
 
 

 

  
Abstract—In this paper, we proposed two recovery solutions 

over the existing error-free utility accrual scheduling algorithm 
known as General Utility Accrual Scheduling algorithm (or 
GUS) proposed by Peng Li [1]. A robust fault recovery 
algorithm called Backward Recovery GUS (or BRGUS) works 
by adapting the time redundancy model i.e., by re-executing the 
affected task after its transient error period is over. The 
BRGUS is compared with a less complicated recovery 
algorithm named as Abortion Recovery GUS (or ARGUS) that 
simply aborts all faulty tasks. Our main objectives are (1) to 
maximize the total accrued utility and (2) to ensure correctness 
of the executed tasks on best effort basis and achieve the fault 
free tasks as much as possible. Our simulation results reveal 
that BRGUS outperforms the ARGUS algorithm with higher 
accrued utility and less abortion ratio, making it more suitable 
and efficient in adaptive real time system. 
 

Index Terms—Adaptive Real-Time System, Utility Accrual 
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I. INTRODUCTION 
A real time system is a system where the time at which events 
occur is important. In adaptive real time system, the deadline 
misses and delays during overloads are tolerable and do not 
have great consequences. The definition of deadline 
constraints in existing deadline based scheduling algorithms 
such as Earliest Deadline First (or EDF) is limited in 
expressiveness by its singular metrics. A clear distinction has 
been made between the urgency and the important of a task by 
Jensen in [2], [3] known as time/utility functions (or TUFs). As 
illustrated in Fig 1, the urgency is measured as a deadline on 
X-axis and importance is captured by utility in Y-axis. A task’s 
time constraint expresses the utility for completing a task as a 
function of when the task is completed. As shown in Fig.1, 
completion of a task within its initial time, ITreq and 
termination time, TTreq will accrued some utility or zero 
utility otherwise. We specify the deadline constraint of a task a 
binary value, downward step shaped TUF as shown in Fig 1.  

The scheduling optimality criteria are based on 
maximizing accrued utility from those tasks. These criteria 
are named as Utility Accrual (or UA) [4]. A closer look at the 
UA algorithms in [5] [6] indicates that only the 
Aborted-Assured Utility Accrual (or AUA) and 
Handler-Assured Utility Accrual (or HUA) algorithms 
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consider fault in its scheduling decision [6]. These algorithms 
consider the abortion and released handler for all task 
failures. To the best of our knowledge, none of the prior 
works in UA scheduling domains consider time redundancy 
in their fault recovery design model. In this paper, we apply 
the time redundancy model for fault recovery in UA 
scheduling domain. 
 

 
Fig.1. The Step TUF [1],[4] 

 

II.  LITERATURE REVIEW 

A. Faults 
 The term error and fault are often used as synonym. 
However, the definition in [7] is appropriate in the context of 
problems analyzed in this study. A fault is a defect in 
component or design of a system. Fault can be categorized as 
permanent and transient. Permanent faults include hardware 
break-downs, connection disruption as well as design errors. 
A transient fault category is when an error disappear shortly 
after it appearance. These types of faults are caused by 
software design error or environmental variations. We 
focused on transient faults since previous studies in [7], [8] 
have indicated that majority of faults observed during the 
lifetime of a system are caused by transient faults. 

B. Fault Recovery 
Almost every fault recovery mechanism relies on some 

form of redundancy. Space redundancy is employed by extra 
hardware and software component that is introduced in the 
system only for fault recovery purposes [9].  A less expensive 
approach is via the use of time redundancy, which is based on 
repeating the computation and typically does not require a 
large amount of extra resources. This paper focused on time 
redundancy paradigm, since it is suitable for non-distributed 
and uniprocessor environment. 

Two main approaches for fault recovery are backward and 
forward recovery technique. In forward recovery technique, 
the system does not roll back to its previous safe state and it 
allows for another available resource to perform recovery. 
This technique works well in distributed system environment 
whereas extra resources are widely available. In contrast, the 
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backward technique attempts to take the system back to its 
previous safe state and then proceeds to re-execute the 
affected task [7]. The backward recovery method has been 
used for our proposed algorithm 

III. THE PROPOSED ALGORITHMS 

A. Task Model 
During the lifetime of a task, it may request one or more 

resources. As shown in Fig 2, a task specifies duration to 
hold the requested resource in holdtime. We apply the 
Jensen’s TUFs [2],[3] to define the time constraints of a 
task. Each task has an initial time and a termination time. 
If the termination time of a task is reached and the task has 
not completed its execution, it will then be aborted. 
Aborting a task will change the task state from Normal to 
Abort mode. Completion of task before the deadline in 
Normal mode accrues some uniform utility and accrues 
zero utility otherwise. Following [1], our proposed 
algorithm measures the metric called Potential Utility 
Density (or PUD) that was originally developed in [2]. The 
PUD of a task measures the amount of utility that can be 
gained per unit time by executing the task. Thus, executing 
task in Abort mode will accrues zero PUD and accrued 
zero utility to the system. 

 
Fig.2. Task Model 

B. Fault Definition and Assumptions 
In our fault model we assumed that the system have error 

containment capabilities to prevent the propagation of a 
specific error to other tasks. The transient faults in a request 
can be effectively overcome by re-execution of the request in 
the affected task. A request is suspended temporarily to 
model the transient error defects. The fault occurrences and 
its duration follow the exponential distribution as detailed in 
Table 1. We further assumed that no error occurred during the 
fault recovery process. 

C. The Fault Recovery Algorithms 
Fig.3 shows a description of Backward Recovery GUS (or 

BRGUS) and Abortion Recovery GUS (or ARGUS) after the 
arrival of a task recovery event. In BRGUS, after the 
erroneous period of a request is over, the time taken to 
re-execute the request (i.e., holdtime) is measured. The 
system were rolled back to its previous safe state (i.e., before 
error occurred) and then proceeds to re-execute the affected 
task [7]. A request is eligible for re-execution if the holdtime 
of the request does not exceed the remaining execution time 
of a task. Otherwise, the task will be aborted since 
re-executing the task will finally result in abortion later 
during termination time.  Our proposed recovery algorithm 
works in a best-effort basis, in the sense that a task is simply 

aborted if it does not have enough time to be re-executed or 
continue re-execution otherwise. In ARGUS, all faulty tasks 
are simply aborted to recover the error. 

 
Fig.3. The Proposed Algorithms 

 

IV. EXPERIMENTAL MODEL 

A. Simulation Model 
We developed a discrete event simulator to verify the 

performance of our proposed algorithm. We used experiment 
settings that are similar to those in Peng Li’s PhD thesis [1] 
for comparison purpose. A stream of 1000 tasks is 
exponentially generated and these tasks are assumed to be 
independent of each other. The events the scheduler include 
the arrival of a task, the completion of a task, a resource 
request, a resource release, the arrival of termination time of a 
task, the arrival of fault in a request and the arrival of a fault 
recovery in a request. Table 1 summarized the details task 
settings used in our model. 

Table 1 Simulation Parameters 
Parameter  
(Range value) 

Description 

iat 
( Exponential(C_AVG/load))  

Task Inter-Arrival Time 

holdtime  
( Normal(0.25,0.25)) 

Time duration for holding a 
resource 

max_au  
Normal(10,10) 

Task’s Maximum Utility 

mean_tasks 
Exponential( 0.1) 

Inter- arrival of error in the 
system 

MEAN_DURATION 
(Exponential (0.1)) 

Duration of error (transient) 

MAX_RESOURCES 
(5) 

Number of available 
resources 
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B. Performance Metrics 
The Accrued Utility Ratio (or AUR) metric defined in 

[2] has been used in many algorithms stated in [1], [3], [4], 
[5], [6] and can be considered as standard metric in UA 
scheduling domain. AUR is defined as the ratio of accrued 
aggregate utility to the maximum possibly attained utility. 
The Abortion Ratio (or AR) is the ratio of aborted task to 
the total of task in the system. The Average Response 
Time (or ART) measures the time taken for a task to 
complete its execution. 

V. RESULTS AND ANALYSIS 
Fig 4 shows the AUR results under an increasing load. The 

error-free in GUS is the upper limit of our proposed recovery 
algorithms. We observed that BRGUS algorithm accrued 
higher utility compared to ARGUS for the entire load range. 
Clearly, the attempt to re-execute the faulty tasks 
significantly improved the accrued utility in BRGUS. Since 
aborted tasks produced zero utility, this caused ARGUS to 
accrue lower utility. Fig 5 verifies our speculation, proving 
that the abortion ratio in BRGUS is lower than in ARGUS, 
which ultimately leads to higher utility accrued.  
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Fig. 4. Accrued Utility Ratio vs. Average Load 
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Fig. 5. Abortion Ratio vs. Task Error Rate 
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Fig. 6. Average Response Time vs. Task Error Rate 

Fig 6 shows the ART effects of the proposed algorithms. 
Although BRGUS accumulates higher ART compared to 
ARGUS, it is always lower than its execution time (i.e., 0.5s). 
This is identified as BRGUS tradeoff, whereby the extra time 
taken is the time overhead incurred for re-execution of the 
faulty tasks during recovery process. The more tasks get 
re-executed, the higher utility that BRGUS is able to accrue 
back to the system. 

VI. CONCLUSION 
This paper presents quantitative results of a best effort UA 

real time scheduling algorithm called BRGUS that applied 
time redundancy paradigm for fault recovery. Simulation 
studies shows that the BRGUS achieved higher accrued 
utility with smaller abortion ratio, conforming to our design 
objectives. Future work includes implementing in real time 
operating system (RTOS) to observe the actual behavior of 
BRGUS algorithm.  
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