

Abstract—In this paper, we proposed two recovery solutions

over the existing error-free utility accrual scheduling algorithm
known as General Utility Accrual Scheduling algorithm (or
GUS) proposed by Peng Li [1]. A robust fault recovery
algorithm called Backward Recovery GUS (or BRGUS) works
by adapting the time redundancy model i.e., by re-executing the
affected task after its transient error period is over. The
BRGUS is compared with a less complicated recovery
algorithm named as Abortion Recovery GUS (or ARGUS) that
simply aborts all faulty tasks. Our main objectives are (1) to
maximize the total accrued utility and (2) to ensure correctness
of the executed tasks on best effort basis and achieve the fault
free tasks as much as possible. Our simulation results reveal
that BRGUS outperforms the ARGUS algorithm with higher
accrued utility and less abortion ratio, making it more suitable
and efficient in adaptive real time system.

Index Terms—Adaptive Real-Time System, Utility Accrual
Scheduling, Fault Recovery, Time Redundancy

I. INTRODUCTION
A real time system is a system where the time at which events
occur is important. In adaptive real time system, the deadline
misses and delays during overloads are tolerable and do not
have great consequences. The definition of deadline
constraints in existing deadline based scheduling algorithms
such as Earliest Deadline First (or EDF) is limited in
expressiveness by its singular metrics. A clear distinction has
been made between the urgency and the important of a task by
Jensen in [2], [3] known as time/utility functions (or TUFs). As
illustrated in Fig 1, the urgency is measured as a deadline on
X-axis and importance is captured by utility in Y-axis. A task’s
time constraint expresses the utility for completing a task as a
function of when the task is completed. As shown in Fig.1,
completion of a task within its initial time, ITreq and
termination time, TTreq will accrued some utility or zero
utility otherwise. We specify the deadline constraint of a task a
binary value, downward step shaped TUF as shown in Fig 1.

The scheduling optimality criteria are based on
maximizing accrued utility from those tasks. These criteria
are named as Utility Accrual (or UA) [4]. A closer look at the
UA algorithms in [5] [6] indicates that only the
Aborted-Assured Utility Accrual (or AUA) and
Handler-Assured Utility Accrual (or HUA) algorithms

Manuscript received May 21, 2008.
A.Idawaty, S.Shamala and M.Othman are with the Faculty of Computer

Science and Information Technology, University Putra Malaysia (phone:
603-8946-6541;fax: 603-8946-6576; e-mail: idawaty@fsktm.upm.edu.my).

O.M.Fauzan is with Motorola Multimedia Sdn Bhd
(e-mail:fauzan.othman@motorola.com).

consider fault in its scheduling decision [6]. These algorithms
consider the abortion and released handler for all task
failures. To the best of our knowledge, none of the prior
works in UA scheduling domains consider time redundancy
in their fault recovery design model. In this paper, we apply
the time redundancy model for fault recovery in UA
scheduling domain.

Fig.1. The Step TUF [1],[4]

II. LITERATURE REVIEW

A. Faults
 The term error and fault are often used as synonym.
However, the definition in [7] is appropriate in the context of
problems analyzed in this study. A fault is a defect in
component or design of a system. Fault can be categorized as
permanent and transient. Permanent faults include hardware
break-downs, connection disruption as well as design errors.
A transient fault category is when an error disappear shortly
after it appearance. These types of faults are caused by
software design error or environmental variations. We
focused on transient faults since previous studies in [7], [8]
have indicated that majority of faults observed during the
lifetime of a system are caused by transient faults.

B. Fault Recovery
Almost every fault recovery mechanism relies on some

form of redundancy. Space redundancy is employed by extra
hardware and software component that is introduced in the
system only for fault recovery purposes [9]. A less expensive
approach is via the use of time redundancy, which is based on
repeating the computation and typically does not require a
large amount of extra resources. This paper focused on time
redundancy paradigm, since it is suitable for non-distributed
and uniprocessor environment.

Two main approaches for fault recovery are backward and
forward recovery technique. In forward recovery technique,
the system does not roll back to its previous safe state and it
allows for another available resource to perform recovery.
This technique works well in distributed system environment
whereas extra resources are widely available. In contrast, the

Fault Recovery Mechanisms in Utility Accrual
Scheduling Algorithm for Real-Time System

A.Idawaty, M.Othman, Z.Zuriati and O.M.Fauzan

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

backward technique attempts to take the system back to its
previous safe state and then proceeds to re-execute the
affected task [7]. The backward recovery method has been
used for our proposed algorithm

III. THE PROPOSED ALGORITHMS

A. Task Model
During the lifetime of a task, it may request one or more

resources. As shown in Fig 2, a task specifies duration to
hold the requested resource in holdtime. We apply the
Jensen’s TUFs [2],[3] to define the time constraints of a
task. Each task has an initial time and a termination time.
If the termination time of a task is reached and the task has
not completed its execution, it will then be aborted.
Aborting a task will change the task state from Normal to
Abort mode. Completion of task before the deadline in
Normal mode accrues some uniform utility and accrues
zero utility otherwise. Following [1], our proposed
algorithm measures the metric called Potential Utility
Density (or PUD) that was originally developed in [2]. The
PUD of a task measures the amount of utility that can be
gained per unit time by executing the task. Thus, executing
task in Abort mode will accrues zero PUD and accrued
zero utility to the system.

Fig.2. Task Model

B. Fault Definition and Assumptions
In our fault model we assumed that the system have error

containment capabilities to prevent the propagation of a
specific error to other tasks. The transient faults in a request
can be effectively overcome by re-execution of the request in
the affected task. A request is suspended temporarily to
model the transient error defects. The fault occurrences and
its duration follow the exponential distribution as detailed in
Table 1. We further assumed that no error occurred during the
fault recovery process.

C. The Fault Recovery Algorithms
Fig.3 shows a description of Backward Recovery GUS (or

BRGUS) and Abortion Recovery GUS (or ARGUS) after the
arrival of a task recovery event. In BRGUS, after the
erroneous period of a request is over, the time taken to
re-execute the request (i.e., holdtime) is measured. The
system were rolled back to its previous safe state (i.e., before
error occurred) and then proceeds to re-execute the affected
task [7]. A request is eligible for re-execution if the holdtime
of the request does not exceed the remaining execution time
of a task. Otherwise, the task will be aborted since
re-executing the task will finally result in abortion later
during termination time. Our proposed recovery algorithm
works in a best-effort basis, in the sense that a task is simply

aborted if it does not have enough time to be re-executed or
continue re-execution otherwise. In ARGUS, all faulty tasks
are simply aborted to recover the error.

Fig.3. The Proposed Algorithms

IV. EXPERIMENTAL MODEL

A. Simulation Model
We developed a discrete event simulator to verify the

performance of our proposed algorithm. We used experiment
settings that are similar to those in Peng Li’s PhD thesis [1]
for comparison purpose. A stream of 1000 tasks is
exponentially generated and these tasks are assumed to be
independent of each other. The events the scheduler include
the arrival of a task, the completion of a task, a resource
request, a resource release, the arrival of termination time of a
task, the arrival of fault in a request and the arrival of a fault
recovery in a request. Table 1 summarized the details task
settings used in our model.

Table 1 Simulation Parameters
Parameter
(Range value)

Description

iat
(Exponential(C_AVG/load))

Task Inter-Arrival Time

holdtime
(Normal(0.25,0.25))

Time duration for holding a
resource

max_au
Normal(10,10)

Task’s Maximum Utility

mean_tasks
Exponential(0.1)

Inter- arrival of error in the
system

MEAN_DURATION
(Exponential (0.1))

Duration of error (transient)

MAX_RESOURCES
(5)

Number of available
resources

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

B. Performance Metrics
The Accrued Utility Ratio (or AUR) metric defined in

[2] has been used in many algorithms stated in [1], [3], [4],
[5], [6] and can be considered as standard metric in UA
scheduling domain. AUR is defined as the ratio of accrued
aggregate utility to the maximum possibly attained utility.
The Abortion Ratio (or AR) is the ratio of aborted task to
the total of task in the system. The Average Response
Time (or ART) measures the time taken for a task to
complete its execution.

V. RESULTS AND ANALYSIS
Fig 4 shows the AUR results under an increasing load. The

error-free in GUS is the upper limit of our proposed recovery
algorithms. We observed that BRGUS algorithm accrued
higher utility compared to ARGUS for the entire load range.
Clearly, the attempt to re-execute the faulty tasks
significantly improved the accrued utility in BRGUS. Since
aborted tasks produced zero utility, this caused ARGUS to
accrue lower utility. Fig 5 verifies our speculation, proving
that the abortion ratio in BRGUS is lower than in ARGUS,
which ultimately leads to higher utility accrued.

20

30

40

50

60

70

80

90

100

0.2 0.4 0.6 0.8 1 1.2 1.4
Average Load

A
cc

ru
ed

 U
til

ity
 R

at
io

:A
U

R(
%

)

GUS : Error-free BRGUS : Error = 0.1
ARGUS : Error = 0.1 BRGUS : Error = 0.4
ARGUS : Error = 0.4 BRGUS : Error = 1
ARGUS : Error = 1

Fig. 4. Accrued Utility Ratio vs. Average Load

5

15

25

35

45

55

65

0.2 0.4 0.6 0.8 1 1.2 1.4
Average Load

A
bo

rti
on

 R
at

io
(%

)

ARGUS : Error = 1
BRGUS : Error = 1
ARGUS : Error = 0.4
BRGUS : Error = 0.4
ARGUS : Error = 0.1
BRGUS : Error = 0.1
GUS : Error-free

Fig. 5. Abortion Ratio vs. Task Error Rate

0.35

0.4

0.45

0.5

0.55

0 0.2 0.4 0.6 0.8 1
Task Error-Rate

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e(

se
cs

)

BRGUS : Low load:0.2 BRGUS : High load:1.5
ARGUS : Low load:0.2 ARGUS : High load:1.5

Fig. 6. Average Response Time vs. Task Error Rate

Fig 6 shows the ART effects of the proposed algorithms.
Although BRGUS accumulates higher ART compared to
ARGUS, it is always lower than its execution time (i.e., 0.5s).
This is identified as BRGUS tradeoff, whereby the extra time
taken is the time overhead incurred for re-execution of the
faulty tasks during recovery process. The more tasks get
re-executed, the higher utility that BRGUS is able to accrue
back to the system.

VI. CONCLUSION
This paper presents quantitative results of a best effort UA

real time scheduling algorithm called BRGUS that applied
time redundancy paradigm for fault recovery. Simulation
studies shows that the BRGUS achieved higher accrued
utility with smaller abortion ratio, conforming to our design
objectives. Future work includes implementing in real time
operating system (RTOS) to observe the actual behavior of
BRGUS algorithm.

REFERENCES
[1] Peng Li, “Utility Accrual Real Time Scheduling” Model and

Algorithm,” PhD dissertation, Virginia Polytechnic Institute and State
University, 2004.

[2] E.D.Jensen, C.D.Locke and H.Tokuda, “A time driven scheduling
model for real time system,” in Proceeding of Real Time System
Symposium, December 1985,pp.112-212.

[3] C.D.Locke, “Best-effort decision making for real time scheduling,”
PhD dissertation, Carnegie Mellon University, 1986.

[4] H.Wu, B.Ravindran, P.Li, “CPU Scheduling for Statistically-Assured
Real-Time Performance and Improved Energy Efficiency, “ in
Proceeding of Eight IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing(ISORC),2005,
pp.55-60.

[5] B.Ravindran, E.D.Jensen P.Li, “ On Recent Advanced in Time/Utility
Function Real-Time Scheduling and Resource Management,” in
Proceeding of the 2nd IEEE/ACM/IFIP International Conference of
Hardware/Software Codesign and System Synthesis, September 2004,
pp.55-60.

[6] Edward A.Curley, “Recovering From Distributable Thread Failures
with Assured Timeliness in Real Time Distributed System,” Master
Thesis, Virgina Polytechnic Institute and State University, 2007.

[7] Sasikumar Punnekat, “Schedulability Analysis for Fault Tolerant Real
Time Systems,” PhD dissertation, University of York, 1997.

[8] George Marconi de Araujo Lima, “Fault Tolerance in Fixed Priority
Hard Real Time Distributed Systems,” PhD dissertation, University of
York,, 2003.

[9] P.Mejia Alvarez and D.Mosse, “A Responsiveness Approach ofr
Scheduling Fault Recovery in Real Time Systems, “ in Proceeding of
Fifth IEEE Real-Time Technology and Applications Symposium,
1994,p.4-13.

Proceedings of the World Congress on Engineering and Computer Science 2008
WCECS 2008, October 22 - 24, 2008, San Francisco, USA

ISBN: 978-988-98671-0-2 WCECS 2008

