaluations and not 8. Likewise, to
calculate all the first derivatives of a function of M variables, one
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Note that if the maximum function in (4) were infinitely
differentiable, the optimal stopping algorithm would need
only one scenario, i.e., Ω = 1. The formula above for
the complexity of the algorithm suggests that there is an
optimal tradeoff between the number of scenarios and the
order of the (truncated) Taylor expansion.

The first scheme was already proposed in Schellhorn [7],
with some errors that rendered its application difficult.
The second scheme bypasses the use of differentiating the
approximate value of the option.

Fournie et al., [8, 9] show how to use the Malliavin
integration by parts formula to numerically calculate
this conditional expectation as the ratio of two well-
behaved unconditional expectations. Bally, Caramellino
and Zanette [1] extended these results, and incorporated
them in an algorithm to price and hedge American op-
tions. Fujiwara and Kijima [2] extend their work to
American options with a mild path-dependency. We
found it difficult to generalize their result to heavily path-
dependent options. Our approach uses different tools
from theirs.

2 Recursive Calculation of Conditional
Expectations

Let (Ω,F , {Ft}, P) be a filtered probability space, where
Ft is the filtration generated by Brownian motion Wt.
The problem is to calculate the conditional expectation
at time iΔ of a Fd

(m+1)Δ- measurable random variable F ,
where m ≥ i, and the filtration {Fd

t } is the ”discrete”
subfiltration of {Ft}, obtained by observing only incre-
ments of Brownian motion over time-steps of length Δ.
We write Dj

t F for the Malliavin derivative at time t of a
functional F .

Example:

Let Δ = 1 and

F = (W (1) + W 3(1))W 2(2)(1 + W (3) + W 4(3))

Calculating the expectation E[F ] at time zero can be
done analytically by the law of iterated expectations but
it is very laborious. Instead, our method involves only
the calculation of the derivatives of F of all orders (in
the example case at most 4) with respect to W (1),W (2)
and W (3) for only one path. This is to be contrasted
with Monte carlo simulation, which generates only an
approximate solution after simulating many paths.

Proposition 2.1 (Backward Taylor expansion) Let F be

needs only 2M points and not 2M .

a functional for which the Malliavin derivative is well-
defined. Then, for i < m:

E[F |Fd
iΔ] = E[F |Fd

(m+1)Δ] (4)

−
m∑

k=i

∞∑
j=1

(−1)j+1gk,jE[Dj
(k+1)ΔF |Fd

(k+1)Δ]

where gk,j are functions which depend only on W(k+1)Δ−
WkΔ and deterministic terms. We have for instance:

gk,1 = [W(k+1)Δ − WkΔ]

gk,2 =
1
2
[W(k+1)Δ − WkΔ]2 +

1
2
Δ

gk,3 =
1
6
[W(k+1)Δ − WkΔ]3 +

1
2
[W(k+1)Δ − WkΔ]Δ

For simplicity we rewrite (4) in the form:

E[F |Fd
kΔ] =

∞∑
j=0

γk,jE[Dj
(k+1)ΔF |Fd

(k+1)Δ] (5)

where:

γk,j =
{

1
(−1)j+1gk,j

if j = 0
j > 0

Proposition 2.1 has two implementation issues. First, to
be exact, the method is limited to polynomials. Second,
while the Malliavin derivatives Dj

(k+1)ΔF can be calcu-
lated at all times (k + 1)Δ, the conditional expectations
E[Dj

(k+1)ΔF |Fd
(k+1)Δ] cannot. However, using proposi-

tion 2.1 recursively, we obtain the following result.

Notation: let {s0
ω} be the original scenarios for ω =

1..Ω. We will use the notation {sm,p
ω } for ω = 1..Ω and

m = 0..M , p = 1..J for the scenario consisting of:

W (iΔ, sm,p
ω ) =

⎧⎨
⎩

W (iΔ, s0
ω)

W (iΔ, s0
ω)

W (iΔ, s0
ω) + pε

if
m = 0

i �= m; m > 0
i = m; m > 0

(6)

Let

p1(
x

Δ
) =

x

Δ

p2(
x

Δ
) =

x2

Δ2
− 1

Δ

p3(
x

Δ
) =

x3

Δ3
− 3

Δ2

p4(
x

Δ
) =

x4

Δ4
− 6x2

Δ3
+

3
Δ2
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with the convention that p−n( x
Δ ) = 0 for n ≥ 0. We

define also the coefficients of numerical differentiation:

l0,0 = 1

l1,0 = −1
ε

l1,1 =
1
ε

l2,0 =
1
ε2

l2,1 = − 2
ε2

l2,2 =
1
ε2

Let us write:

F = ϕ(W (Δ), ..., W (IΔ))

Suppose that we have access to point estimates of
E[F |Fd

(m+2)Δ] but we do not know ϕ, just that it is a
polynomial. We have:

D(m+1)ΔF = D(m+2)ΔF + (7)
∂

∂W ((m + 1)Δ)
ϕ(W (Δ), ..., W (IΔ))

Thus we can calculate:

∂

∂W ((m + 1)Δ, s0
ω)

ϕ(W (Δ, s0
ω), ..., W (IΔ), s0

ω)) =

1
ε
[ϕ(W (Δ, s0

ω), ..., W (IΔ, s0
ω)−

ϕ(W (Δ, sm+1,1
ω ), ..., W (IΔ, sm+1,1

ω ))]

We can also numerically differentiate to higher order.
Namely:

∂j

∂W j((m + 1)Δ)
ϕ(W (Δ, s0

ω), ..., W (IΔ, s0
ω))

=
j∑

p=0

lj,pϕ(W (Δ, sm+1,p
ω ), ...,W (IΔ, sm+1,p

ω ))

Lemma 2.1

E[F |Fd
mΔ] = E[F |Fd

(m+1)Δ] −
∞∑

j=1

(−1)j+1gm,j

k∑
r=0

[
k
r

]

×
r∑

p=0

lk,pK(k − r,m + 1, sm+1,p
ω )

where

K(j, m) = E[Fpj(W ((m + 1)Δ) − W (mΔ))|Fd
mΔ]

Proof of lemma 2.1:

Taking the expectation of (7) we have:

E[D(m+1)ΔF |Fd
(m+1)Δ]

= E[D(m+2)ΔF |Fd
(m+1)Δ] + E[

∂F

∂W ((m + 1)Δ)
|Fd

(m+1)Δ]

Likewise

E[D2
(m+1)ΔF |Fd

(m+1)Δ] = E[D2
(m+2)ΔF |Fd

(m+1)Δ]

+ 2E[
D(m+2)ΔF

∂W ((m + 1)Δ)
|Fd

(m+1)Δ]

+ E[
∂2F

∂W 2((m + 1)Δ)
|Fd

(m+1)Δ]

Using the basic integration by parts relation, we have:

E[Dj
(m+2)ΔF |Fd

(m+1)Δ]

= E[Fpj(
W ((m + 2)Δ) − W ((m + 1)Δ)

Δ
)|Fd

(m+1)Δ]

Finally:

E[D(m+1)ΔF |t = (m + 1)Δ, s0
ω] = K(1,m + 1, s0

ω) +
1∑

p=0

l1,pK(0, m + 1, sm+1,p
ω )

E[D2
(m+1)ΔF |t = (m + 1)Δ, s0

ω] = K(2,m + 1, s0
ω) +

2
1∑

p=0

l1,pK(1, m + 1, sm+1,p
ω ) +

2∑
p=0

l2,pK(0, m + 1, sm+1,p
ω )

The general result is:

Dk
(m+1)ΔE[F |t = (m + 1)Δ, s0

ω] =
k∑

r=0

[
k
r

] r∑
p=0

lr,pK(k − r,m + 1, sm+1,p
ω ) (8)

Lemma 2.1 yields a recursive formula for the evaluation

E[F |t = mΔ, s0
ω] ≡ K(0,m + 1, s0

ω)

Lemma 2.2 generalizes this recursion to K(n,m + 1, s0
ω)

for n �= 0.

Lemma 2.2:

K(n, m, s0
ω) =

pn(W ((m + 1)Δ) − W (mΔ))K(0,m + 1, s0
ω)

−
J+n∑
k=0

A(m, n, k, s0
ω)

k∑
r=0

[
k
r

] r∑
p=0

lr,pK(k − r,m + 1, sm+1,p
ω )

with

A(m,n, k, s0
ω) =

J+n∑
j=k

(−1)j+1gm,j

[
j
k

]
pn−(j−k)

×(W ((m + 1)Δ, s0
ω) − W (mΔ, s0

ω))
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Figure 1: Computed values of E[F |t = 0] for two different
values of ε. The mean value line is also shown.

Algorithm

(i) Simulate Ω independent paths {W (mΔ, s0
ω)} of Brow-

nian motion, for ω = 1..Ω, m = 1..M .

(ii) Simulate paths {W (mΔ, si,p
ω )} for i = 1..M and p =

1..J according to (6)

(iii) Set for all si,p
ω for i = 1..M and p = 1..J

K(0,M, si,p
ω ) = h(MΔ, si,p

ω )
K(n, M, si,p

ω ) = 0 for n > 0

(iv) Apply backward induction: for m = M − 1, .., 1 for
ω = 1..Ω

(a) for n = 0..J and i = 0..m and p = 0..J

K(n,m, si,p
ω ) = pn(W ((m + 1)Δ) − W (mΔ))K(0,m + 1, s0

ω)

−
J+n∑
k=0

A(m,n, k,i,pω )
k∑

r=0

[
k
r

] r∑
p=0

lr,pK(k − r,m + 1, sm+1,p
ω )

(b) if K(0,m, s0
ω) < h(mΔ, s0

ω), then, for n = 0..J
and i = 1..m and p = 1..J

K(0,m, si,p
ω ) = h(MΔ, si,p

ω )
K(n, M, si,p

ω ) = 0 for n > 0

(iv) Set

V̂ (0) =
1
Ω

Ω∑
ω=1

K(0, 1, s0
ω)

3 Numerics

The algorithm is fairly insensitive to the value of ε. Figure
1 shows stair plots of the value of E[F |t = 0] for a toy

European Asian option for ε = Δ and ε = 0.1Δ. The two
curves are close and their means are similarly close.
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